VGX: Large-Scale Sample Generation for Boosting
Learning-Based Software Vulnerability Analyses

Yu Nong
Washington State University
yu.nong@wsu.edu

Kunsong Zhao
Hong Kong Polytechnic University
kunsong.zhao@connect.polyu.hk

Richard Fang

Washington State University
richardfang2005@gmail.com

Xiapu Luo
Hong Kong Polytechnic University
csxluo@comp.polyu.edu.hk

Guangbei Yi
Washington State University
guangbei.yi@wsu.edu

Feng Chen
The University of Texas at Dallas
feng.chen@utdallas.edu

Haipeng Cai
Washington State University
haipeng.cai@wsu.edu

ABSTRACT

Accompanying the successes of learning-based defensive software
vulnerability analyses is the lack of large and quality sets of la-
beled vulnerable program samples, which impedes further advance-
ment of those defenses. Existing automated sample generation ap-
proaches have shown potentials yet still fall short of practical expec-
tations due to the high noise in the generated samples. This paper
proposes VGX, a new technique aimed for large-scale generation of
high-quality vulnerability datasets. Given a normal program, VGX
identifies the code contexts in which vulnerabilities can be injected,
using a customized Transformer featured with a new value-flow-
based position encoding and pre-trained against new objectives
particularly for learning code structure and context. Then, VGX
materializes vulnerability-injection code editing in the identified
contexts using patterns of such edits obtained from both historical
fixes and human knowledge about real-world vulnerabilities.

Compared to four state-of-the-art (SOTA) baselines (pattern-,
Transformer-, GNN-, and pattern+Transformer-based), VGX achie-
ved 99.09-890.06% higher F1 and 22.45%-328.47% higher label accu-
racy. For in-the-wild sample production, VGX generated 150,392
vulnerable samples, from which we randomly chose 10% to assess
how much these samples help vulnerability detection, localization,
and repair. Our results show SOTA techniques for these three ap-
plication tasks achieved 19.15-330.80% higher F1, 12.86-19.31%
higher top-10 accuracy, and 85.02-99.30% higher top-50 accuracy,
respectively, by adding those samples to their original training data.
These samples also helped a SOTA vulnerability detector discover
13 more real-world vulnerabilities (CVEs) in critical systems (e.g.,
Linux kernel) that would be missed by the original model.

1 INTRODUCTION

Modern software is widely afflicted by security vulnerabilities in
their code, which are increasingly consequential [8]. Thus, it is
crucial to develop effective defenses against those vulnerabilities,
for which data-driven, especially deep-learning-based methods
have demonstrated tremendous potential, including vulnerability
detection [37, 58, 64-66], localization [29, 34, 39], and repair [20,
30, 33].

Yet accompanying the rising momentum of deep learning (DL) in
software assurance is the glaring lack of quality training data. In fact,

this problem has drawn growing attention in recent years [9-11, 19,
47,48, 62]. Manual curation is tedious hence clearly undesirable, and
it can at best produce relatively small datasets hence unscalable [14,
18, 27, 56]. Therefore, automatically generating vulnerable samples
at large scale and with high quality is of paramount significance.

In response, a few data generation techniques have been devel-
oped, including neural code editing [26, 59, 60] and control-flow-
based code stitching [44]. However, the former suffers a major
chicken-egg problem—training the neural code editor requires a
large set of quality vulnerable samples which are what we are lack-
ing. The latter, by inserting artificial vulnerable code patterns to
real-world code, results in unrealistic vulnerabilities which only
have limited usage. Other, even earlier approaches [36, 62, 63],
including adaptable ones originally designed for program bug re-
pair [13, 26] are subject to even greater limitations (e.g., higher
noise [60] and lower coverage of vulnerability classes [61]). Lately,
VulGen [49] made good progress; yet it still suffers from high noise
in the generated data due to its low generation accuracy, as well as
overfitting to the seed vulnerable samples it learns from.

In this paper, aiming at large-scale generation of high-quality
vulnerable program samples, we developed an advanced vulner-
ability injection technique, named VGX (short for Vulnerability
Generation eXpanded). VGX combines Step (1) semantics-aware
contextualization, which identifies the context of vulnerability-
injection code edits, with Step (2) human-knowledge-enhanced edit
pattern formation, using the materialized contextualized code edits.

In Step (1), VGX builds a Transformer-based contextualization
model by designing a novel attention mechanism with absolute
and relative position encoding both based on value flow relation-
ships among code tokens, and then pre-training the customized
Transformer on a large code corpus, followed by fine-tuning it
on an existing (task-specific) dataset of vulnerability-introducing
code locations. To benefit more from the pre-trained model, VGX
also introduces new pre-training objectives explicitly geared to our
particular task (of contextualizing injection edits).

In Step (2), VGX starts with extracting vulnerability-introducing
code edit patterns from the same task-specific dataset and then
enriches the extracted patterns with manually identified, different
patterns, followed by diversifying the enriched patterns through
manually derived pattern mutation rules. Both the manual pattern

ICSE 2024, April 2024, Lisbon, Portugal

and mutation rule definitions are based on human knowledge about
existing real-world vulnerabilities garnered from CWE/CVEs on
NVD [18] and bug/issue reports on GitHub.

The semantics-informed design in Step (1) helps VGX achieve
effective contextualization of vulnerability-injecting code edits,
while the human knowledge incorporation in Step (2) helps VGX
overcome potential overfitting to the small task-specific dataset. In
addition, we also (1) pre-train the programming language model on
the ASTs of the input code corpus in order to better learn syntactic
and structural information in programs and (2) improve the train-
ing with data augmentation (through semantics-preserving code
refactoring), as inspired by earlier works [44, 46].

To assess VGX, we pre-trained its contextualization model on
1,214K C functions and fine-tuned it on 7K real-world vulnerability-
fixing samples augmented by 156K of their refactored versions.
From these 7K samples along with manual pattern refinement and
diversification, we obtained 604 vulnerability-introducing edit pat-
terns. We then conducted five sets of experiments.

In the first set, we evaluated the accuracy of VGX versus four
state-of-the-art baselines (VulGen [49], CodeT5 [57], Getafix [13],
and Graph2Edit [59]) against 775 testing (normal) samples with
ground-truth (vulnerable versions). VGX achieves 59.46% precision,
22.71% recall, and 32.87% F1 (239.77%-1173.23%, 44.28%-780.23%,
99.09%-890.06% higher than the baselines), when considering as
true positives the generated vulnerable samples exactly matching
ground truths. When counting all of the generated samples that are
indeed vulnerable (i.e., not exactly matching the ground truth but
still exploitable) as success cases, VGX achieved a 93.02% success
rate, 22.45%-328.47% higher than the baselines. In the second set
of experiments, we showed that each of the novel design elements
of VGX (especially the value-flow-based semantics-aware atten-
tion mechanism and human-knowledge-based enhancement of edit
patterns) played a significant role in its overall performance merits.

In the third experiment set, we deployed VGX in the wild on
738K samples, hence producing 150K vulnerable samples in 50 hours
48 minutes with a 90.13% success rate, 118.07% more accurate than
VulGen—the best baseline. Then, in the fourth set, we augmented
the training sets of SOTA defensive vulnerability analyses with 10%
of those 150K samples, considering the scalability of the analysis
tools. In this way, VGX helped improve (1) (function-level) vulner-
ability detection by 19.15%-330.80% in terms of F1; (2) (line-level)
vulnerability localization by 12.86%-19.31% in terms of top-10 ac-
curacy; and (3) vulnerability repair by 85.02%-99.30% in terms of
top-50 accuracy. This is 4.19%-266.42% higher than adding VulGen’s
generated and existing synthetic samples. Finally, in the fifth set of
experiments, we applied the augmented version of a SOTA vulner-
ability detector to 71 latest CVEs in real-world projects and found
62, including 13 that would be missed by the original model.

In summary, this paper contributes the following:

o A novel design for injection-based vulnerable sample gener-
ation that leverages code structure- and context-aware source
code pre-training, code semantics-aware Transformer atten-
tion, data augmentation, and human knowledge to overcome
key limitations of existing peer approaches.

e An implementation and evaluation of the design that shows
its significantly superior performance over four SOTA baselines,
including the latest, best-performing peer technique.

Yu Nong, Richard Fang, Guangbei Yi, Kunsong Zhao, Xiapu Luo, Feng Chen, and Haipeng Cai

o A large and quality set of 150K vulnerable samples produced
using the implementation, which comes with corresponding
normal code, ground-truth vulnerability and locations, and
high label accuracy, hence ready for public use.

o Empirical evidences that show the practical usefulness of the
generated dataset in terms of the substantial improvement
it brought to vulnerability detection, localization, and repair,
as well as its ability to enable the discovery of real-world
vulnerabilities (CVEs) that original models miss.

Open science. Source code of VGX along with all of the experi-
mental and resulting datasets are available here.

