
Testability of Oracle Automata
(extended abstract)

Gaoyan Xie, Cheng Li, and Zhe Dang
�

School of Electrical Engineering and Computer Science
Washington State University
Pullman, WA 99164, USA

Abstract. In this paper, we introduce oracle (finite) automata that are finite/Buchi automata augmented with ora-
cles in some classes of formal languages. We present some testability results for the emptiness problem of oracle
automata associated with various classes of oracles. Moreover, we show that some important verification problems
(such as reachability, safety, LTL model-checking, etc.) for oracle automata can be reduced to testing the emptiness
of oracle automata. Our theory results on the testability of oracle automata can find applications in the verification
of a system containing unspecified/partially specified components.

1 Introduction

In automata theory, the emptiness problem is to decide whether an automaton accepts the empty language. Algorithmic
solutions to the emptiness problem for various classes of automata have become a cornerstone for solving various
problems in many areas of computer science, especially in model-checking [6] that seeks algorithmic procedures to
check whether a system satisfies a given temporal property through state exploration. In traditional automata theory,
the automaton in the emptiness problem must be fully specified. As shown later in this section, however, there is a
need (motivated by model-checking problems for component-based systems) to investigate the emptiness problem for
automata that are only partially specified. This latter emptiness problem, however, has not been well-studied.

In this paper, we study a form of partially specified automata, called oracle finite automata (OFAs), and their
emptiness problem. An oracle is a language in a class

�
of languages. The name of “oracle” comes from the fact that

we only know that the oracle is an element in the class but we do not know which one it is. However, one may obtain
a truth value from a query “ ������� ” to the oracle � for a word � , where � is called a query string. An OFA is a
finite automaton (FA) augmented with finitely many query tapes, each of which is unbounded, one-way, and writable.
When the OFA is associated with an array of oracles in a language class, the 	�

� works exactly as the

� except
when a write transition, a query transition, or a reset transition wrt some � -th query tape is fired. On executing the write
transition, a symbol is appended to the end of the specified query tape. On executing the query transition, a truth value
is returned after querying the � -th oracle with the content of the � -th query tape as the query string; the truth value
depends on whether the query string is in the oracle. On executing the reset transition, the content of the � -th query
tape is completely erased.

Obviously, for the OFA defined above, its emptiness problem can not be solved by simply looking at its transition
graph, since results of queries to the oracles may affect the firability of a transition. Our approach to solving the
problem is to compute a number, called a query bound, from the specification of the OFA and the language class

�

to which the oracles in the OFA belong such that testing query strings not longer than the query bound is sufficient to
answer the emptiness problem. Once the query bound is computable, we say that the emptiness problem is solvable or,
more accurately, testable. The main body of this paper focuses on establishing conditions on the language class

�
and

on the OFA such that the emptiness problem is testable. We will study cases when
�

is the class of regular languages
accepted by (non)deterministic finite automata with � states, when

�
is the class of context-free languages accepted

by nondeterministic pushdown automata with � states, and when
�

is the class of commutative semilinear languages
with characteristic � (defined in the paper). Most of our testability results also demonstrate respective query bounds
explicitly.
�

Corresponding author (zdang@eecs.wsu.edu)

Our studies on OFAs and their testability can find applications in model-checking. It is well-known that, in many
cases, model-checking finite-state/infinite-state systems can be reduced to solving, for instance, the emptiness problem
for various classes of automata. In these so called automata-theoretic approaches, a goal automaton is constructed from
an instance of the model-checking problem in consideration such that the (language) emptiness of the automaton is
equivalent to the answer to the model-checking query on the instance. Indeed, this is evidenced by classical work on
LTL model-checking [20] as well as more recent work on model-checking restricted infinite-state systems, e.g., [5, 1,
13, 12]. Notice that the goal automata constructed in the existing automata-theoretic approaches are all fully specified.

However, a real-world verification problem may concern a system containing some unspecified components (i.e.,
they are not completely specified). For instance, a component-based system may involve some externally obtained
components whose internal design specifications are not completely available to the system designers because of,
e.g., patent or copyright reasons. On the other hand, a component is considered to be unspecified because that, even
detailed specification for the component is given, algorithmic analysis for the component still may not be possible;
e.g., components may have an infinite state space, components may contain analog circuits etc.. These unspecified
components are usually treated as black-boxes in the sense that their behaviors can only be determined by observing
(i.e., testing) their input/out sequences. For systems with such unspecified components, their verification problems
could not be solved using traditional automata-theoretic approaches, since the goal automata obtained by those the
approaches would not be fully specified..

We claim that OFAs and their testability results can be used to solve some important verification problems for
a class of systems with unspecified components. Consider a simple system ���������
	���
�� consisting of a specified
component 	 and an unspecified component
 . The specified component 	 keeps receiving messages from the outside
environment and then transmits the message through the unspecified component
 . The communications between 	
and
 are synchronized via pairs of input/output symbols of
 (communications in this example is one-way, i.e.,
always initiated by). The unspecified component
 has two input symbols ��� ��� and ����� , and two output symbols
����� and ��� . The transition graph of 	 is depicted in Figure 1, where we use a suffix � to denote events from the outside
environment (e.g., msg?), and use an infix � to denote communications of 	 with
 (e.g., ��� �����������). Suppose that the
property to be verified is as follows. Starting from ��� , state �! is not reachable on any path of 	 . Notice that the system
reachability really depends on the communications between 	 and
 . For instance, even though �" is reachable in the
figure, it may not be so in reality since, e.g.,
 may never response with a ��� when receiving a ��� ��� .

#%$ #�&

ack/yes

msg?

msg?

msg?

send/yes

#(' ack/yes

#%)
send/no

msg?

#(*

Fig. 1. A simple communication system

To address the verification problem for the system �+�,� , we construct an OFA - associated with an oracle �
(that is the language of all the observable behaviors (the input/output sequences) of the unspecified component
). -
works as follows. Starting from � � , it nondeterministically follows the transition graph shown in the figure, without
interacting with the unspecified component. Whenever a transition labeled with “ ./��0 � ” is fired, - reads a symbol
“ .1��0 ” from its own input tape. Whenever a transition labeled with “ �!� ����������� ” (resp. “ �!� ����� ��� ”, “ �����2������� ”) is fired,
- writes a symbol “ �!� ����������� ” (resp. “ �!� ����� ��� ”, “ �����2������� ”) on its query tape (there is only one query tape in -).
When - enters state � , it accepts the word on its own input tape if a query to the oracle � with the current oracle
tape content returns “yes”. Clearly, - accepts an empty language iff the property holds for ����� . Notice that querying
the oracle � with a query string � is equivalent to running a test-case � on the unspecified component
 (i.e., see
whether the test-case is a sequence of observable (input/output) behaviors of
 . Suppose that a query bound can be

2

computed through some partial information about � using our testability results, then the property on ����� can be
verified through black-box testing on the unspecified component
 using test-cases not longer than the query bound.

