
Inferring the Underlying Structure of Information Cascades

Bo Zong, Yinghui Wu, Ambuj K. Singh, and Xifeng Yan

University of California at Santa Barbara
{bzong, yinghui, ambuj, xyan}@cs.ucsb.edu

Abstract—In social networks, information and influence
diffuse among users as cascades. While the importance of
studying cascades has been recognized in various applications,
it is difficult to observe the complete structure of cascades in
practice. In this paper we study the cascade inference problem
following the independent cascade model, and provide a full
treatment from complexity to algorithms: (a) We propose the
idea of consistent trees as the inferred structures for cascades;
these trees connect source nodes and observed nodes with
paths satisfying the constraints from the observed temporal
information. (b) We introduce metrics to measure the likelihood
of consistent trees as inferred cascades, as well as several
optimization problems for finding them. (c) We show that
the decision problems for consistent trees are in general NP-
complete, and that the optimization problems are hard to
approximate. (d) We provide approximation algorithms with
performance guarantees on the quality of the inferred cascades,
as well as heuristics. We experimentally verify the efficiency
and effectiveness of our inference algorithms, using real and
synthetic data.

Keywords-information diffusion; cascade prediction.

I. INTRODUCTION

In various real-life networks, users frequently exchange
information and influence each other. The information (e.g.,
messages, articles, recommendation links) is typically cre-
ated by a user and spreads via links among users, leaving a
trace of its propagation. Such traces are typically represented
as trees, namely, information cascades, where (a) each node
in a cascade is associated with the time step at which it
receives the information, and (b) an edge from a node to
another indicates that a user propagates the information to
and influences its neighbor [3], [10], [15].

A comprehensive understanding and analysis of cas-
cades benefits various emerging applications in social net-
works [5], [11], viral marketing [1], [18], and recommen-
dation networks [16]. In order to model the propagation
of information, various cascade models have been devel-
oped [8], [22], [24]. Among the most widely used models
is the independent cascade model [11], where each node
has only one chance to influence its inactive neighbors, and
each node is influenced by at most one of its neighbors
independently. Nevertheless, it is typically difficult to ob-
serve entire cascades in practice, due to the noisy graphs
with missing data, or data privacy policies [20]. This calls
for techniques that can infer the cascades using partial
information. Although cascade models and a set of related
problems, e.g., influence maximization, have been widely

studied, much less is known on how to infer the cascade
structures based on partial information, including complexity
bounds and approximation algorithms.

In this paper we investigate the cascade inference prob-
lem, where cascades follow the widely used independent
cascade model. The paper is organized as follows. In Sec-
tion II, we introduce the notions of (perfect and bounded)
consistent trees to capture the missing structures of partial
cascades, as well as a measure for their quality. We in-
vestigate the problems of identifying perfect and bounded
consistent trees, given partial observations, in Section III
and Section IV, respectively. We show that these problems
are all NP-complete, and hard to approximate. Nevertheless,
we provide heuristics for these problems. We experimentally
verify the effectiveness and efficiency of our inference
algorithms in Section V.

Related work. There has been recent work on cascade pre-
diction and inference, with the emphasis on global properties
(e.g., cascade nodes, width, size) [4], [7], [9], [14], [20],
[22], [24]. All the above works focus on predicting the
nodes and their behavior in cascades. In contrast, we propose
approaches to infer both the nodes and the topology of the
cascades in the graph-time domain. Closer to our work is the
work by Sadikov et al. [20] that considers cascade prediction
on k-trees. In contrast, we model cascades as general trees,
and infer the nodes as well as topology of the cascades only
from a set of nodes and their activation time, using much less
available information. In addition, the temporal information
in the partial observations is not considered in [20]. More
related work is discussed in [26].

II. CONSISTENT TREES

We start by introducing several notions.

Diffusion graph. We denote a social network as a directed
graph G = (V,E, f), where (a) V is a finite set of nodes,
and each node u ∈ V denotes a user; (b) E ⊆ V × V is
a finite set of edges, where each edge (u, v) ∈ E denotes
a social connection via which the information may diffuse
from u to v; and (c) a diffusion function f : E → R+ which
assigns for each edge (u, v) ∈ E a value f(u, v) ∈ [0, 1], as
the probability that node u influences v.