2 BACKGROUND AND MOTIVATION

To automatically generate vulnerable samples, an intuitive idea is
to (1) learn the patterns of known code edits that introduce vulner-
abilities (i.e., vulnerability-introducing edits) and then (2) apply to a
normal program the patterns that are compatible with it, resulting
in a vulnerable version of the program. Such an approach has been
demonstrated to be meritorious in earlier works [13, 49, 60]. Most
recently, Nong et al. proposed VulGen [49], an injection-based vul-
nerable code generation technique that also leverages this strategy.
Besides the learned patterns, it utilizes a Transformer-based local-
ization model to locate where to inject vulnerabilities. While an
important step, VulGen still falls short of large-scale high-quality
vulnerability data generation due to the following limitations:
Limitation (D: The learned vulnerability-injection code
edit patterns are limited to those seen in the small vulnerabil-
ity dataset. VulGen mines such patterns from existing vulnerability-
introducing code edits. Yet since available datasets of such edits
are (even collectively) limited, the patterns mined are a small sub-
set of the extant knowledge about how real-world vulnerabilities
can be introduced to software (as embodied in extant vulnerability
documentation such as CWE/CVEs in NVD and issues/bug reports
on GitHub). For example, in Figure 1, the statements marked gray
at Lines 5-6 and 7-8 can be injected "null-pointer-dereference" and
"buffer-overflow" vulnerabilities, respectively, by deleting the 1 f-
statements. However, patterns as such may be too general such that
the condition and the return values in Lines 5 and 6 are not speci-
fied, or too specific such that all the tokens for the condition in Line
7 are specified. Only the tokens "NULL", "ENOMEM", "EINVAL" are
crucial for vulnerability injection in this example, but the respec-
tive patterns are difficult to mine due to the lack of available code
samples covering them. Thus, to leverage their full potential, the
patterns need to better cover the extant knowledge, as can be achieved
by incorporating human knowledge into the pattern mining process.
Limitation 2): The localization model is trained on source
code as natural language token sequences, ignoring semantic
information that is essential for accurately identifying where
vulnerabilities may be injected in a given program. While
the Transformer-based localization model in VulGen has shown to
be reasonably capable of (e.g., faulty) code localization thanks to
its explicit learning about locations through position encoding, the
goal of effectively contextualizing vulnerability-injection code edits
is hard to achieve with a vanilla Transformer position encoder. The
reason is that code vulnerabilities are context-sensitive: the same

https://zenodo.org/records/10443177

VGX: Large-Scale Sample Generation for Boosting Learning-Based Software Vulnerability Analyses

1 int foo(char *password

2 { Arrowed lines indicate

3 char *bumn sizeof(char)); value flow, with different
4 int res; colors just differentiating
5 if(buf==NULL) the value flow of different
6 return -ENOMEM;, variables (e.g., ‘password”
7 if(strlen(password)>=BUFSIZE) and ‘buf’).

8 return -EINVAL;

9 strcpy(buf, password Grey background marks

10 res=check(buf);
11 if(res==1) {

where vulnerabilities may
be injected (e.g., Lines 5-8).

12 printf("auth successful.\n");
13 free(buf);

14 return res;

15 } else {

16 printf("auth failed.\n");

17 free(buf);

18 return res;}

19}

Figure 1: A motivating example on vulnerability injection.

lines of code (e.g., copying an array to a buffer) may cause a vul-
nerability when placed in one code context (e.g., where there is no
boundary check against the buffer’s size) but would not lead to any
vulnerable behavior in another context (e.g., where the buffer has
been ensured to be large enough to hold the array). For example, in
Figure 1, the sample cannot be injected a "buffer-overflow" vulnera-
bility by just removing Lines 7-8 if password [BUFSIZE-1] has
been set to *\0’. Thus, whether pattern-based injection is fruitful
depends on whether the pattern is applied in the right code con-
text. Identifying the right injection contexts is clearly reliant on code
semantics, which can be learned by making the position encoding
explicitly aware of semantic code information like value flows [32]
(e.g., value flow of password as illustrated in Figure 1).

3 TECHNICAL DESIGN

This section describes the technical design of VGX. We start with
an overview of VGX and then describe the details of each module.

3.1 Overview

The overarching design goal of VGX is two-fold: (1) large-scale—
being able to generate a massive number of samples to meet the
thirsty need of training powerful defensive models, which requires
the ability to inject vulnerabilities to normal code in the wild when
following the injection-based methodology, and (2) high-quality—
not including too many noisy samples (i.e., those that are considered
vulnerable but actually not) among the generated ones, without
which the large scale would not be meaningful. With respect to the
advances made by prior works and the challenges they face (§2),
VGX achieves this goal with the design shown in Figure 2. VGX
consists of two main phases: learning/training and production.

In the learning/training phase, VGX gets itself built up through
two main tasks: (1) train a deep learning based model that can iden-
tify the code contexts in a given (normal) program where vulnera-
bilities can be injected and (2) mine vulnerability-introducing code
edit patterns that can materialize the injection in the identified con-
texts. These two tasks are achieved in two steps: semantics-aware
contextualization and human-knowledge-enhanced edit pattern for-
mation, followed by preprocessing the datasets needed by this phase.

In the production phase, with the edit patterns and trained con-
textualization model, VGX starts with preprocessing (using the same
module) a given set of normal programs as input. Then, the model
predicts potential vulnerability-injection code edit contexts, fol-
lowed by matching and applying the most suitable edit patterns
(for the contexts), resulting in (expectedly) vulnerable samples.

ICSE 2024, April 2024, Lisbon, Portugal

3.2 Preprocessing

To enable semantics-aware contextualization via the customized
Transformer, we use syntactic information instead of processing
code as natural language. Thus, we start by converting source code
into Abstract Syntax Trees (ASTs), using tree-sitter [42] as the AST
parser. An AST is a tree composed of nodes, each of which has a
node type, a set of child nodes, and a value if it is a terminal.

Since Transformer takes text as inputs, we linearize the ASTs
into text. As in [46], we do a pre-order traversal on the AST to
get a sequence of node types and only keep the nodes above the
expression level to reduce sequence length. We then concatenate
the source code and the linearized AST for each sample with a
special token [SEP] between them. We use this mixed/dual input
as it helps learn the syntactic and contextual structures of code [46].

To make the customized Transformer use semantic information,
which can be achieved via position encoding that is explicitly aware
of value flow as discussed in §2, we construct a value flow graph
(VFG) for each sample as in [32]—because it can capture vulnera-
bility related code semantics [32, 65]. A VFG is a multi-edge graph
g(V,E), where V is a set of nodes each representing a variable and
E is a set of edges that each represent the value flows between two
variables. For instance, in an assignment statement c=a+b, edges
would exist from a to ¢ and from b to c. The arrowed lines in
Figure 1 show parts of the value flows in the motivating example.

Our value-flow-based position encoding is based on the tradi-
tional one, where absolute position encoding is calculated as per
the absolute position (i.e., index) of a given token. Yet we calculate
this encoding of a variable based on its respective absolute VFG sub-
graph. To obtain this sub-graph, we traverse the VFG from the node
of that variable until no new nodes can be found. For instance, in
Figure 1, the token password at Line 9 has the value flow marked
as red, and thus its absolute VFG sub-graph consists of itself and
the node of token password at Line 1.

Similarly, we calculates the relative position encoding for a pair
of variables (v1,02) based on their respective relative VFG sub-graph.
To obtain this sub-graph, we traverse the VFG from the node of v1
until we reach the node of v2. For example, in Figure 1, the pair of
variables buf at Line 5 and BUF SIZE at Line 3 have their relative
VFG sub-graph consist of the nodes of tokens buf at Line 5, buf
at Line 3, and BUFSIZE at Line 3.

Next, the resulting absolute and relative VFG sub-graphs will be
used for position encoding as elaborated in §3.3.1.

3.3 Semantics-Aware Contextualization

In this step, we train a customized Transformer in order
to achieve semantics-aware contextualization. Given a normal pro-
gram with the Code+AST input, we expect the model to output a
code fragment that can be manipulated to introduce a vulnerabil-
ity, based on the semantics and context of the code. To that end,
the customized Transformer leverages value-flow-based position
encoding, pre-training, and fine-tuning with data augmentation. We
separately describe these in the following subsections.

3.3.1 Value-flow-based Position Encoding. In the encoder of our
customized Transformer, the core module is self-attention
blocks with position encoding:

ICSE 2024, April 2024, Lisbon, Portugal

Learning/training
T

Pre-training

Preprocessing)

&ep 1: Semantics-aware contextualization \

Yu Nong, Richard Fang, Guangbei Yi, Kunsong Zhao, Xiapu Luo, Feng Chen, and Haipeng Cai

Production

Normal
programs

(model training)
Customized Transformer

code corpus Value flow Sub-graph Relative and
analysis extractlon absolute VFG
VFGs
subgraphs

Source
code

value-flow-based
position encoding

»| input embedding

Pre-training
(objectives:
CAP, ISP,...) | T

' Preprocesslng i

T ST parslng Llnea rization| Ilneanze Code
xisting ., AST
vul Inerablllty

fixes

Trained

contextualization

model

extracted
patterns

AST parsingl—.l Pattern extraction
ASTs

Step 2: Human-knowledge-enhanced edit pattern formation

Pattern filtering/ranking

filtered w patterns

i refined patterns
o Human knantalyjceiinedlpatieiis »| Pattern refinement
Vulnerability knowledge
documentation discovery manually derived pattern mutation rules

vulnerability-injectio?
code edit patterns

matching and

‘ application

Pattern
diversification
(via mutation)

Vulnerabl
e samples

Figure 2: Design overview of the VGX approach, highlighting its two main phases: learning/training and production.

o Z exp(aij)
Z -y explaij)

WY rf 4 r}VEO))

1 K
ajj = —(xiWQ)(ijK + rg + rl.jVFG)T

Vad
+ = (@)(@)T + —= (@270 (@) (2)

Ved ' Nad
where z; is the output hidden representation for the i-th token,
ajj is the attention between the i-th and j-th tokens; x; and x; are
the hidden representation of the i-th and j-th tokens from the pre-
vious layer, respectively; WV, WQ, and WK are the weight matrix
of value, query, and key, respectively; r; V 5 are the traditional rel-
ative position encodings and a? and @ are the traditional absolute
position encodings; and d is the dimension of the hidden represen-
tations. This traditional position encoding is solely based on the
positions (indexes) of tokens hence lacks semantic understanding of
code. For example, a variable is defined at one line but used many
lines after. In this case, the distance (i — j) used by the traditional
relative position encoding may be too large, although the two vari-
able tokens may share a direct definition-use relationship and have

a close semantic (i.e., value-flow) distance.
To address this limitation, we utilize the VFG sub-graphs ob-
tained during preprocessing to incorporate semantic information
into the position encoding. Specifically, we add our value-flow-based

Wrc Kvrc

relative position encodlng r; and rig o, as well as value-flow-

based absolute position encodlng aIQVF G, and ai.(‘”‘" S to the self-
attention block, where each of the position encoding is the graph
encoding of the respective sub-graph.