Sometimes, a stronger testability result can be obtained when one restricts the behavior of an OFA or provides
additional information on the oracles. We say that the OFA is positive if a no answer on a query always makes the
OFA crash. Clearly, the OFA - in the above example is positive (and in fact 1-query since only one query is necessary
on acceptance). We say that the OFA is memoryless if a query transition on a query tape is immediately followed by
a reset transition on the same query tape. A memoryless OFA is useful when, e.g., the unspecified component
 runs
in sessions. The end of a session is triggered by a special input symbol “reset” that brings
 back to its internal initial
state. Hence, two consecutive sessions of
 are unrelated. An oracle could be prefix-closed in the sense that if a query
string is in the oracle then all prefixes of the query string are all in the oracle. Testing the oracle can thus be sped up
by this feature — once a query string � is not in the oracle, we have already known that any query string with � as
a prefix is not in the oracle either. In the paper, we will also study the testability results for these restricted forms of
OFAs. Moreover, later in the paper, we generalize the testability results concerning the emptiness problem to the LTL
model-checking problem. This is interesting, since LTL concerns infinite behavior of an OFA. Testability of the LTL
model-checking problem implies that testing query strings with a bounded length is enough to conclude some infinite
behaviors of an OFA.

Oracle (Turing) machines are a classic concept in the theory of computation, and have been quite useful in studying,
e.g., relativized complexity classes [2]. However, as far as we know, studying oracle finite automata in the context of
model-checking is new. In particular, our technical approaches of doing model-checking through testing fit nicely
into the current trend of integrating model-checking with testing [18]. The traditional work of black-box-testing [15]
that checks conformance between two Mealy machines through input-out sequence testing is considered a different
research problem from our work. The inference of query bounds is also loosely related to bounded model-checking
that performs LTL model-checking through finite executions [4] as well as the bounding box techniques for some
infinite state systems [21]. The oracle automata studied in this paper is also related to some existing work on model-
checking with an incomplete model [3, 9]. But the most related work is probably from Peled, Vardi, and Yannakakis
[19] who studied the problem of testing finite state systems with unknown structures against an LTL property. Their
work, called Black-box Checking (BBC), is different from ours because in our work an unknown component (whose
observable behavior could be irregular) is hooked up with a completely known finite state systems. Additionally, their
proof techniques are completely different from ours. Kupferman and Vardi [14] investigated module checking by
considering the problem of checking an open finite-state system under all possible environments. Module checking is
different from our work in the sense that an oracle understood as an environment in [14] is a specific one.

The rest of the paper is organized as follows. Section 2 introduces basic definitions used in this paper. Section 3
starts with a formal definition of oracle finite automata and their testability. Then in Subsection 3.1, some results on
the testability of the emptiness problem for various classes of oracle finite automata are presented. These results are
further extended to oracle Buchi automata in Subsection 3.2. In Subsections 3.3, the connection between the testability
results and some important verification problems of oracle finite/Buchi automata is established. Section 4 is a brief
conclusion.

All of the proofs can be found in the Appendix, which may be read by the PC members at their discretion.

2 Preliminaries

Throughout this paper, � is any fixed alphabet. A finite automaton (FA) 	 consists of finitely many transitions, each of
which makes the automaton move from one state to another while reading an input symbol (in �). In the description
of 	 , we also designate an initial state and a number of accepting states. A sequence of input symbols or an input
word � ����� is accepted by 	 if, from the initial state of 	 , 	 reaches an accepting state after reading the entire
word � . As usual, ���
	�� stands for the language accepted by 	 . In general, a

� is nondeterministic; so we use 	�

�
to denote a deterministic

� . A pushdown automaton (PDA) can be obtained by augmenting an FA with a pushdown
stack (without loss of generality, we assume that the stack alphabet is the same as the input alphabet � and each time,
the PDA pushes/pops at most one symbol). Similarly, DPDA is used to denote a deterministic PDA. We further use
FA(�) (resp. DFA(�), PDA(�), DPDA(�)) to denote an FA (resp. DFA, PDA, DPDA) with at most ��

� states. In

3

this paper, these notations of automata are also abused to represent languages accepted by the automata. For instance,
FA(�) is the class of regular languages (on alphabet �) accepted by finite automata with at most � states.

Next, we recall the definitions of (semi)linear sets and their connection to counter machines. Let � be the set of
nonnegative integers and � ��������� ���"���	����� ��

� for some positive � . A subset � of �
 is a linear set if there exist
vectors � � ���
���	���	�%����� in �
 such that � ������������� ����� ���
� � ����� ��� �����(� ��� � �!��� The set ��"#�
 is semilinear
if it is a finite union of linear sets. semilinear sets are precisely the sets definable by Presburger formulas [8]. For each
word � in ��� , define the Parikh map of � to be $�� ��� � �%� �&�'�(��� �&� '�) �	�����!��� �&� '+* � , where � �&� '�, denotes the number
of symbol � � ’s in word � , �.- ��- � . For a language �#"�� � , the Parikh map of � is $�� � � ���	$�� ���/� � � �0� . The
language � is semilinear if $�� � � is a semilinear set [17]. � is a semilinear commutative language if � is semilinear and,
for all � � � � � with $�� � � � �#$�� � � � , � � � � iff � � � � . That is, only the counts information ��� �&� ' (��1� �2� ')"���	�����1� �2� '+* �
is sufficient to decide whether ��� � . For instance, � ��3�� �&�'54 � �&� 687:9�� �&� ;=<>� � ' �@?:A�� �&� ;+� is a commutative
semilinear language over alphabet ��� � � � ��� .

Let � be a nonnegative integer. A � -counter machine is an FA augmented with � counters, each of which can be
incremented by 1, decremented by 1, and tested for zero. We assume, w.l.o.g., that each counter can only store a
nonnegative integer (since the sign can be stored in the states). Let B be a nonnegative integer and let NCM(� , B) denote
the class of � -counter machines where each counter is B reversal-bounded [10]; i.e., each counter makes at most B
alternations between nondecreasing and non-increasing modes in any computation. For instance, a counter whose
values change according to the pattern C � �D9&E&F&FGE 9 �GC � �=C is 3-reversal, where the reversals are underlined.
We use DCM(� , B) to denote the deterministic machines in NCM(� , B). From a result in [10], a semilinear commutative
language � can be recognized by a DCM(� , B) - for some � and B if - ’s input is equipped with an end marker. In
particular, it can be shown from [11] that there is a constant � such that, �IH�KJ iff there is a word � �&�L- � ;NM%O in � ,
where . is the number of states in - . This result remains even when - is nondeterministic. From now on, we use -
to characterize � and PRQTS � � � to denote those semilinear commutative languages that can be accepted by a DCM(� , B)
with . states, where � � � ;NM�O . With this definition, when ���UPLQTS � � � with �
 � , we say that � , as well as the - ,
has characteristic � . We use PRQTS to denote the class of all semilinear commutative languages.