Cascades. We first review the independent cascade
model [11]. We say a cascade unfolds over a graph G

2012 IEEE 12th International Conference on Data Mining

1550-4786 2012

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ICDM.2012.100

709

2012 IEEE 12th International Conference on Data Mining

1550-4786 2012

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ICDM.2012.100

1218

following the independent cascade model if (a) at any time
step, each node in G is exactly one of the three states
{active, newly active, inactive}; (b) a cascade starts from
a source node s being newly active at time step 0; (c) a
newly active node u at time step t has only one chance to
influence its inactive neighbors, such that at time t+ 1, (i)
if v is an inactive neighbor of u, v becomes newly active
with probability f(u, v); and (ii) the state of u changes from
newly active to active, and cannot influence any neighbors
afterwards; and (d) each inactive node v can be influenced
by at most one of its newly active neighbors independently,
and the neighbors’ attempts are sequenced in an arbitrary
order. Once a node is active, it cannot change its state.

Based on the independent cascade model, we define a
cascade C over graph G = (V,E, f) as a directed tree
(Vc, Ec, s, T) where (a) Vc ⊆ V , Ec ⊆ E; (b) s ∈ Vc is the
source node from which the information starts to propagate;
and (c) function T assigns for each node vi ∈ Vc a time step
ti, which represents that vi is newly active at time step ti.

Intuitively, a cascade is a tree representation of the “trace”
of the information propagation from a source node s to a
set of influenced nodes. Indeed, one may verify that any
cascade from s following the model is a tree rooted at s.

Partial observation. Given a cascade C = (Vc, Ec, s, T),
a pair (vi, ti) is an observation point, if vi ∈ V is known
(observed) to be newly active at or by time step ti. A partial
observation X is a set of observation points. Specifically,
X is a complete observation if for any v ∈ Vc, there is an
observation point (v, t) ∈ X . To simplify the discussion, we
also assume that pair (s, 0) ∈ X where s is the source node.
The techniques developed in this paper can be adapted to
the case where the source node is unknown.

We are now ready to introduce the idea of consistent trees.

A. Consistent trees

Given a partial observation X of a graph G = (V,E, f),
a bounded consistent tree Ts = (VTs

, ETs
, s) w.r.t. X is a

directed subtree of G with root s ∈ V , such that for every
(vi, ti) ∈ X , vi ∈ VTs

, and s reaches vi by ti hops, i.e., there
exists a path of length at most ti from s to vi. Specifically,
we say a consistent tree is a perfect consistent tree if for
every (vi, ti) ∈ X and vi ∈ VTs

, there is a path of length
exactly ti from s to vi.

Intuitively, consistent trees represent possible cascades
which conform to the independent cascade model, as well
as the partial observation. Note the following: (a) the path
from the root s to a node vi in a bounded consistent tree
Ts is not necessarily a shortest path from s to vi in G, as
observed in [13]; (b) perfect consistent trees model cascades
when the partial observation is accurate, i.e., each time ti in
an observation point (vi, ti) is exactly the time when vi is
newly active; in contrast, in bounded consistent trees, an
observation point (vi, ti) indicates that node vi is newly

active at the time step ti
′ ≤ ti, due to possible delays during

information propagation, as observed in [5].

B. Cascade inference problem

We now introduce the general cascade inference problem.
Given a social graph G and a partial observation X , the
cascade inference problem is to determine whether there
exists a consistent tree T w.r.t. X in G.

There may be multiple consistent trees for a partial ob-
servation, so one often wants to identify the best consistent
tree. We next provide two quantitative metrics to measure
the quality of the inferred cascades. Let G = (V,E, f) be a
social graph, and X be a partial observation.

Minimum weighted consistent trees. In practice, one often
wants to identify consistent trees that are close to the actual
cascades. Recall that each edge (u, v) ∈ E in a given
network G carries a value assigned by a diffusion function
f(u, v), which indicates the probability that u influences v.
Based on f(u, v), we introduce a likelihood function as a
quantitative metric for consistent trees.