To compute the encoding of a given VFG sub-graph ¢g(V, E), we
first use a pre-trained FastText [17] model for C language to convert
the variable name in each node into an embedding. Then, we use a
gated graph neural network (GGNN) to perform message passing
aggregation and update the node embedding as follows:

x,=GRU(xs . g(xu)) 6)

(u,0)€E

where GRU is the gated recurrent function [22], g(.) is the func-
tion that assimilates the neighbor nodes’ embedding, and x;, is the
neighbor node of x,. Then, we sum up embeddings of the nodes in
the graph to get the VFG sub-graph embedding. Finally, the graph

embedding is multiplied with a weight matrix to get the value-flow-

o Vere Kvio KvrG
based position encoding rl.J.VF(’, r;Fe, alQVFG VFG

and a;

Note that not all code tokens are variables. Thus, we only com-
pute the value-flow-based position encoding when the token or
both the tokens in the pair are variables. Otherwise, the value-flow-

based position encoding is zero.

3.3.2 Pre-Training. To gain the awareness of code semantics, we
performed pre-training before fine-tuning the model for semantics-
aware contextualization. We use three existing general programming
language-oriented objectives from CodeT5 [57] and introduce two
new code contextualization-specific objectives (CAP and ISP).
CodeT5 Objectives. We utilize three pre-training objectives
from CodeT5 [57] to learn general code comprehension for code-
to-code transformation. The first is mask span prediction (MSP),
where we randomly mask 15% of the source code tokens in an
input that contains both source code and AST, with each mask
having a span length uniformly ranging from 1 to 5 tokens. We
train the model to recover the masked tokens based on the context.
The second objective is identifier tagging (IT), where the model is
trained to predict whether each source code token is an identifier.
The third objective is masked identifier prediction (MIP), where we
mask all the identifiers in the source code, and the model is trained
to recover the identifiers based on the code semantics. We follow the
pre-training approach of CodeT5, and feed the three pre-training
objectives alternatively during training with an equal probability.
Code-AST Prediction (CAP). Since our model takes source
code and ASTs as input, similar to SPT-Code [46], we adopt their
approach and pre-train our model with the Code-AST Prediction
(CAP) objective. We assign the correct AST to the corresponding
source code in 50% of the pre-training samples, while in the other
50% we randomly assign an incorrect AST. Our model is trained to
predict if the assigned AST corresponds to the input source code.
Irrelevant Statement Prediction (ISP). For each pre-training
sample, we insert at a random location a randomly chosen statement
from another sample. The inserted statement is not semantically
related to the original sample and the model is trained to identify
and output the irrelevant statement. We adopt this pre-training ob-
jective because it resembles our vulnerability injection localization
objective. Since vulnerabilities are context-sensitive based on code se-
mantics, learning to differentiate (semantically) irrelevant statements

VGX: Large-Scale Sample Generation for Boosting Learning-Based Software Vulnerability Analyses

(from relevant ones) intuitively helps identify the right code context
that is (semantically) relevant to the vulnerabilities to be injected.

We conduct pre-training in the following order: first against
CAP, then the three CodeT5 objectives, and finally ISP, as justified
by the inter-dependencies among these objectives. Also, for CAP
and IT, the pre-training is done on the encoder only, while for all
the other objectives (ISP, MSP, MIP) we pre-train both the encoder
and decoder. These decisions are justified by the nature of the
Transformer architecture.

3.3.3 Fine-Tuning. After pre-training, we fine-tune the semantics-
aware contextualization model to locate code fragments that can be
edited to introduce vulnerabilities, using the vulnerability-introducing
code locations retrieved from the existing vulnerability fixes. To
address the lack of fine-tuning data, we perform data augmentation
through code refactoring on the fine-tuning samples. Following
the approach in [50], we apply three types of semantics-preserving
refactoring: (1) reverse the condition in an i f-statement and swap
the code in the if and else blocks; (2) convert a for loop into
an equivalent while loop; and (3) insert unrelated junk code gen-
erated by SaBabi [55] to the code. We apply these transformations
combinatorially on each original sample, leading to substantially
more fine-tuning samples.

3.4 Edit Pattern Formation

This section describes the process of VGX on learning (from the
existing vulnerability fixes) to materialize the code editing for real-
izing vulnerability injection, including pattern extraction, pattern
filtering/ranking, and pattern refinement and diversification.

3.4.1 Pattern Extraction. We first parse the source code into ASTs
like the one for semantics-aware contextualization but with a dif-
ferent AST parser sccML [23], as it better supports edit pattern
extraction and application [13, 49]. Then, we follow the approach
in Getafix [13] to extract the edit patterns via anti-unification. Be-
cause of the space limit, we refer readers to the original Getafix
paper [13] for details. An edit pattern is a pair of code fragments in
terms of ASTs representing a code edit. For example, "h0[h1 — 1] =
0;= hO[h1] = 0;" represents removing "—-1" from the code where
hO0 and h1 are placeholders which can match any identifiers and
literals. After the pattern extraction, we get many edit patterns that
range from very general (i.e., the patterns that can match and apply
on many different code samples) to very specific (i.e., the patterns
that can only match and apply on a few code samples) [13].

3.4.2 Pattern Filtering/Ranking. To obtain the appropriate edit pat-
terns for introducing vulnerabilities, we establish rules to filter and
rank the extracted patterns. First, we compute three scores for each
of the extracted edit patterns:

(1) Prevalence score (spy¢oq): Assuming knowing the vulnerabi-
lity-introducing locations, the prevalence score is the number of
samples that can be injected the vulnerabilities correctly by this
pattern in the training set, as it is proportional to the probability
that the pattern can inject vulnerabilities successfully.

(2) Specialization score (sspec): In the training samples, we
compute the average number of AST subtrees that the pattern can
match. The reciprocal of the average number is the specialization

ICSE 2024, April 2024, Lisbon, Portugal

Table 1: Manually Defined Vulnerability-Injection Patterns

Patterns: “mutex*(h0); => EMPTY

Justification: “Race Condition” mostly happens with a lack of mutex related statements, but there
are many mutex related function [5]. Thus, once the located statement involve “mutex”, we delete it.
Patterns: “TCHECK*(h0); => EMPTY *assert*(h0); => EMPTY

Justification: There are many samples in the training set deleting statements involving "TCHECK"
and "assert", but they usually use different function names[2]. Thus, once located statement involve
“TCHECK” or “assert”, we delete it.

Patterns: *free*(h0); => EMPTY *Free*(h0); => EMPTY *destruct*(h0); => EMPTY
destroy(h0); => EMPTY *unref*(h0); => EMPTY *clear*(h0); => EMPTY
Justification: "Memory Leak" mostly happens with not releasing assigned memory. However, there
may be many different functions for releasing the memory [3]. Thus, once the the located statement

involve memory release related functions, we delete it.
Patterns: unsigned h0; => h0; int64_t h0; => int h0; static h0 h1 = h2; => ho h1 = h2;
Justification: "Type Error” usually happens with not using static, unsigned, large-size types, but the
current patterns specify too many details like identifier names or assigned values in the patterns [6].
Thus, we make these details holes so that they are more general.
Patterns: memset(h0); => EMPTY h0 = “ERR*; => EMPTY h0 = “NONE* => EMPTY
ho = 0; => EMPTY h0 = NULL; => EMPTY *buf* = h0; => EMPTY

Justification: "Use of Uninitialized Variables" usually happens with not initializing declared vari-
ables, but current patterns specify too many details like identifier names and values in the patterns [7].
Thus, we make these details holes and use regular expression to represent the common initialized
value, so that they are more general.
Patterns: h0 = kcalloc(holel, hole2, hole3); => h0 = kzalloc(h1*h2, h3);

ho = calloc(hole0, holel); => h0 = malloc(h1*h2);
Justification: "Memory Allocation Vulnerability” usually happens when using unsafe memory
allocation functions, but current patterns specify too many details like identifier names and values
in the patterns [4]. Thus, we make them holes to make the patterns more general.

score, as it indicates whether the pattern is specific so that it will
not match AST subtrees which cannot be injected vulnerabilities.
(3) Identifier score (s;g.5;): The identifier score is the number
of specified identifier names in the pattern, as the identifier names
inform about the code semantics significantly, which are crucial
for correctly injecting vulnerabilities.
The product of the three scores is the final ranking score.

Srank = Spreval X Sspec X Sident (4)

Then, we rank the edit patterns by s,4, in a non-ascending
order. The three individual scores are not normalized since only
relative rankings matter. The higher the score, the more likely the
pattern can successfully inject vulnerabilities. Finally, we only keep
the top 300 edit patterns, so as to filter out those that are not likely
to inject vulnerabilities successfully.

3.4.3 Pattern Refinement and Diversification. While the patterns
extracted and filtered/ranked enable to inject vulnerabilities in some
cases, they do not fully capture the knowledge about how real-world
vulnerabilities can be introduced to software as embodied in the
extant vulnerability documentation such as CWE/CVEs in NVD
and issues/bug reports on GitHub, because the available datasets
of vulnerability-introducing edits are still limited, as discussed in
§2. To address this limitation, we refine the patterns. We applied
the 300 patterns to the vulnerability-introducing training samples,
assuming knowing the vulnerability-introducing locations. As a
result, we encountered false positives, where the pattern was applied
but the generated sample was not actually vulnerable, as well as
false negatives, where none of the 300 patterns could be applied.

For the false positives, we consider that the patterns applied on
them are too general. We removed the patterns against which more
than half of the applications are false positives. In total, we removed
21 patterns in this manner.

For the false negatives, we consider that the corresponding pat-
terns are too specific. Thus, we manually define new patterns
that are necessarily more general. Specifically, we examined the

ICSE 2024, April 2024, Lisbon, Portugal

Table 2: Pattern Mutation Rules

Rule: function_name(parameters); =>new_function_name(new_parameters); <>
ho=function_name(parameters); => h0=new_function_name(new_parameters);
Justification: Some function calls like strncpy may return some values but the return values
do not always assign to a variable. Mutating such patterns so that they have or remove the

return value assignments increases the generalizability of the pattern set.

Rule: if(condition) return NULL/0/-1; => EMPTY &

if(condition) return -EINVAL/EBADFD/ENOTSOCK/EPERM/ENODEV/ENOMEM; => EMPTY
Justification: The typical safety issue checks do some check in an if statement condition and
then return an error code when found the issue. However, there are many possible returned
error codes. We mutate these returned error codes to make the patterns more general.