3 Oracle Finite Automata and Testability

Recall that
�

is a class of languages over alphabet � and � , called an oracle, is a language in
�

. Formally, - , an
oracle finite automaton (�

�) with V oracles is a tuple

�WV(� � � �+��X � ��Y Z	Y [��\ �%� (1)

where � is the given (input/query tape) alphabet, � is a finite set of states with �]Y Z	Y [being the initial state and \I" �
being a set of accepting states. X is a (finite) set of transitions, each of which is in one of the following five forms:

– (a read-input transition) � '^ �	_ , which makes - move from state � to state ��_ after reading an input symbol � ;

– (a write transition) �0`Ta%bdc�e�f �Wg '+h^ � _ , which makes - move from state � to state � _ after appending a symbol � to the
end of the � -th query tape;

– (a positive query transition) �jiNk%eNa�l�f � h^ � _ , which makes - move from state � to state � _ when querying the � -th
oracle (with the � -th query tape content as the query string) returns a “yes” answer;

– (a negative query transition) �Gm iNk�eNa�l�f � h^ ��_ , which makes - move from state � to state �1_ when npo�q
rts � � � returns a
“no” answer;

– (a reset transition) �ua%e�vweNc+f � h^ � _ , which makes - move from state � to state � _ and resets the � -th query tape content
to be empty;

where �"� � _ � � , � � � , and �#- �x-yV . When V � � , - is called a single OFA. Notice that the syntactical
definition of - involves neither any description of

�
nor � . When - is associated with an array �z���	���	��� �0� of

V oracles in
�

, we use - � �D�������	��� �0� � to denote the association. The semantics of - is defined as follows. Let
- � �D���	���	��� �0� � be an association. A configuration is a tuple � � � �G�����	��� � �{��� of a state � and V query tape contents
� � �	���	� � � � � ��� . The configuration is initial if the state is the initial state and the query tape contents are all empty.

4

The configuration is accepting if � is an accepting state. A one-step transition between two configurations is written as
� � � �0� ���	��� � �{� ���^ � � _ � � _� ���	��� � � _� � when one of the following conditions is satisfied:

– � is � , � '^ � _ is a read-input transition in X , and each � _� ��� � ;
– � is ��r���� q � � � � � , �{`�a%bdc�e%f � g '�h^ � _ is a write transition in X , and for each 	UH��� , � _� ��� � and � _� � � � � ;

– � is n
o�qprts � � � , �uiNk�eNa�l�f � h^ � _ is a positive query transition in X , query string � � is in � � , and each � _� ��� � ;
– � is
 n
o�qprts � � � , � m iNk�eNa�l�f � h^ � _ is a negative query transition in X , query string � � is not in �/� , and each � _� ��� � ;
– � is r q�� q
� � � � , � a�e�vweNc�f � h^ � _ is a reset transition in X and, for each 	UH��� � _� ��� � , and � _� ��� (the empty string).

A run of - � �D�����	��� � � � � is a sequence �
� � (^

�
�����	�

�
��� � ���^

�
� � (2)

such that

– for each 	8? � ,
� � � � ���^

� � is a one-step transition, and,
–
�
� is the initial configuration.

The run is an accepting run if
�
� is an accepting configuration. Let � be the result of deleting elements not in �

from the sequence � �1�	��� � � . Then we say that the run in (2) is a run on input word � . A word � is accepted by
- � �D���	���	��� �0� � if there is an accepting run on � . The language accepted by - � �5���	���	��� �0� � , written

� � - � � � ���	��� � � � � �(�
is the set of all words accepted by - � � � �����	� � �0� � . Obviously, when associated with a different array of oracles, a
query may return a different result and hence - may behave differently. Therefore, - can be thought of a template
with V places to be filled in with oracles. To emphasize the fact that oracles are drawn from

�
, we sometimes use

-�� to denote the oracle finite automaton - and further use -�� � �D� �����	��� �0� � to denote the specific association of the
oracles �D���	����� � � � � � with - .

Various restrictions can be placed on query behaviors of an oracle finite automaton - . In this paper, we will
focus on the following four forms of restrictions. - is a prefix-closed 	�

� if - is only associated with prefix-closed
oracles1. - is a � -query 	�

� if, during any run, the oracles are queried for at most � times. - is a positive 	�

� if, in
- , each query must return a “yes” answer (i.e., - does not have negative query transitions). - is a memoryless 	�

�
if for each � , the � -th query tape content is erased (by a r�q��pq
� � � � transition) immediately after each query n
o�q
r�s � � � .
Therefore, during any run of a memoryless 	�

� , each query string sent to an oracle was “freshly written” since the
previous query to the same oracle.

A � -bounded testing script � (with V oracles) is a deterministic Turing machine equipped with two tapes:

– the first tape, called the query tape, is a two-way readable and writable Turing tape whose length is � ,
– the second tape, called the working tape, is an ordinary unbounded Turing tape,

and is further augmented with query instructions. Each query instruction allows the script to query an oracle with a
query string that is the content of the portion of the query tape between the first cell and the current cell under the
query tape head. A state transition is made upon the query result. We assume that � starts with both tapes blank and
always halts, when associated with any array of V oracles. � is successful (resp. unsuccessful) on � � ���	��� � � � , if, when
associated with � � ���	��� � � � , � halts with an accepting (resp. rejecting) state. The name of a “testing script” comes
from the fact that, when � runs, the oracles are tested (queried) with query strings not longer than � . When � halts,
the testing is finished and an answer of either “successful” or “unsuccessful” is given. Of course, the answer may be
different when � is associated with another array of oracles.

A testing script is used to solve problems concerning an 	�

� . Let � be one of the language classes

� , 	�

� , � 	 � ,
	�� 	 � , and PRQTS defined earlier. We use 	�

�! to denote the class of 	�

� s whose oracles are drawn only from X.

1 A language on the alphabet is prefix-closed if the following condition is satisfied: for any word " , if " is in the language, then
so is every prefix of " .

5

Let - f � h be one such automaton in 	�

� with �
 � . Then a problem of - is a predicate over some oracles
�D���	������� � � in � � � � . For instance, the emptiness problem of - f � h is to decide whether - f � h � �D�����	��� � � � � ac-
cepts an empty language. This problem can be characterized by the predicate ������� ��� � �G� ���	��� � � � � , which is true iff
� � - f � h � �D���	���	��� �0� � � ��J . A problem � of - f � h is testable if there is an algorithm such that from the description
of - and � , one can compute a number � � - � � � and a � � - � � � -bounded testing script � satisfying the following
condition: for each �D� ���	��� � �0� � � � � � , � � �D���	���	��� �0� � is true (resp. false) iff � is successful (resp. unsuccessful) on
�D���	������� � � . In this case, we also say that the � problem of the oracle finite automaton - f � h is � � - � � � -testable.
That is, the � problem of - f � h can be decided by running the test script which queries the oracle with query strings
not longer than � � - � � � .