Likelihood function. Given a graph G = (V,E, f), a partial
observation X and a consistent tree Ts = (VTs

, ETs
, s), the

likelihood of Ts, denoted as LX(Ts), is defined as:

LX(Ts) = P(X | Ts) =
∏

(u,v)∈ETs

f(u, v). (1)

Following common practice, we opt to use the log-
likelihood metric, where

LX(Ts) =
∑

(u,v)∈ETs

log f(u, v)

Given G and X , a natural problem is to find the consistent
tree with maximum likelihood. Using log-likelihood, the
minimum weighted consistent tree problem is to identify the
consistent tree Ts with the minimum −LX(Ts).

Minimum consistent trees. In some cases, one may simply
want to find the minimum structure that represents a cas-
cade [17]. The minimum consistent tree, as a special case of
the minimum weighted consistent tree, depicts the smallest
cascades with the fewest communication steps to pass the
information to all the observed nodes. In other words, this
metric favors consistent trees with the fewest edges.

Given G and X , the minimum consistent tree problem is
to find the minimum consistent trees in G w.r.t. X .

In the following sections, we investigate the cascade
inference problem, and their optimization problems.

III. CASCADES AS PERFECT TREES

As remarked earlier, when the partial observation X is
accurate, one may want to infer the cascade structure via
perfect consistent trees. The minimum (resp. weighted)
perfect consistent tree problem, denoted as PCTmin (resp.

7101219

PCTw) is to find the perfect consistent trees with minimum
size (resp. maximum log-likelihood) as the quality metric.

It is desirable that the PCTmin and PCTw problems can
be solved in polynomial time. Nevertheless, the following
result shows that these problems are nontrivial.

Proposition 1: Given a graph G and a partial observation
X , (a) it is NP-complete to determine whether there is a
perfect consistent tree w.r.t. X in G; and (b) the PCTmin

and PCTw problems are NP-complete and APX-hard.

One may verify Proposition 1(a) by a reduction from
the Hamiltonian path problem [23]. We prove Proposi-
tion 1(b) by constructing an approximation preserving re-
duction (AFP-reduction) [23] from the minimum directed
steiner tree (MST) problem to PCTmin. The APX-hard prob-
lems are APX problems to which every APX problem can be
reduced [23].

A. Bottom-up searching algorithm

Given the above intractability and approximation hardness
result, we introduce a heuristic WPCT for PCTw problem.
The idea is to (a) generate a “backbone network” Gb of G
which contains all the nodes and edges that are possible to
form a perfect consistent tree, using a set of pruning rules,
and also rank the observed nodes in Gb with the descending
order of their time step in X , and (b) perform a bottom-up
evaluation for each time step in Gb using a local-optimal
strategy, following the descending order of the time step.

Backbone network. We consider pruning strategies to re-
duce the nodes and the edges that are not possible to be in
any perfect consistent trees, given a graph G = (V,E, f) and
a partial observation X = {(v1, t1), . . . , (vk, tk)}. We define
a backbone network Gb = (Vb, Eb), where

• Vb =
⋃
{vj |dist(s, vj) + dist(vj , vi) ≤ ti} for each

(vi, ti) ∈ X; and
• Eb = {(v′, v)|v′ ∈ Vb, v ∈ Vb, (v

′, v) ∈ E}

Intuitively, Gb includes all the possible nodes and edges
that may appear in a perfect consistent tree for a given
partial observation. In order to construct Gb, a set of pruning
rules can be developed as follows: for a node v′ in G,
if every observed node v in a cascade with time step t
has dist(s, v′) + dist(v′, v) > t, then v′ and all the edges
connected to v′ can be safely pruned.

Algorithm. Algorithm WPCT is as shown in Fig. 1. It
starts by initializing a tree T (line 1), by inserting all the
observation points into T . Each node v in T is assigned with
a level l(v) equal to its time step as in X . The edge set is set
to empty. It then constructs a backbone network Gb with the
pruning rules (lines 2-9). It initializes a node set Vb within
tmax hop of the source node s, where tmax is the maximum
time step in X (line 2). If there exists some node v ∈ X
that is not in Vb, the algorithm returns ∅, since there is no
path from s reaching v with t steps for (v, t) ∈ X (line 3).

Input: graph G and partial observation X .
Output: a perfect consistent tree T in G.