Rule: if(specific_condition) return error_code; => EMPTY =

if(hole) return error_code;=> EMPTY
Justification: In our automatic pattern mining, the mined safety checks if statements may be
too specific in the condition. However, if an if statement only has one return statement, it is
very likely that it is a safety check if statement. Thus, we remove the specific conditions in
these if statements and use a hole to make the patterns more general.
Rule: if(condition) return error_code; => EMPTY & if(condition) break/continue; => EMPTY
Justification: When the safety checks if statements find issues, they may not always exit the
function using a return. If the safety check is in a for/while/switch block, it may use a break or
continue to exit. Thus, we mutate the exit statement to make the patterns more general.

vulnerability-fixing commit associated with the false-negative train-
ing sample and identified the corresponding CWE ID [1]. Then,
we read the CWE documentation and check the examples used to
describe that CWE. We further examined other real-world vulnera-
bility samples with the same CWE ID in the NVD/CVE database [45].
Based on the false negative, the examples, and other real-world
samples, we compose several possible patterns that would be able
to inject the respective vulnerabilities. Then, we went back to the
existing pattern set and found patterns close to the composed ones.
We finally modified those patterns into the composed ones with
the use of regular expression (regex). These modified patterns are
the 20 manually defined, new patterns described in Table 1.

Since manual refinement is costly, we are not able to derive many
new patterns. Some remaining patterns are still too specific in syn-
tactic structure. Thus, we further derived a set of pattern mutation
rules to make the edit patterns sufficiently general. We carefully
checked the traditional mutation operators for C language [12].
We then selected those that do not change the code functionality
significantly and finally derived four types of pattern mutation
rules. Table 2 shows the pattern mutation rules we derived and
the respective justifications for them. The red < means that the
mutation is bidirectional, while = means that the mutation is unidi-
rectional. After the mutation, we obtained a total of 604 high-quality
vulnerability-injection patterns.

3.5 Vulnerability Production

With the trained contextualization model and the vulnerability-
injection code edit patterns, VGX is ready to produce vulnerability
data. Given a normal program, we again preprocess it like we do in
the learning/training phase. Next, the contextualization model iden-
tifies a code fragment (as the context) for vulnerability injection.
Then, VGX applies the most suitable pattern to the identified con-
text. To do so, we rank the patterns in the final set of vulnerability-
injection code edit patterns by the score computed in Equation 4 and
apply the first pattern in the set that can match the context. Note
that VGX only injects the vulnerability when one of the patterns
matches the context. If none of the patterns matches, VGX discards
the sample to reduce false positives. Otherwise, the program with
the pattern applied is expected to be vulnerable.

Yu Nong, Richard Fang, Guangbei Yi, Kunsong Zhao, Xiapu Luo, Feng Chen, and Haipeng Cai

4 EVALUATION

We evaluate the effectiveness of VGX for generating vulnerability
data. We seek to answer the following research questions:

e RQ1: How effective is VGX in vulnerability generation compared
to other approaches?

e RQ2: How do the novel design components contribute?

e ROQ3: How efficient is VGX in vulnerability generation?

4.1 Implementation

We modify the source code of TPTrans [53] to build our customized
Transformer as it provides position encoding implementation which
is easy to modify. We use the Getafix implementation in VulGen [49]
for the anti-unification-based pattern extraction. Our experiments
were performed on a machine with a 32 Cores AMD Ryzen 3970X
(3.7GHz) GPU, Nvidia RTX 3090 GPUs, and 256GB memory.

4.2 Dataset

For the pre-training in Semantics-Aware Contextualization, we use
the IBM CodeNet [54] dataset. We extract 1,213,907 functions in C
language from it to build the pre-training dataset. For the fine-tuning
in Semantics-Aware Contextualization and Edit Pattern Formation,
we use the dataset in VulGen [49] which is the combination of
five widely used vulnerability datasets. We remove the overlapped
samples and eventually obtain 7,764 samples for the evaluation. We
split the dataset by 9:1 for training (6,989) and testing (775). We
then augment (§3.3.3) the 6,989 samples into 156,665 for fine-tuning.

4.3 Metrics

Given that a high-quality vulnerability sample should be a truly
exploitable program [24], we evaluate whether the code changes
make the program exploitable for the attackers. For the samples
exactly-matching their ground truths, they are known as exploitable
because they are confirmed real-world vulnerabilities. For these

cases, we evaluate vulnerability generation in terms of precision, re-
#matched samples
#generated samples
#matched samples _ 2Xrecallxprecision
#testing samples and F1 = precision+recall *
Since the generated samples may be exploitable although do not

exactly match the ground truth [49, 50], we randomly sampled and

manually inspected some of them to compute the success rate =
#exploitable samples
#generated samples
the matched samples. We inspected 258 cases, a sample size that is

statistically significant at 95% confidence level and 5% margin of
error with respect to the population (i.e., testing set) size of 775.
The manual inspection of a sample assesses if an exploit can be
written to attack it. Yet manually writing exploits for all the non-
exactly-matching samples generated by VGX and baseline tech-
niques is quite difficult. Thus, we wrote exploits for 30% of those
samples in RQ1 and RQ4. Each exploit is an executable that can
attack the generated program but not the normal one, ensuring the
exploitability is introduced by the code change. This process helps
us learn how to decide whether a sample is exploitable, based on
which we determined the exploitability of the remaining 70% with-
out actually writing/running the exploits. The inspection was first
done by the first author, checked by the third and fourth authors,
and then verified/calibrated by all three to ensure the correctness.

call, and F1. We compute: precision = ;recall =

where the exploitable samples also include

VGX: Large-Scale Sample Generation for Boosting Learning-Based Software Vulnerability Analyses

Table 3: Effectiveness (and improvements in parentheses) of
VGX over the baselines for vulnerability generation in RQ1.

Technique Precision Recall F1 Success Rate
VGX 59.46% 22.71% 32.87% 93.02%
VulGen 17.50% (239.77%1) 15.74% (44.28%7) 16.51% (99.09%7) 75.96% (22.45%1)

CodeT5 12.65% (370.04%1) 12.65% (79.53%]
Getafix 4.67% (1173.23%1) 2.58% (780.23%T
Graph2Edit 13.97% (325.62%1) 13.97% (65.56%1

12.65% (159.84%1) 24.81% (274.93%1)
3.32% (890.06%1) 57.75% (67.07%1)
13.97% (135.29%1) 21.71% (328.47%1)

4.4 ROQ1: Effectiveness of VGX
We assess the effectiveness of VGX over four baselines:

e VulGen [49] is a vulnerability generation tool which fine-tunes
CodeT5 [57] for localization and uses Getafix [13] to mine edit
patterns for vulnerability injection.

o CodeT5 [57] is a pre-trained model good at code-to-code transfor-
mation, which can be directly fine-tuned to generate vulnerable
code for given normal programs.

o Getafix [13] is a pattern mining and application technique for
bug fixing. We directly use it for vulnerability generation.

e Graph2Edit [59] is a code editing model taking a program’s AST
as input and predicting a sequence of edits on it, which can be
trained for vulnerability injection.

Table 3 shows the effectiveness of VGX and the baselines against
the 775 testing samples. VGX generates 296 samples, of which 176
exactly match the ground truth. Thus, the precision, recall, and
F1is 59.46%, 22.71%, and 32.87%, respectively. The high precision
indicates the good quality of the generated samples, and the 22.71%
recall suggests the generalizability for supporting large-scale vul-
nerability generation. The 32.87% F1 shows the overall promising
effectiveness of VGX—99% higher than the best baseline. Notably,
Column 3 shows VGX’s success rate of 93.02%, indicating that the
vast majority of its generated samples are vulnerable/exploitable.

Table 3 Rows 3-6 show the effectiveness of the four baselines,
and the numbers in parentheses indicate VGX’s relative improve-
ments over the baselines. VGX outperforms the GNN-based code
editor Graph2Edit by substantial margins. While Graph2Edit is a
general-purpose code editor with a promising editing process (i.e.,
predicting a sequence edits on the AST) [50], it suffers from the
lack of training samples as GNN needs a large number of samples
to be reasonably trained [49]. VGX outperforms the CodeT5 and
Getafix also quite significantly. This may be justified by the merits
of combining deep learning to locate injection with a pattern-based
method to materialize injection edits. While VulGen also works
in an overall similar way, VGX still greatly outperforms it. This is
due to VGX taking the advantages of human-knowledge-enhanced
edit patterns and semantics-aware contextualization, which largely
overcome VulGen’s Limitation) and Limitation (2), respectively.

4.5 RQ2: Contributions of Novel Components

In this section, we investigate the contribution of each novel com-
ponent in VGX through ablation studies. We remove each of those
components and compare the effectiveness before and after the
removal. The results are shown in Table 4. To show the impacts
of the contextualization designs, we also report the localization
accuracy in Column 2. The numbers in parentheses indicate VGX’s
relative improvements compared to the ablated versions.

To assess the impact of the contextualization-specific pre-training
objectives, we remove the pre-training for CAP and ISP. Table 4

ICSE 2024, April 2024, Lisbon, Portugal

Table 4: The contribution of VGX’s components for vulner-
ability generation. The numbers in parentheses are VGX’s
relative improvements compared to the ablated versions.

Experiment Loc Acc Precision Recall F1

VGX 55.35% 59.46% 22.71% 32.87%

No CAPand ISP 53.03% (4.37%]) 54.36% (9.38%1) 20.90% (8.66%1) 30.19% (8.87%1)
No AST 49.67% (11.44%T) 53.90% (10.32%1) 19.61% (15.81%1) 28.76% (14.29%1)
No VFG 52.13% (6.18%T) 53.29% (11.58%1) 21.93% (3.56%1) 31.07% (5.79%1)

No Augmentation 51.61% (7.25%1) 53.33% (11.49%1) 19.61% (15.81%1) 28.67% (14.65%1)
No Diversification 55.35% (0.00%]) 62.45% (-4.78%1) 20.38% (11.43%]) 30.73% (6.96%1)
No Refinement 55.35% (0.00%1) 71.91% (-17.31%]) 16.51% (37.55%]) 26.85% (22.42%1)

Row 3 shows the results. With the two pre-training tasks, VGX
improves the localization accuracy by 4.37%, and thus improves
the vulnerability generation by 9.38%, 8.55%, and 8.87% in terms
of precision, recall, and F1, respectively. This indicates that the
contextualization-specific objectives are effective for pre-training.