3.1 Testing Emptiness for Oracle Finite Automata

How to figure out whether an oracle finite automaton - is testable for the emptiness problem? Notice that - f � h ,
when associated with oracles � � �	����� � � � , runs on some input, during which the oracles are queried. On a specific run,
one may record the maximal length of all query strings sent to the oracles. Assume that the maximal length is uniformly
bounded by a number � , called a query bound, among all the possible input words, runs, and associations of oracles
from � � � � . Under this assumption, checking whether � � - f � h � �D� �����	� � �0� � ��J becomes easier. This is because,
for the purpose of emptiness, one can make each oracle to be finite (the number of elements is bounded by � � �) by
dropping any word longer than � from the oracle. In this way, the finite oracle can be “recovered” through a finite
number of queries. Even though the assumption in general does not hold, one can effectively build an approximated
version - f � h	 from - f � h that satisfies the assumption for any number � , by forcing - f � h to crash whenever it
tries to query the oracle with a query string longer than � . Then we refine the definition of query bound: � is a query
bound of - f � h if, for any � � ���	��� � � � � � � � � ,

� � - f � h � �D���	����� � � � � � J�

� � � - f � h	 � �D���	������� � � � ��J �
Once the query bound is identified, a � -bounded testing script � can be easily constructed to answer the emptiness of
- f � h :
1. For each oracle, � enumerates each string not longer than � , queries the oracle with the string, and stores the

result on the working tape;
2. On the working tape, � also constructs a finite automaton (without any oracles) that simulates - f � h	 where each

query is answered by retrieving the stored results;
3. � returns “successful” or “unsuccessful” according whether the finite automaton accepts an empty language (this

can be decided by running a standard algorithm on the finite automaton).

Hence, in proving that the class 	�

� is testable, we only need to demonstrate that a computable query bound exists
for every - in 	�

� . This is the fundamental approach we will use to study some testable classes of oracle finite
automata.

Studies on black-box testing [15] have shown that the structure of a finite automata with � states can be completed
recovered by test sequences with length not longer that a bound ��� � � � . This result can be immediately used to
establish the testability of 	�

� s with regular oracles in FA(n). However, there are reasons that new techniques are
needed. First, for emptiness testing, one does not need to recover the complete information of the oracle, and a smaller
query bound than BT(n) may exist. Second, as shown in below, complete information is not recoverable for some
practically useful but irregular oracles, e.g., � 	 � � � � . That is, ��� � � � is not computable (from �) for oracles in
� 	 � � � � . In other words, context-free languages are not black-box testable.

Theorem 1. Context-free languages are not black-box testable.

In the rest of this section, we will present some results concerning the testability of the emptiness problem for
various classes of OFAs. Recall that an oracle finite automaton - is associated with an array of V oracles. Let � -:�
denote the number of states in - and we start with the case when - ’s oracles are regular.

6

Theorem 2. (a). The emptiness problem for oracle finite automata -��
���
f � h is � � � ��� � -:� � -testable. (b). The empti-

ness problem for oracle finite automata - ���
f � h is � �d9 � ��� � -:� � -testable.

We now turn to the case when - ’s oracles are drawn from context-free languages. Unfortunately, the emptiness
problem for - is testable only under some special conditions. The proof of Theorem 3(a) uses a reduction to the
halting problem of two-counter machines. For the testable cases, Theorem 3(b) involves PDA constructions.

Theorem 3. (a). The emptiness problem for oracle finite automata in 	�

�
�
�
�

is not testable. The result remains in
each of the following restricted cases:

(a.1) the automata are 1-query and single,
(a.2) the automata are 2-query, positive, and single,
(a.3) the automata are 2-query, positive, and in 	�

� �

�
�
�

.

(b). The emptiness problem for oracle finite automata - �
�
�
f � h is 9

	
f

 �
)�� �)��

�
 h -testable, under each of the following

conditions:

(b.1) - �
�
�
f � h is positive, single, and prefix-closed.

(b.2) - �
�
�
f � h is positive, single, and 1-query.

(b.3) - �
�
�
f � h is positive, single, and memoryless.

(b.4) - �
�
�
f � h is -��

�
�
�
f � h and single.

Finally, we consider the case when - ’s oracles are drawn from semilinear commutative languages. As we are
going to show, even though, in general, OFAs with such oracles are in general not testable for emptiness, under some
restrictions, the problem becomes testable. The proof of Theorem 4(a) is a complex reduction to the halting problem
of two-counter machines. In showing Theorem 4(b), properties over reversal-bounded NCMs are used.

Theorem 4. (a). The emptiness problem for oracle finite automata in 	�

�
�����

is not testable. The result remains in
each of the following restricted cases:

(a.1) the automata are single and positive,
(a.2) the automata are memoryless, positive, and have two oracles (i.e., V ��9).

(b). The emptiness problem for oracle finite automata - �����
f � h is testable, under each of the following conditions:

(b.1) - �����
f � h is � -query. In this case, it is � � �
 �
 �
 * � -testable,

(b.2) - �����
f � h is prefix-closed,

(b.3) - �����
f � h is memoryless and single. In this case, it is � � �

 �
 � -testable.

3.2 Testing Emptiness for Oracle Buchi Automata

Syntactically, an oracle Buchi automaton (� -OFA) -�� is an oracle finite automaton - in (1). The difference is
that, -�� accepts only � -runs (i.e., infinite runs). We write - �� for -�� when its oracles are drawn from

�
. Let

- �� � � � �	����� � � � � be an association of - �� with oracles � � ���	��� � � � in
�

. An � -run of - �� � � � �	����� � � � � is an infinite
sequence �

� � (^
�
� �	���

�
� � � � �^

�
� �	����� (3)

such that each prefix
�
� � (^

�
���	���

�
��� � �
�^

�
� is a run of - � � �G�����	��� � � � � , and for all . there is an � 7 .

with � � � � . This latter requirement ensures that an � -run reads an infinite number of input symbols. The � -run is
accepting if some accepting state in \ appears infinitely often on the run. An � -word � is accepted by - �� � �G�����	��� � � � �
if there is an accepting run in the form of (3) such that the word � � (the result of deleting elements not in � from the
sequence � � ���	� � �) is a prefix of � , for each � . We use � � � - �� � �G� ���	��� � � � � � to denote the � -language accepted by
- �� � � � �	����� � � � � .

Completely analogous to oracle finite automata, we use � - 	�

� to denote the set of all � - 	�

� - f � h� , for
� �!�

� � 	

� � � 	 � � 	 � 	 � �%PLQTS.� . We also follow a similar definition for prefix-closed, � -query, memoryless, and
positive � - 	�

� s.