1. tree T = (VT , ET), where VT := {v|(v, t) ∈ X},
set level l(v):= t for each (v, t) ∈ X , E := ∅;

2. set Vb := {vb|dist(s, vb) ≤ tmax};
3. if there is a node v in X and v /∈ Vb then return ∅;
4. set Eb := {(v′, v)|(v′, v) ∈ E, v′ ∈ Vb, v ∈ Vb)};
5. for each v ∈ Vb do
6. if there is no (vi, ti) ∈ X that

dist(s, v)+dist(v, vi) ≤ ti then
7. Vb = Vb \ {v};
8. Eb = Eb \ {(v1, v2)} where v1 = v or v2 = v;
9. graph Gb := (Vb, Eb);
10. list L := {(v1, t1), . . . , (vk, tk)}

where ti ≤ ti+1, (vi, ti) ∈ X , i ∈ [1, k − 1];
11. for each i ∈ [1, tmax] following descending order do
12. Vt:= V1 ∪ V2 ∪ V3, V1 := {vi|(v, ti) ∈ X};

V2 := {v|v ∈ VT , l(v) = ti};
V3 := {v′|(v′, v) ∈ Eb, v ∈ V1 ∪ V2, v

′ /∈ VT };
13. Et := {(v′, v)|v′ ∈ V3, v ∈ V1 ∪ V2, (v

′, v) ∈ Eb};
14. construct Gt = (Vt, Et);
15. T := T ∪ PCTl(Gt, V1 ∪ V2, V3, i);
16. if T is a tree then return T ;
17. return ∅;

Figure 1: Algorithm WPCT: pruning and local searching

It further removes the redundant nodes and edges that are
not in any perfect trees, using the pruning rules (lines 5-
8). The network Gb is then constructed (line 9). The partial
observation X is also sorted w.r.t. the time step (line 10).

Following a bottom-up greedy strategy, WPCT then
processes each observation point (lines 11-17). For each i in
[1, tmax], it generates a (bipartite) graph Gt. (a) It initializes
a node set Vt as the union of three sets of nodes V1, V2 and
V3 (line 12), where (i) V1 is the nodes in X with time step ti,
(ii) V2 is the nodes v in the current perfect consistent tree T
with level l(v) = ti, and (iii) V3 is the set of possible parents
for the nodes in V1 and V2. (b) It constructs an edge set Et

which consists of the edges from V3 to V1 and V2. (c) It then
generates Gt with Vt and the edge set Et, which is a bipartite
graph. After Gt is constructed, the algorithm WPCT invokes
procedure PCTl to compute a “part” of the perfect tree T ,
which is an optimal solution for Gt, a part of the graph
Gb which contains all the observed nodes with time step ti.
It expands T with the returned partial tree (line 15). The
above process (lines 11-15) repeats for each i ∈ [1, tmax]
until all the nodes in X are processed. Algorithm WPCT

then checks if the constructed T is a tree. If so, it returns T
as a perfect tree; otherwise, it returns ∅ (line 17).

Procedure PCTl. Given a (bipartite) graph Gt, and two sets
of nodes V and Vs in Gt, the procedure PCTl [26] computes
for Gt a set of trees Tt = {T1, . . . , TL} with the minimum
total weight, where (a) each Ti is a 2-level tree with a root
in Vs and leaves in V , (b) the leaves of any two trees in
Tt are disjoint, and (c) the trees cover all the nodes in V .
The weight of Ti consists of the edge weights, and the root
weight which is estimated by the minimum-cost path from

7111220

the cascade root s to Ti’s root. For each Ti, PCTl assigns
its root r in Vs a level l(r) = ti − 1. Tt is then returned as
a part of the entire perfect consistent tree. In practice, we
may either employ linear programming, or an algorithm for
MST problem (e.g., [19]) to compute Tt.

Discussion. The algorithm WPCT either returns ∅, or cor-
rectly computes a perfect consistent tree w.r.t. the partial
observation X . Indeed, one may verify that (a) the pruning
rules only remove the nodes and edges that are not in any
perfect consistent tree w.r.t. X , and (b) WPCT has the loop
invariant that at each iteration i (lines 11-15), it always
constructs a part of a perfect tree as a forest. One may further
verify that WPCT runs in time O(|V ||E|+|X|2+tmax∗A),
where tmax is the maximum time step in X , and A
is the time complexity of procedure PCTl. The bottom-
up construction runs in O(|tmax ∗ A|), which is further
bounded by O(|tmax ∗ |V |

3) if an approximable algorithm
is used [19]. In our experimental study, we utilize efficient
linear programming to compute the optimal steiner forest.