To understand the contribution of the linearized AST, we remove
the AST part in the Transformer input and only use the source
code. Table 4 Row 4 shows the results. With linearized AST, VGX
improves the localization accuracy by 11.44%, and thus improves the
vulnerability generation effectiveness by 10.32%, 15.81%, and 14.29%
in terms of precision, recall, and F1, respectively. This indicates
that adding the linearized AST to the input text effectively helps
the model understand the syntactic structure of the code, hence
notably improving vulnerability injection.

To show the effectiveness of the VFG-based position encoding,
we remove it and only use traditional position encoding in the
Transformer model. Table 4 Row 5 shows the results. With our
new position encoding, VGX improves the localization accuracy by
6.18%, and thus improves the vulnerability generation effectiveness
by 11.58%, 3.56%, and 5.79% in terms of precision, recall, and F1,
respectively. This indicates that the VFG-based position encoding
helps the Transformer understand the semantics of the code, thus
improves the vulnerability generation significantly.

To measure the impact of the data augmentation when fine-tuning
the contextualization model, we use the original 6,989 training
samples only to train it. Table 4 Row 6 shows the results. With the
data augmentation, The localization accuracy improves by 7.25%,
and thus improves the vulnerability generation effectiveness by
11.49%, 15.81%, and 14.65% in terms of precision, recall, and F1,
respectively. This indicates that the data augmentation mitigates
the lack of training data, thus is helpful for vulnerability generation.

To see the impact of pattern diversification, we only use the
edit patterns prior to the diversification (mutation). Table 4 Row 7
shows the results. While pattern diversification makes the precision
decrease by 4.78%, the recall and F1 improve by 11.43% and 6.96%,
respectively. While the mutation makes the vulnerability injection
more general, it also makes the patterns less restrictive against the
injection context identified. The improvement of recall indicates
that VGX is able to generate more vulnerable samples, which is
important for generating large-scale vulnerability datasets.

We further rollback the edit pattern set to the one without pat-
tern refinement. Table 4 Row 8 shows the results. We can see the
recall and F1 further decrease to 16.51%, and 26.85%, respectively,
while the precision increases to 71.91%. This indicates that patterns
without refinement are too strict and specific, making it difficult
for VGX to generate large-scale vulnerability data. Thus, our re-
finement improves the generalizability of the patterns, making the
overall vulnerability generation more scalable.

ICSE 2024, April 2024, Lisbon, Portugal

. . .
& «v& Of) &@ O@ & GQQ & \&h& C’Q ‘89% @“& 0@ & &«b é’é\s‘&q Oob 0«% & é@ @@
P E T S P W S

Figure 3: The vulnerability type distribution.

4.6 RQ3: Efficiency of VGX

As VGX, VulGen, and Getafix support multiprocessing generation
but CodeT5 and Graph2Edit do not, we use single-process gener-
ation for a fair comparison. On average, VGX injects vulnerabili-
ties on 189.02 samples per minute, while the numbers for VulGen,
Getafix CodeT5, and Graph2Edit are 132.85, 276.78, 29.88, and 89.08,
indicating VGX is comparable to the baselines in terms of efficiency.

5 USEFULNESS OF VGX

We use VGX to generate a large-scale vulnerability dataset and eval-
uate the usefulness of the data for training downstream DL-based
vulnerability analysis tools. As VulGen is also designed for vulner-
ability data generation and is shown to be relatively effective in
the original paper [49], we also directly compare VGX’s usefulness
with VulGen. We answer the following research questions:

e RQ4: How effective is VGX in generating large-scale vulnerable
data using normal programs in the wild?

e RQ5: Can the generated samples improve the downstream DL-
based vulnerability analysis tools?

o RQ6: Can the improved vulnerability detection models find more
latest real-world vulnerabilities?

5.1 RQ4: Large-Scale Production

To get a large number of normal samples for VGX to generate
vulnerability data, we follow the approach in [27] to collect the
latest source code of 238 projects that are involved in the CVE/NVD
database [45]. Then, we extract the functions in these projects and
obtain 738,453 normal functions for vulnerability injection.

We apply VGX on these functions and it generates 150,392 sam-
ples in 50 hours 48 minutes. We randomly sample some to manually
inspect. With the same procedure in §4.3, the sample size is 375.
Again, we write exploits for 30% (102) of the samples and then
directly label the remaining samples. The success rate is 90.13%,
which is close to the success rate (93.03%) for RQ1 (§4.4). In com-
parison, VulGen generates 686,513 samples. With the sample size
384, the success rate is 41.33%. This is not only much lower than
VGX’s, but also much lower than its own (75.96%) in §4.4. The rea-
son is that VulGen’s edit patterns are vague hence applied on the
statements that cannot be injected vulnerabilities (Limitation (D)
and the localization model is not semantics-aware hence less accu-
rate (Limitation (2)). This shows that VGX is effective to generate
large-scale vulnerability data from the wild while VulGen is not.

We also checked the vulnerability types represented by these 375
samples and found that they cover 23 types (CWEs). Figure 3 shows
the distribution of them. It is worth noting that these types include
many of the most (e.g., top-25) dangerous ones according to the
recent CWE report [1], such as CWE-787, CWE-20, CWE-125, etc.
This indicates that our generated vulnerability samples are diverse.

Yu Nong, Richard Fang, Guangbei Yi, Kunsong Zhao, Xiapu Luo, Feng Chen, and Haipeng Cai

Table 5: Improvement of vulnerability detection using VGX’s,
VulGen’s generated samples, and samples from SARD.

Model Precision Recall F1

Devign-ori 9.82% 50.19% 16.43%
Devign-aug-VGX 12.37% (25.97%1) 52.47% (4.54%1) 20.01% (21.79%7)
Devign-aug-VulGen 11.23% (14.35%]) 30.03% (-40.17%1) 16.35% (-0.49%1)
Devign-aug-SARD 15.27% (55.49%1) 15.21% (-69.69%1) 15.24% (-7.24%1)
LineVul-ori 26.42% 2.52% 4.61%
LineVul-aug-VGX 11.38% (-56.93%1) 78.00% (2995%7) 19.86% (330.80%1)
LineVul-aug-VulGen 9.97% (-62.26%7) 3.73% (48.01%1) 5.42% (17.57%1)
LineVul-aug-SARD 9.19% (-65.21%1) 85.70% (3300%1) 16.60% (260.09%1)
IVDetect-ori 9.06% 75.52% 16.18%
IVDetect-aug-VGX 13.21% (45.81%1) 35.66% (-52.78%1) 19.28% (19.15%7)
IVDetect-aug-VulGen 7.90% (-12.80%7) 65.03% (-13.89%1) 14.09% (-12.92%1)
IVDetect-aug-SARD 10.04% (10.81%]) 55.94% (-25.92%1) 17.02% (5.19%1)

5.2 RQ5: Downstream Analysis Improvement

Given the vulnerability generation process, our data supports model
training for at least three downstream tasks: (1) function-level vul-
nerability detection; (2) line-level vulnerability localization; and (3)
vulnerability repair. We use the generated data to augment the
training sets of the models and show the improvement after the
augmentation. Since some models are designed for the existing
small vulnerability datasets, they are not scalable for our large
dataset in terms of the time cost and the memory usage. Thus, we
use 10% of VGX’s generated samples (15,039) and VulGen’s gener-
ated samples (68,651) to improve the downstream models. To show
that VGX’s generated samples are more practical than the existing
synthetic samples, we also use the same number (15,039) of samples
from the widely used synthetic dataset SARD [16] to improve the
downstream tasks for comparison. Since the original testing sets
of these models are split from their training sets which have the
same distribution, testing the models on them may not show their
real performance [51]. Thus, we follow the approaches in [49, 50]
to leverage the independent testing setting: for each downstream
task, we use a third-party testing set that is from a different source
from the original training sets. Again, we ensure that there is no
overlapping between the training sets and testing sets.

5.2.1 Function-Level Vulnerability Detection. We improve three vul-
nerability detectors, Devign [65], LineVul [29], and IVDetect [38],
as they are the SOTA tools publicly available for replication exper-
iments. The original training set of each tool has vulnerable and
non-vulnerable samples. To improve each training set, we add the
15,039 generated samples by VGX and the same proportion of non-
vulnerable samples from our normal sample set used to generate
vulnerable data. Specifically, the training set of Devign has 9,744
vulnerable and 11,012 non-vulnerable samples, thus we add VGX’s
15,039 generated samples and 16,996 non-vulnerable samples to the
training set. Both LineVul and IVDetect use the Fan [27] training set
with 10,547 vulnerable and 168,752 non-vulnerable samples, thus
we add VGX’s 15,039 generated samples and 240,624 non-vulnerable
samples to the training set to improve the models.

To leverage independent testing, we test the models on the ReVeal
dataset [19]. It has 1,664 vulnerable and 16,505 non-vulnerable sam-
ples which are manually collected from real-world projects. Table 5
shows the results of the trained models of the three tools, where
-ori means that the model is trained on the original training set
and -aug-VGX means that the model is trained on the augmented
training set using VGX’s generated samples. The F1 scores, which
represent the overall performance of the tools, improve by 21.79%,

VGX: Large-Scale Sample Generation for Boosting Learning-Based Software Vulnerability Analyses

Table 6: Improvement of vulnerability localization using
VGX’s, VulGen’s generated samples, and samples from SARD.

Model Top-10 Accuracy | Model Top-10 Accuracy
LineVul-ori 48.84% LineVD-ori 59.25%
LineVul-aug-VGX 58.27% (19.31%T) LineVD-aug-VGX 66.87% (12.86%1)
LineVul-aug-VulGen 53.43% (9.39%1) LineVD-aug-VulGen 52.68% (-11.09%1)
LineVul-aug-SARD 49.85% (2.07%1) LineVD-aug-SARD 64.18% (8.32%1)

Table 7: Improvement of vulnerability repair using VGX’s,
VulGen’s generated samples, and samples from SARD.

