Homework 4 Solution.

To show $L_1\alpha$ is regular, if L is regular.

Look at all the final states that have an incoming transition labeled with "a."

Such states can be two forms.

\[a \rightarrow \] change to.

\[a \rightarrow \]

Then, make all other final states non-final (any other final states that do not have an incoming "a" transition.

To show if L is regular \Rightarrow all is also regular.

1. Let D be the DFA for L^R.

2. Build a new DFA called $D_1\alpha$ for L^R/α.

 $D_1\alpha \leftarrow$ DFA for language L^R/α. (already proved in Q1)

3. Reverse that DFA

 \[a \downarrow L = (L^R/\alpha)^R \]
\[A = D = G \]
\[B = H = E \]
\[E = I = F \]
(a) \(L_1 = \{ a^i b^j c^k \mid i \neq j \}, \ i,j,k \geq 0 \):

\[
\begin{align*}
S_1 & \rightarrow Xa+b \ C \\
Xa+b & \Rightarrow a \ Xa+b \ b \ |A+|B+ \\
A+ & \Rightarrow aA+|a \\
B+ & \Rightarrow bB+|b \\
C & \Rightarrow cC|C \\
\end{align*}
\]

(b) \(L_2 = \{ a^i b^j c^k | i \neq k \}, \ i,j,k \geq 0 \):

\[
\begin{align*}
S_2 & \rightarrow a \ S_2 \ c \ |X|Y|1 \\
X & \Rightarrow B \ C+ \\
B & \Rightarrow bB|b \\
C & \Rightarrow cC|C \\
\end{align*}
\]

\[
y = 2A+13 \\
A+ = 2aA+|a \\
\]

(c) \(L_3 = \{ a^i b^j c^k \mid i \neq j \text{ or } i \neq k \} \):

\[
S_3 \rightarrow S_1 \ S_2 .
\]
a) \[S \Rightarrow aSbS | bSaS | \lambda \]
A \Rightarrow \alpha A | \lambda

e) \[S \Rightarrow aA1bA | a1b \]
On \[S \Rightarrow aQS | aQS | bS | bS | bS | \lambda1b \]
A \Rightarrow aS | \lambda b

f) Set of strings \[\text{www} \]
\[S \Rightarrow aS1 | bS1 | aTB | bTA | a1b \]
T \Rightarrow aT | bT | \lambda

\[\text{Leftmost} \quad \text{A | B} \]
\[\text{0A | 1B} \]
\[00A | 1B \]
\[000A | 1B \]
\[0001 | B \]
\[0001 | B \]
\[0001 \]

\[\text{Rightmost} \quad \text{A | B} \]
\[\text{A | 1B} \]
\[A | \lambda \]
\[\text{0A | 1} \]
\[00A | 11 \]
\[000A | 11 \]
\[0001 | B \]
\[0001 | B \]
\[0001 \]