The algorithm WPCT can easily be adapted for PCTmin

problem for minimum perfect consistent trees, treating the
weight on each edge as unit weight.

Perfect consistent SP trees. The independent cascade model
may be an overkill for real-life applications, as observed
in [6], [12]. Instead, one may identify the consistent trees
which follow the shortest path model [12], where cascades
propagate following shortest paths. We define a perfect
shortest path (sp) tree rooted at a given source node s as a
perfect consistent tree, such that for each observation point
(v, t) ∈ X of the tree, t = dist(s, v); in other word, the path
from s to v in the tree is a shortest path in G. The PCTw

(resp. PCTmin) problem for sp trees is to identify the sp

trees with the maximum likelihood (resp. minimum size).
Proposition 2: Given a graph G and a partial observation

X , (a) it is in PTIME to find a sp tree w.r.t. X; (b) the
PCTmin and PCTw problems for perfect sp trees are NP-
hard and APX-hard; (c) the PCTw problem is approximable
within O(d ∗ log fmin

log fmax
), where d is the diameter of G, and

fmax (resp. fmin) is the maximum (resp. minimum) value
defined by the diffusion function f .

We next provide an approximation algorithm for the
PCTw problem on sp trees. Given a graph G and a partial
observation X , the algorithm, denoted as WPCTsp (not
shown), first constructs the backbone graph Gb as in the al-
gorithm WPCT. It then constructs node sets Vr = {v|(v, t) ∈
X}, and Vs = V \ Vr. Treating Vr as required nodes, Vs as
steiner nodes, and the log-likelihood function as the weight
function, WPCTsp approximately computes an undirected
minimum steiner tree T . If the directed counterpart T ′ of T
in Gb is not a tree, WPCTsp transforms T ′ to a tree: for
each node v in T ′ with more than one parent, it (a) connects
s and v via a shortest path, and (b) removes redundant edges

Input: graph G and partial observation X .
Output: a bounded consistent tree T in G.

1. tree T = (Vt, Et), where Vt := {s|(s, 0) ∈ X}, Et := ∅;
2. compute tk bounded BFS DAG Gd of s in G;
3. for each ti ∈ [t1, tk] do
4. for each node v where (v, ti) ∈ X and l(v) = i do
5. if i > ti then return ∅;
6. find a path ρ from s to v with the

minimum weight w(ρ) = −Σ log f(e)
for each e ∈ ρ;

7. T = T ∪ ρ;
8. return T as a bounded consistent tree;

Figure 2: Algorithm WBCT

attached to v. It then returns T ′ as an sp tree.
One may verify that (a) T ′ is a perfect sp tree w.r.t. X , (b)

the weight −LX(T ′) is bounded by O(d∗ log fmin

log fmax
) times of

the optimal weight, and (c) the algorithm runs in O(|V 3|)
time, leveraging the approximation algorithm for the steiner
tree problem [23]. Moreover, WPCTsp can be used for
the problem PCTmin for sp trees, where each edge in G has
the same weight. This achieves an approximation ratio of d.

IV. CASCADES AS BOUNDED TREES

In this section, we investigate the cascade inference
problems for bounded consistent trees. In contrast to the
intractable counterpart in Proposition 1(a), the problem of
finding a bounded consistent tree for a given graph and a
partial observation is in PTIME.

Proposition 3: For a given graph G and a partial obser-
vation X , there is a bounded consistent tree in G w.r.t. X
if and only if for each (v, t) ∈ X , dist(s, v) ≤ t, where
dist(s, v) is the distance from s to v in G.

Given a graph G and a partial observation X , the mini-
mum weighted bounded consistent tree problem, denoted as
BCTw, is to identify the bounded consistent tree T ∗

s w.r.t. X
with the maximum likelihood LX(T ∗

s). Using log-likelihood
measurement, the BCTw problem is to identify T ∗

s with the
minimum − logLX(T ∗

s) (see Section II).