Model Top-1 Accuracy Top-5 Accuracy Top-50 Accuracy
VulRepair-ori 8.55% 11.81% 16.29%
VulRepair-aug-VGX 21.05% (146.20%1) 29.12% (146.57%1) 30.14% (85.02%1)
VulRepair-aug-VulGen 11.81% (38.13%1) 16.77% (41.20%1) 17.85% (9.85%T)
VulRepair-aug-SARD 11.07% (29.47%]) 13.92% (17.87%1) 17.18% (5.46%1)
VRepair-ori 2.58% 5.16% 8.62%
VRepair-aug-VGX 4.41% (70.93%1) 10.59% (105.23%1) 17.18% (99.30%7)
VRepair-aug-VulGen 2.85% (10.46%1) 7.26% (40.70%1) 14.05% (62.99%1)
VRepair-aug-SARD 1.36% (-47.28%]) 3.46% (-32.94%1) 4.96% (-42.45%)

330.80%, and 19.15% for Devign, LineVul, and IVDetect, respec-
tively. This indicates that VGX’s generated data is able to improve
vulnerability detection significantly.

We also do the same process with VulGen’s generated samples
and SARD samples. We notice that the improvements are much
lower than the one with VGX’s generated samples (e.g., 17.57% and
260.09% versus 330.80% F1 against LineVul) and they may even
decrease the performance (e.g., 0.49% and 7.24% F1 decrease against
Devign). Besides, VulGen’s generated samples may be even worse
than the SARD samples. The reason is that VulGen’s generated
samples have a low success rate (41.33%) for large-scale production
and the label noise weakens the data augmentation seriously.

5.2.2 Line-Level Vulnerability Localization. We improve two vul-
nerability localization tools LineVul [29] and LineVD [34] with
VGX’s generated samples. Their training set is also Fan [27] men-
tioned in §5.2.1. Thus, we use the same augmentation setting. We
again test the models on the ReVeal dataset because it provides the
vulnerable lines for the 1,664 vulnerable samples. Table 6 shows
the results of before and after the improvement. We use the default
setting to report the top-10 accuracy. The improvements by VGX’s
generated samples are 19.31% and 12.86% for LineVul and LineVD,
respectively. This indicates that the samples are useful for improv-
ing vulnerability localization. In comparison, VulGen’s generated
samples and SARD samples have lower improvements compared
to VGX’s generated samples or even decrease performance (9.39%
and 2.07% improvements for LineVul, respectively; and -11.09% and
8.32% improvements for LineVD, respectively).

5.2.3 Vulnerability Repair. We improve the latest two vulnera-
bility repair tools VulRepair [30] and VRepair [21]. Both use the
vulnerability repair samples from the combination of Fan [27] and
CVEFixes [14], which consist of 8,482 pairs of vulnerable and the
respective non-vulnerable programs, to train the models. We thus
use the 15,039 pairs of VGX’s generated vulnerable and the respec-
tive non-vulnerable programs to augment the training set. We test
the models on the PatchDB dataset [56] because its vulnerability
repair samples are from real-world projects and confirmed by hu-
mans. Table 7 shows improvement results. We use the settings
where the beam search sizes are 1, 5, and 50 and thus they report
top-1, top-5, top-50 accuracy. With VGX’s generated samples, the
top-50 accuracy of VulRepair and VRepair improves by 85.02% and
99.30%, respectively, indicating that the samples are quite useful

ICSE 2024, April 2024, Lisbon, Portugal

Table 8: Latest CVEs Detected by Improved LineVul but
missed by the original one.

CVE ID Project CWEID | CVE-ID Project CWE ID
2022-46149 Cap’n Proto CWE-125 | 2021-3764 Linux Kernel CWE-401
2023-27478 libmemcached-awesome CWE-200 | 2022-47938 Linux Kernel CWE-125
2022-28388 Linux Kernel CWE-415 | 2023-23002 Linux Kernel CWE-476
2023-22996 Linux Kernel CWE-772 | 2022-42895 Linux Kernel CWE-824
2021-3743 Linux Kernel CWE-125 | 2022-34495 Linux Kernel CWE-415
2022-24958 Linux Kernel CWE-763 | 2022-47520 Linux Kernel CWE-125
2022-30594 Linux Kernel CWE-863

to boost vulnerability repair. In comparison, VulGen’s generated
samples and SARD samples bring lower improvements or even de-
crease performance (9.85% and 5.46% improvements for VulRepair,
respectively; and 62.99% and -42.45% for VRepair, respectively).

5.3 RQ6: Real-World Vulnerability Discovery

We scraped the latest 71 vulnerabilities covering 17 CWEs from
6 critical software projects (e.g., Linux kernel) reported between
2021-2023, from the CVE/NVD database [45]. We use LineVul as it
is the latest available vulnerability detector. Table 8 shows the latest
vulnerabilities detected by the LineVul model improved by VGX’s
generated samples but cannot be detected by the original one. The
improved LineVul found 13 more CVEs, indicating its enhanced
potential for discovering real-world zero-day vulnerabilities.

6 DISCUSSION

In this section, we discuss why VGX has good performance on
generating vulnerability data and why the generated samples by
VGX effectively improve the performance of downstream tasks.

6.1 Vulnerability Generation Performance

As discussed in §3, the key designs of VGX are semantics-aware
contextualization and human-knowledge-enhanced edit patterns for-
mation. We dissect VGX’s performance merits from these aspects.
The value-flow-based position encoding makes the contex-
tualization semantics-aware. Figure 4 shows an example where
VGX correctly predicts the vulnerability injection location due to its
value-flow-based position encoding. The reason is that this encod-
ing explicitly enhances the attention between variables that have
value flow relationships. For example, in the case shown in the fig-
ure, the variable res has value flows from pdev, IORESOURCE_ -
MEM. These variables are highly related to vulnerability injection.
Thus, while they are not in the statement to be located, VGX pays
more attention to these variables when locating the correct state-
ment. However, the one without value-flow-based position encod-
ing simply locates Line 2 because it has the tokens dev, pdev,
and device, which appeared on vulnerable statements of some
training samples, but that statement has nothing to do with inject-
ing a vulnerability as per the code semantics here. VGX takes the
advantage of the value-flow-based position encoding which makes
the model semantics-aware hence better contextualization perfor-
mance, overcoming Limitation (2) for vulnerability generation.
Manual pattern refinement with regex makes the patterns
necessarily general hence more useful. Figure 5 shows an ex-
ample where VGX successfully removes the statement at Line 6
(marked as cyan) to inject a “memory leak (CWE-401)" vulnera-
bility but the one without manual pattern refinement via regex
cannot. The reason is that this program uses a self-defined free

ICSE 2024, April 2024, Lisbon, Portugal

1 static int hi366@_stub_clk_probe(struct platform_device *pdev){
2 struct device * = &pdev->dev;
3 struct resource *res;
4 stub_clk_chan.cl.dev = HeN;
5 stub_clk_chan.mbox = mbox_request_channel(&stub_clk_chan.cl, 0);
6 if (IS_ER n.mbox)) return PTR_ERR(stub_clk_chan.mbox);
7 v res S—IORESOURCE_MEM, 0);
8 if (Mes) return -EINVAL;

9 freq_| = devm_ioremap(dev, Pes->start, resource_size(res));

10 if (1freq_reg) return -ENOMEM; ...
Figure 4: An example where VGX correctly predicts the state-
ment at Line 8 (marked as cyan), but without value-flow-
based position encoding it would incorrectly locates Line 2
(marked as yellow).

1 static void __del_gref(struct gntalloc_gref *gref){ ..

2 gref->notify.flags = 0;

3 if (gref->gref_id > 0){

4 if (gnttab_query_foreign_access(gref->gref_id)) return;

5 if (!gnttab_end_foreign_access_ref(gref->gref_id, ©8)) return;

6 gnttab_free_grant_reference(gref->gref_id);

7
Figure 5: An example where VGX successfully remove the
statement at Line 6 (marked as cyan) to inject a memory leak
vulnerability, but without manual pattern refinement via

regex it would not be able to do so.

int vrend_create_vertex_elements_state(..,unsigned num_elements,..){
struct vrend_vertex_element_array *v = CALLOC_STRUCT(..);
if (!v) return ENOMEM;

1

2

3

4 if (num_elements > PIPE_MAX_ATTRIBS) return -EINVAL;
5

6

7

v->count = num_elements;
}
Figure 6: An example where VGX successfully remove the if
statement at Line 4 (marked as cyan) to inject an improper
input validation (CWE-20) vulnerability, but without pattern
mutation it would not be able to inject correctly.

function to release the pointer. Thus, the patterns mined through
anti-unification may not cover the function name of this free
function. The use of self-defined functions related to memory allo-
cation, memory initialization, memory release, safety check, and
multi-threading management are common based on our manual in-
spection. Thus, our manually added edit patterns with regex shown
in Table 1 make the edit patterns necessarily more general, improv-
ing the performance of VGX for vulnerability generation, which
effectively overcomes Limitation () for vulnerability generation.
Pattern diversification makes the patterns more diverse
hence more applicable. Figure 6 shows an example where VGX
successfully injects a CWE-20 vulnerability due to its pattern di-
versification. The reason is that the input validation checking at
Line 4 may be very different in different programs. It is difficult for
the patterns extracted from existing examples to cover all of them.
Yet based on our human knowledge, the return value ~-EINVAL
has indicated that this is a value validation checking. Thus, we
build pattern mutation rules (Table 2 Row 4) such that once such
return error values are in the if statement, we do not need to
match the condition any more. Therefore, the pattern diversifica-
tion integrates our human knowledge, making the edit patterns
more diverse and applicable hence improving VGX for vulnerability
generation, overcoming Limitation (D) of peer approaches.