7

The emptiness problem (for oracle Buchi automata) is to decide whether - f � h� � �D���	���	��� �0� � accepts an empty
� -language. For each class

�
of oracle finite automata considered in Theorems 3(a) and 4(a) whose emptiness is not

testable, one can easily conclude that the emptiness problem for its corresponding class of oracle Buchi automata is
not testable either. This is because from an oracle finite automaton - , one can build an oracle Buchi automaton - _
as follows. - _ behaves in the exactly same way as - , except that when - enters an accepting state, - _ nondeter-
ministically enters a special state (that is the only accepting state of - _) and keeps staying in the state forever. Clearly,
on associating with any oracles, - accepts an empty language iff - _ accepts an empty � -language. Notice that if
- belongs to the class

�
of oracle finite automata mentioned earlier, -U_ belongs to the same class of oracle Buchi

automata too. Therefore,

Theorem 5. (a). The emptiness problem for oracle Buchi automata in � - 	�

�
�
�
�

is not testable. The result remains
even when each of the restrictions stated in Theorem 3(a) is applied.

(b). The emptiness problem for oracle Buchi automata in � - 	�

�
�����

is not testable. The result remains even when
each of the restrictions stated in Theorem 3(a) is applied.

By definition, when the emptiness problem for - f � h� is testable, one can compute a � � - � � � -bounded testing
script and, after running the script, the emptiness can be decided. The basic technique in showing testability is to
reduce the emptiness problem of an oracle Buchi automaton in a class into the emptiness problem of an oracle finite
automaton in the same class through loop analysis. Although loop analysis is a general technique, such a reduction
does not always exist. For instance, currently, we do not know whether a positive, single and prefix-closed -

�
�
�
f � h�

is testable or not for emptiness. However, according to Theorem 3 (b.1), a positive, single and prefix-closed - � � � f � h
is testable for emptiness.

Theorem 6. (a). The emptiness problem for oracle Buchi automata - �
���
f � h� is � � � ��� � � -:� � -testable. The emptiness

problem for oracle Buchi automata -
���
f � h� is � ��9 � � ��� � -:� � -testable.

(b). The emptiness problem for oracle Buchi automata -
�
�
�
f � h� is 9 	 f

 �
) � �) �

�
 h -testable, under each of the
following conditions:

(b.1) -
�
�
�
f � h� is positive, single and 1-query.

(b.2) -
�
�
�
f � h� is positive, single and memoryless.

(b.3) -
�
�
�
f � h� is - �

�
�
�
f � h� and single.

(c). The emptiness problem for oracle Buchi automata -
�����
f � h� is testable, under each of the following conditions:

(c.1) -
�����
f � h� is � -query. In this case, it is � � �
 �
 �
 * � -testable.

(c.2) -
�����
f � h� is prefix-closed.

(c.3) -
�����
f � h� is memoryless and single. In this case, it is � � �

 �
 � -testable.

3.3 Model-checking Through Testing

The emptiness problems we have investigated so far are closely related to some verification problems of oracle fi-
nite/Buchi automata. In this subsection, we will elaborate on this relationship.

Let - f � h � �D� �����	��� �0� � be an 	�

� in a class 	�

� associated with oracles � ���	���	� � � � in � � � � . The reachability
problem is to decide whether there is a run of the 	�

� that ends up with a state in a given set � ��� of states; i.e., �����
is reachable. (In practice, � � � specifies “bad” states that are not supposed to reach.)

Clearly, one may regard ����� as the accepting states in - and establish that ����� is not reachable iff

- f � h � �D���	���	� � � � �
accepts an empty language. Let � -:� denote the state number in - , then we have,

Theorem 7. The reachability problem for oracle finite automata - f � h is testable iff the emptiness problem for them
is testable. In particular, if the emptiness problem is � �%� -:� � � � -testable, then so is the reachability problem.

8

An input word accepted by the automaton is called an behavior. The safety problem is to decide whether every
behavior of - f � h � �D���	���	� � � � � is contained in a given regular language X . We assume that the complement of X can
be accepted by an FA with � states and

�- be the Cartesian product of the complement FA and - . Notice that
�- has

� � � -:� states. Clearly, the safety problem of - f � h is equivalent to the emptiness of
�- f � h . Hence,

Theorem 8. The safety problem for oracle finite automata - f � h is testable iff the emptiness problem for them is
testable. In particular, if the emptiness is � ��� -:� � � � -testable, then the safety wrt a regular language X is � � � � � -:� � � � -
testable, where � is the state number of an FA accepting
 X .

Certainly, one can develop a result similar to Theorem 8 for oracle Buchi automata by requiring the property X to
be “ � -regular” instead of “regular”. However, concerning verification problems for automata on infinite words, LTL
model-checking is a technique that has already been widely used. Therefore, it is also worthwhile to investigate the
LTL model-checking problem for oracle Buchi automata.

The linear-time temporal logic (LTL) views the behaviors of a finite-state system as a set of paths, i.e., infinite
words on alphabet � . LTL formulas are interpreted as sets of paths, which are defined as follows:

� 3 3 � � �
 � � � < � ��� � � ����� �
where � ��� is an atomic proposition. � is the next operator, and

�
is the until operator. We interpret each atomic

proposition � as the singleton set ����� . Intuitively, a path � satisfies an atomic proposition � if the first symbol in � is
symbol � . A path � satisfies � � if � � (by deleting the first symbol in �) satisfies

�
. � satisfies

��� $ if there is a suffix
� � (by deleting the first � symbols) of � such that (1). the suffix satisfies $ and (2).

�
is consistently satisfied on each

� � with C - 	 ? � . Notice that our treatment of atomic propositions here is essentially equivalent to a standard LTL
definition [7] (though the appearance of ours is a little different). LTL is also capable of expressing many interesting
properties of a reactive system. For instance, the property “the pump is on for infinitely many times” can be expressed
as 	�

�to�������� (where
 � (eventually

�
) is an abbreviation for �tr�o q ���

, and 	 � (always
�

) stands for
�

 � .).
We use � ��� to denote the set of � -words that satisfy � . It is known that � ��� can be accepted by a Buchi automaton (an
� - 	�

� without the query tapes) with � �d9
 �
 � number of states, where � �@� is the length of �).

The LTL model-checking problem is to decide whether every � -behavior of an oracle Buchi automaton

- f � h� � � � �	���	� � � � �
satisfies a given LTL formula � ; i.e., every � -word accepted by - f � h� � � � �	����� � � � � satisfies � . Similar to the standard
LTL model-checking approach [20], we define

�-�� to be the Cartesian product of -�� and the Buchi automaton that
accepts �
���� . Clearly, - � is an oracle Buchi automaton with states � �%� -:� � 9
 �
 � . Observe that the LTL model-checking

problem is equivalent to check the emptiness of
�- f � h� � � � ���	��� � � � � . Hence, we have the following result.