Theorem 1: Given a graph G and a partial observation
X , the BCTw problem is
(a) NP-complete and APX-hard; and
(b) approximable within O(|X| ∗ log fmin

log fmax
), where fmax

(resp. fmin) is the maximum (resp. minimum) value
defined by the diffusion function f over G.

One may show the hardness result in Theorem 1(a) by
constructing (1) a polynomial time reduction from the exact
3-cover problem (X3C), and (2) an AFP-reduction from the
minimum directed steiner tree (MST) problem.

We next provide an algorithm for the BCTw problem,
which runs in linear time w.r.t. the size of G, and with
performance guarantee as in Theorem 1(b).

Algorithm. The algorithm, denoted as WBCT, is illustrated
in Fig. 2. Given a graph G and a partial observation X , the
algorithm first initializes a tree T = (Vt, Et) with the single

7121221

source node s (line 1). It then computes the tk bounded BFS

directed acyclic graph (DAG) [2] Gd of the source node s,
where tk is the maximum time step of the observation points
in X , and Gd is a DAG induced by the nodes and edges
visited by a BFS traversal of G from s (line 2). Following
a top-down strategy, for each node v of (v, t) ∈ X , WBCT

then (a) selects a path ρ with the minimum −Σ log f(e)
from s to v, and (b) extends the current tree T with the
path ρ (lines 3-7). If for some observation point (v, t) ∈ T ,
dist(s, v) > t, then WBCT returns ∅ (line 5). Otherwise, the
tree T is returned (line 8).

Correctness and complexity. One may verify that algo-
rithm WBCT either correctly computes a bounded consistent
tree T , or returns ∅. The algorithm runs in time O(|E|), since
it visits each edges at most once following a BFS traversal.

We next show the approximation ratio in Theorem 1(b).
Observe that for a single node v in X , (a) the total weight of
the path w from s to v is no greater than |w| log fmin, where
|w| is the length of w; and (b) the weight of the counterpart
of w in T ∗, denoted as w′, is no less than |w∗| log fmax. Also
observe that |w| ≤ |w∗|. Thus, w/w∗ ≤ log fmin

log fmax
. As there

are in total |X| such nodes, LX(T)/LX(T ∗) ≤ |X| w
w∗
≤

|X| log fmin

log fmax
. Theorem 1(b) thus follows.

Minimum bounded consistent tree. As remarked earlier,
one may simply want to identify a bounded consistent tree
with minimum total number of nodes and edges. Given a
social graph G and a partial observation X , the minimum
bounded consistent tree problem, denoted as BCTmin, is to
identify such a tree in G w.r.t. X .

The BCTmin problem is a special case of BCTw. We
summarize the main result as follows.

Proposition 4: The BCTmin problem is (a) NP-complete,
(b) APX-hard, and (c) approximable within O(|X|).

V. EXPERIMENTS

We next present an experimental study to evaluate the
effectiveness and efficiency of the proposed algorithms.

Experimental setting. We used both real-life and synthetic
datasets. For real life data we used (1) the Enron email
cascades1, a social graph of 86, 808 users and 660, 642
edges as email forwarding relation, and (2) Retweet cascades
(RT)2 [25]. For Enron dataset, We tracked the forwarded
messages of the same subjects and obtained 260 cascades of
depth no less than 3 with more than 8 nodes. For Retweet
dataset, we obtained 321 cascades of depth more than 4,
with node size ranging from 10 to 81, by extracting the
retweet cascades of the identified hashtags [25]. We used the
EM algorithm from [21] to estimate the diffusion function.
We also randomly generated a set of synthetic cascades

1http://www.cs.cmu.edu/∼enron
2http://snap.stanford.edu/data/twitter7.html

unfolding in an anonymous Facebook social graph3. For all
the datasets, we define uncertainty of a cascade T as σ =
1 − |X|

|VT | , where |VT | is the node number in T , and |X| is
the size of the partial observation X . We remove the nodes
from the given cascades until the uncertainty is satisfied, and
collect the remaining nodes and their time steps as X .