6.2 Usefulness of Generated Samples

In §5, we show that VGX-generated samples are high-quality and
thus are effective for improving various downstream vulnerability
analysis tasks. Specifically, our generated samples have merits in
four main aspects of high dataset quality:

10

Yu Nong, Richard Fang, Guangbei Yi, Kunsong Zhao, Xiapu Luo, Feng Chen, and Haipeng Cai

Dataset size. Training dataset size is crucial for training a deep
learning model well. Almost all the DL-based code analysis tech-
niques use more than 10,000 samples to train the models [15]. How-
ever, previous works [49, 50] like VulGen can only generate a small
number of vulnerability samples (e.g., <1,000) or their quality plum-
mets. In contrast, VGX can generate large-scale quality vulnerability
samples in a short time. The large number of generated samples
allows the DL model to learn relevant knowledge in general.

Complexity. Some previous vulnerability analyses use synthetic
datasets to train their models [40, 41]. However, synthetic samples
are usually very simple and make the trained models not generaliz-
able to real-world vulnerability analysis [19]. This is also confirmed
in our experiments in §5.2. In contrast, VGX’s generated samples
are based on real-world normal samples, thus the generated sam-
ples are as complex as real-world vulnerability data and ensure the
model learns the knowledge for challenging vulnerability analysis.

Noise. Another important aspect of the usefulness is noise.
While VulGen [49] can generate vulnerable samples, the success
rate is low (41.33%), making the samples unready to use. In contrast,
VGX’s generated samples achieve a 90.13% success rate, which can
be used to improve the model training of downstream tasks directly.

Diversity. Previous works [61, 62] only generate one or a few
number types of vulnerabilities, which cannot train vulnerability
analysis models in general. In contrast, VGX is already able to gen-
erate vulnerability samples of diverse types (CWEs) while spanning
a variety of (238) projects, making its augmented model training
for downstream vulnerability analysis effective.

7 THREATS TO VALIDITY

A possible threat to internal validity is that VGX may have imple-
mentation errors. We mitigate it by inspecting code carefully, doing
unit testing when implementing each module, and using a small
dataset to test before official experiments. Another threat is that
the manual inspection for the success samples may be inaccurate.
We mitigate it by writing exploits for some of the samples and
confirming results by multiple authors via cross validation.

The main external validity threat is that the dataset we use may
not represent real-world vulnerability data distribution. We mitigate
it by using manually confirmed real-world dataset like CVE/NVD
and removing any dataset overlaps during evaluation.

8 RELATED WORK

Vulnerability dataset curation. SARD [16] and SATE IV [52] are
synthetic datasets containing 60K+ vulnerability samples, while
BigVul [27] and CVEFixes [14] are real-world datasets containing
much less (<10K) samples. FixReverter [62] uses manually derived
patterns to inject vulnerabilities to existing code. VulGen [49] in-
jects vulnerabilities by addressing where and how to inject sepa-
rately. However, the label precision of these generated datasets is
low. In contrast, VGX is the most accurate with >90% precision.
Source-code pre-training. Deep learning model pre-training
has been widely employed. BERT [25] is a pre-trained model for
natural languages. CodeBERT [28], CodeT5 [57], and SPT-Code [46]
borrow the idea from BERT to pre-train models for programming
languages. In contrast, VGX’s pre-training is task-specific, explicitly
geared toward our fine-tuning task for vulnerability injection.

VGX: Large-Scale Sample Generation for Boosting Learning-Based Software Vulnerability Analyses

Human knowledge integration. Integrating human knowl-
edge into learning-based approaches has been explored. Liu et
al. [43] combine GNN with human knowledge to detect smart con-
tract vulnerabilities. ComNet. [31] integrates human knowledge
into DL to improve orthogonal receivers. DATGAN [35] integrates
DL with expert knowledge to generate tabular data. In compari-
son, VGX integrates human knowledge into vulnerability injection
patterns to boost vulnerability generation.

9 CONCLUSION

We presented VGX, a novel technique for large-scale generation
of high-quality vulnerable program samples. VGX generates such
samples using vulnerability-introducing code edit patterns. These
patterns are initially extracted from real-world vulnerability fixes,
augmented by manually defined additional patterns, and diversi-
fied through manually derived pattern mutation rules according to
human knowledge about real-world vulnerabilities. VGX’s design
also features a semantics-aware contextualization Transformer to
identify right injection contexts, which is customized by value-flow-
based position encoding and pre-trained against new objectives to
facilitate learning syntactic and contextual structures of code. With
this novel design, VGX largely outperforms all of the state-of-the-
art peer approaches in terms of the quality of generated samples. We
also contribute a large vulnerability dataset resulting from VGX’s
in-the-wild sample production. We further demonstrated the prac-
tical usefulness of this dataset via the substantial improvement it
brought to vulnerability detection, localization, and repair, and its
ability to help find more real-world vulnerabilities (CVEs).

REFERENCES

[1] 2022. 2022 CWE Top 25 Most Dangerous Software Weaknesses.
cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html.

[2] 2022. CVE-2017-12991. https://github.com/the-tcpdump-group/tcpdump/
commit/50a44b6b8e4f7¢127440dbd4239cf571945¢cc1e7.

[3] 2022. Memory Leak. https://cwe.mitre.org/data/definitions/401.html.

[4] 2022. OpenBSD. https://github.com/bukhalo/openbsd- src/commit/

a88c32bfabe8a7fd0b25703230d4adba1d204e0a.

] 2022. Race Condition. https://cwe.mitre.org/data/definitions/362.html.

[6] 2022. RawStudio. https://github.com/rawstudio/rawstudio/commit/
04cf4f537ffdce5f3e5207bead0ac2d254114cc2.

[7] 2022. Use of Uninitialized Variables. https://cwe.mitre.org/data/definitions/
457 .html.

[8] 2023. Cybersecurity vulnerability statistics and facts of 2023.
https://www.comparitech.com/blog/information-security/cybersecurity-
vulnerability-statistics/.

[9] 2023. Data Quality Considerations for Machine Learning Models.

https://towardsdatascience.com/data- quality- considerations-for-machine-

learning-models-dcbe9cab34cb.

2023. How Much Data Is Needed For Machine Learning? https://graphite-

note.com/how-much-data-is-needed-for-machine-learning.

2023. The Size and Quality of a Data Set. https://developers.google.com/machine-

learning/data-prep/construct/collect/data- size-quality.

Hiralal Agrawal, Richard A DeMillo, R_ Hathaway, William Hsu, Wynne Hsu,

Edward W Krauser, Rhonda J Martin, Aditya P Mathur, and Eugene Spafford.

1989. Design of mutant operators for the C programming language. Technical

Report. Technical Report SERC-TR-41-P, Software Engineering Research Center,

Purdue

Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:

Learning to fix bugs automatically. Proceedings of the ACM on Programming

Languages 3, OOPSLA (2019), 1-27.

Guru Bhandari, Amara Naseer, and Leon Moonen. 2021. CVEfixes: automated

collection of vulnerabilities and their fixes from open-source software. In Proceed-

ings of the 17th International Conference on Predictive Models and Data Analytics

in Software Engineering (PROMISE). 30-39.

Yingzhou Bi, Jiangtao Huang, Penghui Liu, and Lianmei Wang. 2023. Bench-

marking Software Vulnerability Detection Techniques: A Survey. arXiv preprint

https://

[10]

[11

[12]

[13]

[14]

(15

11

[16

[17

[18

[19

™
=

[21

[22

[23

[24

[26

[27]

[28

"~
2,

[30

[31

[32

(34]

(35]

[36]

[37

[38

[39

ICSE 2024, April 2024, Lisbon, Portugal

arXiv:2303.16362 (2023).

Paul E Black et al. 2017. SARD: A Software Assurance Reference Dataset. https:
//samate.nist.gov/SARD/. In Anonymous Cybersecurity Innovation Forum.().
Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. En-
riching Word Vectors with Subword Information. arXiv preprint arXiv:1607.04606
(2016).

Harold Booth, Doug Rike, Gregory A Witte, et al. 2013. The national vulnerability
database (NVD): Overview. (2013).

Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2021.
Deep learning based vulnerability detection: Are we there yet. IEEE Transactions
on Software Engineering (TSE) (2021).

Zimin Chen, Steve Kommrusch, and Martin Monperrus. 2021. Neural Trans-
fer Learning for Repairing Security Vulnerabilities in C Code. arXiv preprint
arXiv:2104.08308 (2021).

Zimin Chen, Steve Kommrusch, and Martin Monperrus. 2022. Neural transfer
learning for repairing security vulnerabilities in ¢ code. IEEE Transactions on
Software Engineering 49, 1 (2022), 147-165.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

Michael L Collard, Michael John Decker, and Jonathan I Maletic. 2013. srcML: An
infrastructure for the exploration, analysis, and manipulation of source code: A
tool demonstration. In 2013 IEEE International Conference on Software Maintenance.
516-519.

Roland Croft, M Ali Babar, and Mehdi Kholoosi. 2023. Data Quality for Software
Vulnerability Datasets. arXiv preprint arXiv:2301.05456 (2023).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang.
2020. Hoppity: Learning graph transformations to detect and fix bugs in programs.
In International Conference on Learning Representations (ICLR).

Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. A C/C++ Code
Vulnerability Dataset with Code Changes and CVE Summaries. In Proceedings of
the 17th International Conference on Mining Software Repositories (MSR). 508-512.
Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

Michael Fu and Chakkrit Tantithamthavorn. 2022. LineVul: a transformer-based
line-level vulnerability prediction. In Proceedings of the 19th International Confer-
ence on Mining Software Repositories (MSR). 608-620.

Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Phung.
2022. VulRepair: a T5-based automated software vulnerability repair. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE). 935-947.
Xuanxuan Gao, Shi Jin, Chao-Kai Wen, and Geoffrey Ye Li. 2018. ComNet:
Combination of deep learning and expert knowledge in OFDM receivers. IEEE
Communications Letters 22, 12 (2018), 2627-2630.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcodebert:
Pre-training code representations with data flow. arXiv preprint arXiv:2009.08366
(2020).

Jacob Harer, Onur Ozdemir, Tomo Lazovich, Christopher Reale, Rebecca Russell,
Louis Kim, et al. 2018. Learning to repair software vulnerabilities with generative
adversarial networks. Advances in Neural Information Processing Systems 31
(2018).