Theorem 9. The LTL model-checking problem for oracle Buchi automata - f � h is testable iff the emptiness prob-
lem for them is testable. In particular, if the emptiness problem is � ��� -:� � � � -testable, then the LTL model-checking
problem (wrt an LTL formula �) is � ��� -:� � 9
 �
 � � � -testable.

Combining the three theorems obtained in this section with the testability results for the emptiness problem in the
previous subsections, we immediately establish some testability results on verifying oracle finite/Buchi automata. For
instance, the LTL model-checking problem is not testable for oracle Buchi automata in � - 	�

�

�����
(using Theorem 5).

However, when memoryless and single oracle Buchi automata are considered, the problem becomes testable (using
Theorem 6 (c)).

4 Conclusions

In this paper, we introduced oracle (finite) automata that are finite/Buchi automata augmented with oracles in some
classes of formal languages. We presented some testability results for the emptiness problem of oracle automata
associated with various classes of oracles. Moreover, we showed that some important verification problems (such as
reachability, safety, LTL model-checking, etc.) for oracle automata can be reduced to testing the emptiness of oracle

9

automata. Our theory results on the testability of oracle automata can find applications in the verification of a system
containing unspecified/partially specified components.

There are several possible directions for future work. For instance, the naive bounded testing script presented at
the beginning of Section 3.1 may not be efficient. In a future paper, we will present a more efficient testing script
using symbolic state exploration. On the other hand, one may also investigate oracle infinite-state automata instead
of oracle finite automata. That is to study testability of designs with unbounded variables that interact with partially
specified environments. One other possible work is to find ways to obtain a smaller query bound using, e.g., structural
information of the transition graph of an oracle finite automaton. We will also look at the possibility of hooking up
a real-world tester with a component-based design and performing model-checking through testing, using some of
the algorithms in this paper. The (worst-case) query bounds obtained in the paper are large. However, the worst-cases
may not show up in a specific application. In particular, even an internally complex environment may only have a
very simple pattern of observable (by the design or the OFA) behavior, which will significantly bring down the query
bounds.

References

1. P. Abdulla and B. Jonsson. Verifying programs with unreliable channels. Information and Computation, 127(2):91–101, 1996.
2. J. L. Balcazar, J. Diaz, and J. Gabarro. Structural Complexity II. Springer-Verlag, 1990.
3. Sergey Berezin, Armin Biere, Edmund M. Clarke, and Yunshan Zhu. Combining symbolic model checking with uninterpreted

functions for out-of-order processor verification. In Formal Methods in Computer-Aided Design, pages 369–386, 1998.
4. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In TACAS’99, volume 1579 of Lecture

Notes in Computer Science, pages 193–207. Springer-Verlag, 1999.
5. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: application to model-checking. In

CONCUR’97, volume 1243 of Lecture Notes in Computer Science, pages 135–150. Springer-Verlag, 1997.
6. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 1999.
7. E.A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science, pages 997–1072. Elsevier, 1990.
8. S. Ginsburg and E. Spanier. Semigroups, presburger formulas, and languages. Pacific J. of Mathematics, 16:285–296, 1966.
9. Patrice Godefroid, Robert S. Hanmer, and Lalita Jategaonkar Jagadeesan. Model checking without a model: an analysis of the

heart-beat monitor of a telephone switch using verisoft. In ISSTA’98, pages 124–133. ACM Press, 1998.
10. O. H. Ibarra. Reversal-bounded multicounter machines and their decision problems. Journal of the ACM, 25(1):116–133,

January 1978.
11. O. H. Ibarra and J. Su. On the containment and equivalence of database queries with linear constraints. In PODS’97, pages

32–43.
12. O. Kupferman, N. Piterman, and M. Y. Vardi. Pushdown specifications. In LPAR’02, volume 2514 of Lecture Notes in

Computer Science, pages 262–277. Springer, 2002.
13. O. Kupferman and M. Y. Vardi. An automata-theoretic approach to reasoning about infinite-state systems. In CAV’00, volume

1855 of Lecture Notes in Computer Science. Springer, 2000.
14. O. Kupferman and M.Y. Vardi. Module checking revisited. In CAV’97, volume 1254 of Lecture Notes in Computer Science,

pages 36–47. Springer, 1997.
15. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines - A survey. In Proceedings of the IEEE,

volume 84, pages 1090–1126, 1996.
16. M. Minsky. Recursive unsolvability of Post’s problem of Tag and other topics in the theory of Turing machines. Ann. of Math.,

74:437–455, 1961.
17. R. Parikh. On context-free languages. Journal of the ACM, 13:570–581, 1966.
18. Doron Peled. Model checking and testing combined. In ICALP’03, volume 2719 of Lecture Notes in Computer Science, pages

47–63. Springer, 2003.
19. Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box checking. In FORTE/PSTV’99, pages 225–240. Kluwer,

1999.
20. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification (preliminary report). In LICS’86,

pages 332–344. IEEE Computer Society, 1986.
21. G. Xie, C. Li, and Z. Dang. New Complexity Results for Some Linear Counting Problems Using Minimal Solutions to Linear

Diophantine Equations. In CIAA’03, volume 2759 of Lecture Notes in Computer Science, pages 163–175. Springer, 2003.

10

Appendix: Proofs not presented in the paper

Proof of Theorem 1.

Proof. Assume that � � � � � is computable. Let - � be a fixed PDA that accepts language � � . Suppose that - � has � �
states. Now, we are going to solve the following totalness problem:

Given: a PDA - ,
Question: � � - ��� � � ?

Assume that - has � states and without loss of generality, ��
 � � (otherwise one can add dummy states into -).
From this � , one computes � � � � � and makes sure that � � � � - � for each � � � � that is not longer than ��� � � �
(there are finitely many such � ’s). If this is true, then Question returns yes. Otherwise, Question returns no. According
to the definition of ��� , this indeed gives an algorithm to solve the totalness problem. This is a contradiction, since the
totalness problem is known undecidable. The theorem follows.

Proof of Theorem 2.

Proof. (a). Let �D���	���	��� �0� be any V oracles in 	

� � � � . For each � - � - V , we use 	 � to denote a 	

� � � � that
recognizes � � . Now, we construct a finite automaton 	 that simulates - � ��� f � h � �G� ���	����� � � � as follows. 	 does not
have an input. Whenever - reads an input symbol � , 	 guess an input symbol and makes sure that it is � . Whenever
- writes a symbol � to the � -th query tape, 	 runs 	 � on this symbol. Whenever - queries the current content of the
� -th query tape, 	 answers the query by checking whether 	 � is in an accepting state (notice that since 	 � is a 	�

� , a
negative query can be faithfully answered). Whenever - executes a transition that resets the � -th query tape, 	 brings
	 � directly to 	/� ’s initial state. In each case, 	 performs the same state transition as in - . Initially, 	 stays at the
initial state of - and each 	G� also stays at its own initial state. Clearly, - �

���
f � h � � � ���	��� � � � � accepts a nonempty

language iff 	 has a run that ends with an accepting state of - . Moreover, the run can be further restricted to be
not longer than the number � 	&� of states in 	 . Notice that within this length of the run, - can not query an oracle
with query strings longer than the length. Hence, the query bound is at most � 	2� , which can be easily calculated as
� � � � � � -:� � . Notice that this query bound does not depend on the particular choices of � � ’s and hence 	 � ’s. Therefore,
the -��

� �
f � h is � � � ��� � -:� � -testable.