We have implemented the following in C++: (i) al-
gorithms WPCT, and WBCT; (ii) two algorithms PCTlp

and BCTlp, where PCTlp (resp. BCTlp) identifies the op-
timal weighted bounded (resp. perfect) consistent trees
using linear programming, respectively; (iii) two random-
ized algorithms PCTr and BCTr, where PCTr is similar
to WPCT except for randomly selecting the steiner forest
at each level (see Section III); as WBCT does, BCTr runs
on bounded BFS directed acyclic graphs, but randomly
selects edges; and (iv) an algorithm PCTg which uses a
greedy strategy to select the steiner forest at each level (see
Section III). We used a machine powered by an Intel(R) Core
2.8GHz CPU and 8GB of RAM, using Ubuntu 10.10.

Experimental results. We next present our findings.
Effectiveness of consistent trees. Given a set of real life cas-
cade T = {T1, . . . , Tk}, for each cascade Ti = (VTi

, ETi
) ∈

T, we computed an inferred cascade Ti
′ = (VTi

′ , ETi
′)

according to a partial observation with uncertainty σ. Denote
the nodes in the partial observation as VX . We evalu-

ated the precision as prec =
Σ(|(VTi

′∩VTi
)\VX |)

Σ(|VTi
′\VX)| , and rec =

Σ(|(VTi
′∩VTi

)\VX |)

Σ(|VTi
\VX)| . For Enron dataset, we found that WPCT

outperforms PCTg and PCTr on both prec and rec, as shown
in Fig. 3(a) and Fig. 3(b), respectively. When the uncertainty
increases, both the prec and rec of the three algorithms
decrease. In particular, WPCT successfully infers cascade
nodes with prec no less than 70% and rec no less than 25%
even when 85% of the nodes in the cascades are removed.

Using the same setting, both BCTlp and WBCT out-
perform BCTr, and their prec and rec decrease while the
uncertainty increases, as shown in Fig. 3(c) and Fig. 3(d), re-
spectively. The performance of these algorithms over retweet
cascades [26] verifies our observations.

Efficiency. In all the tests over real-life datasets, PCTr,
BCTr, PCTg and WBCT take less than 1 second. BCTlp

and PCTlp do not scale for these datasets. In our tests, the
efficiency of all the algorithms are not sensitive w.r.t. the
changes to σ. The results over synthetic data also verify the
effectiveness and scalability of our methods.

In summary, our inference algorithms can infer cascades
effectively based on partial observation, and scale well with
the sizes of the cascades. For more details, please refer
to [26].

VI. CONCLUSION
In this paper, we investigated cascade inference problem

based on partial observation. We proposed consistent trees

3http://current.cs.ucsb.edu/socialnets

7131222

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

o
n

The uncertainty of the observation (σ)

WPCT
PCTr
PCTg

(a) PCT@Enron: prec

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.3 0.4 0.5 0.6 0.7 0.8

R
e

ca
ll

The uncertainty of the observation (σ)

WPCT
PCTr
PCTg

(b) PCT@Enron: rec

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

o
n

The uncertainty of the observation (σ)

WBCT
BCTr

BCTlp

(c) BCT@Enron: prec

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8

R
e

ca
ll

The uncertainty of the observation (σ)

WBCT
BCTr

BCTlp

(d) BCT@Enron: rec

Figure 3: The precision and recall of the inference algorithms over Enron cascades

Problem Complexity Approximation time

BCTmin NP-c, APX-hard |X| O(|E|)

BCTw NP-c,APX-hard |X| ∗ log fmax
log fmin

O(|E|))

PCTmin (sp tree) NP-c, APX-hard d |V 3|

PCTw (sp tree) NP-c, APX-hard d ∗ log fmax
log fmin

|V 3|

PCTmin NP-c, APX-hard – O(|tmax ∗ |V |3)

PCTw NP-c, APX-hard – O(|tmax ∗ |V |3)

Table I. Summary of the results

as well as quantitative metrics for capturing the inferred
cascades. We have established the hardness results for the
optimization problems as summarized in Table I. Despite
the hardness, we provide heuristics for these problems, with
performance guarantees on inference quality. Experimental
results show that our methods are able to efficiently and
effectively infer partially observed cascades.

Acknowledgment. This research was sponsored in part
by the U.S. National Science Foundation under grant IIS-
1219254 and by the Army Research Laboratory under
cooperative agreement W911NF-09-2-0053 (NS-CTA). The
views and conclusions contained herein are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notice
herein.