David Hin, Andrey Kan, Huaming Chen, and M Ali Babar. 2022. LineVD:
statement-level vulnerability detection using graph neural networks. In Pro-
ceedings of the 19th International Conference on Mining Software Repositories
(MSR). 596—607.

Gael Lederrey, Tim Hillel, and Michel Bierlaire. 2022. DATGAN: Integrating
expert knowledge into deep learning for synthetic tabular data. arXiv preprint
arXiv:2203.03489 (2022).

Wen Li, Li Li, and Haipeng Cai. 2022. PolyFax: a toolkit for characterizing
multi-language software. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE-Demo). 1662-1666.

Wen Li, Jinyang Ruan, Guangbei Yi, Long Cheng, Xiapu Luo, and Haipeng Cai.
2023. PolyFuzz: Holistic Greybox Fuzzing of Multi-Language Systems. In 32nd
USENIX Security Symposium (USENIX Security 23).

Yi Li, Shaochua Wang, and Tien N Nguyen. 2021. Vulnerability detection with
fine-grained interpretations. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 292-303.

Zhen Li, Deqing Zou, Shouhuai Xu, Zhaoxuan Chen, Yawei Zhu, and Hai Jin. 2020.
VulDeeLocator: A Deep Learning-based Fine-grained Vulnerability Detector.
arXiv preprint arXiv:2001.02350 (2020).

https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://github.com/the-tcpdump-group/tcpdump/commit/50a44b6b8e4f7c127440dbd4239cf571945cc1e7
https://github.com/the-tcpdump-group/tcpdump/commit/50a44b6b8e4f7c127440dbd4239cf571945cc1e7
https://cwe.mitre.org/data/definitions/401.html
https://github.com/bukhalo/openbsd-src/commit/a88c32bfabe8a7fd0b25703230d4adba1d204e0a
https://github.com/bukhalo/openbsd-src/commit/a88c32bfabe8a7fd0b25703230d4adba1d204e0a
https://cwe.mitre.org/data/definitions/362.html
https://github.com/rawstudio/rawstudio/commit/04cf4f537ffdce5f3e5207bead0ac2d254114cc2
https://github.com/rawstudio/rawstudio/commit/04cf4f537ffdce5f3e5207bead0ac2d254114cc2
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/457.html
https://www.comparitech.com/blog/information-security/cybersecurity-vulnerability-statistics/
https://www.comparitech.com/blog/information-security/cybersecurity-vulnerability-statistics/
https://towardsdatascience.com/data-quality-considerations-for-machine-learning-models-dcbe9cab34cb
https://towardsdatascience.com/data-quality-considerations-for-machine-learning-models-dcbe9cab34cb
https://graphite-note.com/how-much-data-is-needed-for-machine-learning
https://graphite-note.com/how-much-data-is-needed-for-machine-learning
https://developers.google.com/machine-learning/data-prep/construct/collect/data-size-quality
https://developers.google.com/machine-learning/data-prep/construct/collect/data-size-quality
https://samate.nist.gov/SARD/
https://samate.nist.gov/SARD/

ICSE 2024, April 2024, Lisbon, Portugal

[40

[45]

[46

[47

[48]

[49

[50

[51]

[53]

(54

[55

[56]

[57

[58

[59

[60

[61]

[62

[63]

[64]

Zhen Li, Deging Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen. 2021.
SySeVR: A framework for using deep learning to detect software vulnerabilities.
IEEE Transactions on Dependable and Secure Computing (2021).

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. Vuldeepecker: A deep learning-based system
for vulnerability detection. In Network and Distributed System Security (NDSS)
Symposium.

Linus Eriksson. 2022. Tree-Sitter. https://github.com/tree-sitter/tree-sitter.
Zhenguang Liu, Peng Qian, Xiaoyang Wang, Yuan Zhuang, Lin Qiu, and Xun
Wang. 2021. Combining graph neural networks with expert knowledge for
smart contract vulnerability detection. IEEE Transactions on Knowledge and Data
Engineering (2021).

Yisroel Mirsky, George Macon, Michael Brown, Carter Yagemann, Matthew
Pruett, Evan Downing, Sukarno Mertoguno, and Wenke Lee. 2023. VulChecker:
Graph-based Vulnerability Localization in Source Code. In USENIX Security
Symposium.

National Institute of Standards and Technology (NIST). 2022. National Vulnera-
bility Database (NVD). https://nvd.nist.gov.

Changan Niu, Chuanyi Li, Vincent Ng, Jidong Ge, Liguo Huang, and Bin Luo.
2022. SPT-code: sequence-to-sequence pre-training for learning source code
representations. In Proceedings of the 44th International Conference on Software
Engineering (ICSE). 2006-2018.

Yu Nong and Haipeng Cai. 2020. A preliminary study on open-source memory
vulnerability detectors. In 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 557-561.

Yu Nong, Haipeng Cai, Pengfei Ye, Li Li, and Feng Chen. 2021. Evaluating
and comparing memory error vulnerability detectors. Information and Software
Technology 137 (2021), 106614.

Yu Nong, Yuzhe Ou, Michael Pradel, Feng Chen, and Haipeng Cai. [n.d.]. VUL-
GEN: Realistic Vulnerability Generation Via Pattern Mining and Deep Learning.
([n.d.]).

Yu Nong, Yuzhe Ou, Michael Pradel, Feng Chen, and Haipeng Cai. 2022. Gen-
erating realistic vulnerabilities via neural code editing: an empirical study. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1097-1109.

Yu Nong, Rainy Sharma, Abdelwahab Hamou-Lhadj, Xiapu Luo, and Haipeng Cai.
2022. Open Science in Software Engineering: A Study on Deep Learning-Based
Vulnerability Detection. IEEE Transactions on Software Engineering (TSE) (2022).
Vadim Okun, Aurelien Delaitre, Paul E Black, et al. 2013. Report on the static
analysis tool exposition (sate) iv. NIST Special Publication 500 (2013), 297.

Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, and Zhi Jin. 2021. Integrating
tree path in transformer for code representation. Advances in Neural Information
Processing Systems 34 (2021), 9343-9354.

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi,
Vladimir Zolotov, Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al.
2021. CodeNet: A large-scale Al for code dataset for learning a diversity of coding
tasks. arXiv preprint arXiv:2105.12655 (2021).

Carson D Sestili, William S Snavely, and Nathan M VanHoudnos. 2018. Towards
security defect prediction with AL arXiv preprint arXiv:1808.09897 (2018).
Xinda Wang, Shu Wang, Pengbin Feng, Kun Sun, and Sushil Jajodia. 2021. Patchdb:
A large-scale security patch dataset. In 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). 149-160.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. CodeT5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. arXiv preprint arXiv:2109.00859 (2021).

Yueming Wu, Deqing Zou, Shihan Dou, Wei Yang, Duo Xu, and Hai Jin. 2022.
VulCNN: An Image-inspired Scalable Vulnerability Detection System. (2022).
Ziyu Yao, Frank F Xu, Pengcheng Yin, Huan Sun, and Graham Neubig. 2021.
Learning Structural Edits via Incremental Tree Transformations. arXiv preprint
arXiv:2101.12087 (2021).

Lechen Yu, Joachim Protze, Oscar Hernandez, and Vivek Sarkar. 2020. A Study
of Memory Anomalies in OpenMP Applications. In International Workshop on
OpenMP. Springer, 328-342.

Shasha Zhang. 2021. A Framework of Vulnerable Code Dataset Generation
by Open-Source Injection. In 2021 IEEE International Conference on Artificial
Intelligence and Computer Applications (ICAICA). 1099-1103.

Zenong Zhang, Zach Patterson, Michael Hicks, and Shiyi Wei. 2022. FIXRE-
VERTER: A Realistic Bug Injection Methodology for Benchmarking Fuzz Testing.
In 31st USENIX Security Symposium (USENIX Security 22). 3699-3715.

Yunhui Zheng, Saurabh Pujar, Burn Lewis, Luca Buratti, Edward Epstein, Bo
Yang, Jim Laredo, Alessandro Morari, and Zhong Su. 2021. D2A: A dataset
built for ai-based vulnerability detection methods using differential analysis. In
2021 IEEE/ACM 43rd International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). 111-120.

Xin Zhou and Rakesh M Verma. 2022. Vulnerability Detection via Multimodal
Learning: Datasets and Analysis. In Proceedings of the 2022 ACM on Asia Confer-
ence on Computer and Communications Security (AsiaCCS). 1225-1227.

12

[65]

[66]

Yu Nong, Richard Fang, Guangbei Yi, Kunsong Zhao, Xiapu Luo, Feng Chen, and Haipeng Cai

Yaqin Zhou, Shangging Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: Effective vulnerability identification by learning comprehensive program
semantics via graph neural networks. Advances in Neural Information Processing
Systems (NeurIPS) 32 (2019).

Degqing Zou, Yutao Hu, Wenke Li, Yueming Wu, Haojun Zhao, and Hai Jin.
2022. mVulPreter: A Multi-Granularity Vulnerability Detection System With
Interpretations. IEEE Transactions on Dependable and Secure Computing (TDSC)
01 (2022), 1-12.

https://github.com/tree-sitter/tree-sitter
https://nvd.nist.gov

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Technical Design
	3.1 Overview
	3.2 Preprocessing
	3.3 Semantics-Aware Contextualization
	3.4 Edit Pattern Formation
	3.5 Vulnerability Production

	4 Evaluation
	4.1 Implementation
	4.2 Dataset
	4.3 Metrics
	4.4 RQ1: Effectiveness of VGX
	4.5 RQ2: Contributions of Novel Components
	4.6 RQ3: Efficiency of VGX

	5 Usefulness of VGX
	5.1 RQ4: Large-Scale Production
	5.2 RQ5: Downstream Analysis Improvement
	5.3 RQ6: Real-World Vulnerability Discovery

	6 Discussion
	6.1 Vulnerability Generation Performance
	6.2 Usefulness of Generated Samples

	7 Threats to Validity
	8 Related Work
	9 Conclusion
	References