(b). The result follows from the fact that a language in

� � � � is contained in 	�

� ��9 � � .
Proof of Theorem 3.

Proof. (a.1). Let - be an OFA that is single (i.e., V � �) and is associated with an oracle � ��� 	 � . - first guesses
a query string and writes it on the query tape. On a negative query result, - enters the accepting state. Clearly, -
is 1-query, and, - accepts a nonempty language iff � H� � � . Now - is not testable since, otherwise, the totalness
problem for context-free languages would become decidable.

(a.2). Let 	 be a deterministic two-counter machine where � and � are the counters and � is the set of states in
	 . Recall that a transition in 	 leads from � to � _ while updating the counters (i.e., incrementing/decrementing the
counters by 1 or testing for 0). We may use a string

�

� � � ��� � ��� �

to denote a configuration of 	 where � is the state and � � � are the counter values. Notice that in the string, � � is
the unary representation of value � (� number of 1’s). For the same configuration, we use

��
to denote the reverse

configuration �
�
�
� �
�
� �
�
�

A string is even-valid if it is in one of the following two forms for some . :�
� �
�
� ���	�

�
O �
�
O�� � (4)

or �
� �
�
� �	��� �

�
O
�
O�� � � (5)

11

such that each
�
� is a configuration with

�
� being the initial configuration (with the state being the initial state and

the counters being 0). Additionally, for each even �G- . ,
�
� ^

�
� � � ; i.e., there is a transition in 	 that leads from�

� to
�
� � � . The string is odd-valid if the additional condition is changed to be: for each odd �&- . ,

�
� ^

�
� � � .

Now, we use � ����� Z (resp. �����	�) to denote the set of even-valid (resp. odd-valid) strings. It is left to the reader to verify
that both � ����� Z and �
����� are in 	 � 	 � . Now, we define � to be the union of the following two languages: � ����� Z and
� � � 3 � � �����	�t� . Notice that, because of the additional suffix

�
appended after each odd-valid string, these two

languages are disjoint. Obviously, � is in � 	 � . We now construct a single OFA - that works as follows. - keeps
guessing a configuration and writes it to the query tape. We use

�
� to denote the result of the � -th guess (� starts from

0). In fact, when � is odd, - writes the reverse configuration
�� � instead of

�
� to the tape. Nondeterministically, -

decides to enter the accepting state. Before it does this, - first makes sure that the most recently written configuration
is an accepting configuration of 	 (i.e., the configuration contains the accepting state of). Then, - makes a positive
query to � . On a yes answer, - writes an additional symbol

�
to the query tape, and performs one more positive

query to � . A yes answer on this latter query leads - to accept. Notice that, on - ’s accepting, the content of the
query tape forms a halting execution sequence of configurations of 	 . Therefore, - accepts a nonempty language iff
	 enters the accepting state (i.e., halts). From here, the result follows, since it is undecidable to decide whether a two
counter machine halts [16], and, clearly, - is positive, 2-query, and single.

(a.3). Still, we let 	 be the two-counter machine in (a.2). We use �5� (resp. �/�) to denote � ����� Z (resp. �
�����).
Notice that both � � and �/� are in 	�� 	 � . Now, we construct an OFA - that has two query tapes and works similarly
as in (a.2): - keeps guessing a configuration and writes it to both tapes (for the � -th guess with � being odd, a reverse
configuration is written). Nondeterministically, - decides to enter the accepting state. To do this, - performs two
positive queries: querying the first tape to oracle � � and querying the second tape to oracle �D� . At this time, - also
makes sure that the most recently written configuration is an accepting configuration of 	 . Similar to (a.2), - accepts
a nonempty language iff 	 halts. The result follows, noticing that - is 2-query, positive, and the oracles are from
	�� 	 � .

(b.1). Let � be any prefix-closed oracle in � 	 � � � � . We use 	 _ to denote a � 	 � � � � that accepts � . Now we
construct a pushdown automaton 	 to simulate - �

�
�
f � h � � � as follows. Whenever - reads an input symbol � , 	

guess a symbol and makes sure that it is � . Whenever - writes a symbol � to the query tape, 	 runs 	 _ on this symbol.
Whenever - performs a query, 	 guesses and checks later one of the following two cases:

CASE 1. the current query is the last query before the next reset transition or before - accepts. In this case,
	 makes sure that 	 _ is in an accepting state (i.e., the query is positive),

CASE 2. the current query is not the last query before the next reset transition or before - accepts. In this
case, 	 assume that the query returns yes. This is valid, recalling that the oracle is prefix-closed.

Whenever - executes a reset transition, 	 brings 	G_ back to its initial state (and also cleans up the stack). On each
transition of - , 	 performs the same state transition, and additionally, 	 reads an input symbol � from 	 ’s input tape.
Initially, 	 stays at the initial state of - and each 	 _ also stays at its own initial state (with an empty stack). Notice
that 	 is indeed a pushdown automaton that only accepts unary words in the form of � 	 for some �
KC . Clearly,
-��

���
f � h � � � accepts a nonempty language iff 	 does. If 	 accepts a nonempty language, then what is the length of

the shortest word in the language? The length can be calculated as follows. The number of states in 	 is � �%� -:� � � � .
One may use a textbook technique to translate 	 into a context-free grammar

in Chomsky-Normal Form and to

calculate the desired length, which is bounded by 9 	 f

 �
)�� �)��

�
 h .2 Notice that 	 accepts a unary word � 	 iff - has

an accepting run on some input word where the length of the run is exactly � . Obviously, during the run, - does not
query the oracle with query strings longer than � . From here, we may conclude that 9 	 f

 �
)�� �)��

�
 h is the query bound
for - . Since the bound is independent of the choice of � , the result follows.

(b.2). The proof of (b.1) still works here since - , being 1-query, need not worry about CASE 2 in the proof of
(b.1).

(b.3). Similar to (b.2), one need not CASE 2 in the proof of (b.1).

2 Recall that a PDA each time pushes/pops at most one symbol.

12

(b.4). Let � be any oracle in 	�� 	 � � � � . We use 	 _ to denote a 	�� 	 � � � � that accepts � . Now we construct a
pushdown automaton 	 to simulate - �

�
�
�
f � h � � � . 	 works exactly as in (b.1) except when - performs a query.

In this case, 	 obtains the query result by inspecting whether the deterministic 	 _ is in an accepting state. The result
follows after the exact query bound analysis that was done in (b.1).