REFERENCES

[1] D. Arthur, R. Motwani, A. Sharma, and Y. Xu. Pricing
strategies for viral marketing on social networks. Internet
and Network Economics, pages 101–112, 2009.

[2] J. Bang-Jensen and G. Z. Gutin. Digraphs: Theory, Algo-
rithms and Applications. Springer, 2008.

[3] S. Bikhchandani, D. Hirshleifer, and I. Welch. A theory of
fads, fashion, custom, and cultural change as informational
cascades. Journal of political Economy, pages 992–1026,
1992.

[4] C. Budak, D. Agrawal, and A. El Abbadi. Limiting the spread
of misinformation in social networks. In WWW, 2011.

[5] M. Cha, F. Benevenuto, Y.-Y. Ahn, and P. K. Gummadi. De-
layed information cascades in flickr: Measurement, analysis,
and modeling. Computer Networks, 56(3):1066–1076, 2012.

[6] W. Chen, C. Wang, and Y. Wang. Scalable influence max-
imization for prevalent viral marketing in large-scale social
networks. In KDD, 2010.

[7] F. Chierichetti, J. M. Kleinberg, and D. Liben-Nowell. Recon-
structing patterns of information diffusion from incomplete
observations. In NIPS, pages 792–800, 2011.

[8] K. Dave, R. Bhatt, and V. Varma. Modelling action cascades
in social networks. In AAAI, 2011.

[9] H. Fei, R. Jiang, Y. Yang, B. Luo, and J. Huan. Content based
social behavior prediction: a multi-task learning approach. In
CIKM, 2011.

[10] J. Goldenberg, B. Libai, and E. Muller. Talk of the network:
A complex systems look at the underlying process of word-
of-mouth. Marketing Letters, pages 211–223, August 2001.

[11] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the
spread of influence through a social network. In KDD, 2003.

[12] M. Kimura and K. Saito. Tractable models for information
diffusion in social networks. PKDD, pages 259–271, 2006.

[13] G. Kossinets, J. Kleinberg, and D. Watts. The structure of
information pathways in a social communication network. In
SIGKDD, 2008.

[14] T. Lappas, E. Terzi, D. Gunopulos, and H. Mannila. Finding
effectors in social networks. In KDD, pages 1059–1068, 2010.

[15] J. Leskovec, M. McGlohon, C. Faloutsos, N. S. Glance, and
M. Hurst. Patterns of cascading behavior in large blog graphs.
In SDM, 2007.

[16] J. Leskovec, A. Singh, and J. Kleinberg. Patterns of influence
in a recommendation network. Advances in Knowledge
Discovery and Data Mining, pages 380–389, 2006.

[17] M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis, and
A. Ukkonen. Sparsification of influence networks. In
SIGKDD, pages 529–537, 2011.

[18] M. Richardson and P. Domingos. Mining knowledge-sharing
sites for viral marketing. In SIGKDD, 2002.

[19] G. Robins and A. Zelikovsky. Tighter bounds for graph
steiner tree approximation. SIAM J. Discrete Math., 19(1),
2005.

[20] E. Sadikov, M. Medina, J. Leskovec, and H. Garcia-Molina.
Correcting for missing data in information cascades. In
WSDM, 2011.

[21] K. Saito, R. Nakano, and M. Kimura. Prediction of informa-
tion diffusion probabilities for independent cascade model. In
KES, 2008.

[22] X. Song, Y. Chi, K. Hino, and B. L. Tseng. Information flow
modeling based on diffusion rate for prediction and ranking.
In WWW, 2007.

[23] V. V. Vazirani. Approximation Algorithms. 2001.
[24] F. Wang, H. Wang, and K. Xu. Diffusive Logistic Model

Towards Predicting Information Diffusion in Online Social
Networks. ArXiv e-prints, 2011.

[25] J. Yang and J. Leskovec. Patterns of temporal variation in
online media. In Proceedings of the fourth ACM international
conference on Web search and data mining, WSDM, 2011.

[26] B. Zong, Y. Wu, A. K. Singh, and X. Yan. Inferring the
underlying structure of information cascades. arXiv preprint
arXiv:1210.3587, 2012.

7141223