Proof of Theorem 4.

Proof. (a.1). Let 	 be a deterministic two-counter machine specified in the proof of Theorem 3 (a.2). That is, 	 has
two counters � and � , and, we let ���"�	����� � ��O , for some . , are the states in 	 . Without loss of generality, we assume
that � � is the initial state and it is not an accepting state. In particular, we define, for each state � � , � � � � to be the index
� . For the purpose of describing the OFA to be built, we introduce an alphabet � that contains the following symbols:� � � � � ��� � �

�� � �
� � � � � � � � � � � ��� � � �� � � �� � � �� � �

A word � in ��� corresponds to a pair of configurations, called the pre-configuration
�
� and the post-configuration�

_� , as follows. In the pre-configuration
�
� ,

– the state is �1� , where the index � is � �2� ��� 4 � �&� ��� (recalling that � �&� ��� is the number of symbols
� � appearing in

�);
– the value for counter � is � �&� ' � 4 � �&� ' � ;
– the value for counter � is � �2� 6 � 4 � �2� 6 � .

In the post-configuration
�
_� ,

– the state is � �	� , where the index � _ is � �&��
� � 4 � �&��
� � ;
– the value for counter � is � �&�
' � 4 � �&�
' � ;
– the value for counter � is � �2��
6 � 4 � �2�	
6 � .

Not every � will make two legal configurations; one has to further restrict that indexes � and � _ are in the range of
C �]� . , counter values in both of the configurations are nonnegative. We call this restriction as
�� ��Z�� .

Each instruction in 	 is to increment/decrement a counter by 1 or test for 0. For example, with respect to counter
� , an instruction can be in one of the following three forms:

(1) �.3 � 3 � � � �"� goto � _ ;
(2) �.3 � 3 � � 4 �"� goto � _ ;
(3) �.3 if � � C then goto � _ else goto � _ _ .

Instructions for counter � can be defined similarly. For each instruction � , one can formulate a restriction, called
�� ,
on � such that the pre-configuration

�
� reaches the post-configuration

�
_� after firing � . For instance, when � is in

Form (1), we require that

– both
�
� and

�
_� are legal configurations; i.e.,
�� ��Z�� is satisfied;

– the state in
�
� is � ; i.e., � �&� � ��4 � �&� � � � � � � . The state in

�
_� is � _ ; i.e., � �&��
� � 4 � �&��
� � � � � _ � ;

– the value for counter � in
�
_� is equal to the value for counter � in

�
� plus 1; i.e., � �&� ' � 4 � �&� ' � � � �

� �&�
' � 4 � �&�
' � ;
– the value for counter � does not change; i.e., � �&� 6 � 4 � �&� 6 � � � �&��
6 � 4 � �&�	
6 � .

When � in the other forms, similar
 � can be defined.
Clearly, each
 � defines a semilinear commutative language over � . Let R be � �����
 � , where � is the set of all

instructions in 	 . R is also a semilinear commutative language.
Now, we are ready to build the single OFA - . - is associated with the semilinear commutative oracle R and

works in rounds. We first sketch the ideas behind the following construction. At the beginning of each round, the
content � of - ’s current query tape already encodes the pre-configuration

�
� and the post-configuration

�
_� such

that
�
� ^

�
_� . That is,

�
� reaches

�
_� by firing some instruction in 	 ; i.e. � ��
 . The job of the round is to change

the tape content from � to � _ . The new content � _ also encodes
�
� � and

�
_� � such that

13

–
�
� � ^

�
_� � and,

–
�
� � is exactly

�
_� .

The first item can be ensured by performing a positive query to the oracle
 . The difficulty is how to ensure the second
item, which essentially creates an execution chain of configurations in 	 . Fortunately, the difference between

�
� and�

_� can be remembered by - and hence can be used to update
�
� to

�
_� . Below is the formal construction of - .

There are four phases in each round. In the first phase of the B -th round (B starts from 1), - guesses a state � M . Keep
in mind that the states in

�
� and

�
_� are � M � � and � M � � , respectively, where � is the current tape content. The job

of the second phase is to change the current tape content such that the states in the pre-configuration and the post-
configuration encoded by the new content are � M and � M � � , respectively. Formally, in the second phase, the following
activities are performed, assuming that � � and � � � are defined to be � � :

– if � � M �
 � � M � � � , then - writes � number of symbols
�� � to the query tape, where � � � � M � 4 � � M � � � ;

– if � � M �R? � � M � � � , then - writes � number of symbols
�� �

to the query tape, where � � � � M � � � 4 � � M � ;
– if � � M � � �
 � � M � � � , then - writes � number of symbols

� � to the query tape, where � � � � M � � � 4 � � M � � � ;
– if � � M � � �R? � � M � � � , then - writes � number of symbols

� �
to the query tape, where � � � � M � � � 4 � � M � � � .

An update � is a pair ��� � ��� � � where � � ��� � ��� �"�%C,� 4 � � . It indicates that, after the update, the amount of the
change to counter � (resp. �) is � � (resp. � �). The job of the third phase is to change the current tape content such
that the new counter values in the post-configuration encoded by the new content are the result of a guessed update on
the old counter values in the post-configuration encoded by the old content. Formally, in the third phase, - guesses
an update � M and does the following:

– if � M� � � , then - writes a symbol
�� � to the query tape;

– if � M� � 4 � , then - writes a symbol
�� � to the query tape;

– if � M� � C , then - writes nothing.

The job of the fourth phase is to change the current tape content such that the new counter values in the pre-
configuration encoded by the new content are the result of the update performed in the last round on the old counter
values in the pre-configuration encoded by the old content. Formally, in the fourth phase, (we define � � � � C2��C �)

– if � M � �� � � , then - writes a symbol � � to the query tape;
– if � M � �� � 4 � , then - writes a symbol � � to the query tape;
– if � M � �� � C , then - writes nothing.

At the end of the fourth phase, - makes a positive query to the oracle with the current tape content and then starts a
new round. Nondeterministically at the end of some round, - guesses that 	 halts. - accepts after making sure that
the state � M guessed in the round is the accepting state of 	 .

Since 	 is deterministic, for any word � , � ��
 implies that there is a unique � � � satisfying � ��
 � . From this
property, it is not hard to show that - accepts a nonempty language iff 	 has a halting execution; i.e., 	 halts. The
result follows.

(a.2). Still, let 	 be a deterministic two-counter machine specified in the proof of (a.1). Similar to what we have
mentioned in the proof of Theorem 3 (a.2), a configuration

�
of 	 can be specified as a string, denoted by �

�
� ,

� � � � � �
�
� �
�
�

In above,
� � is to encode the state � � , �.- �=- . , and, � � and � � are for the counter values. Additionally, we may use

the following string, denoted by �
�
� , � �� � � �� � �

�� � �
to represent the same configuration

�
. Similar to what we have in (a.1), one can construct from 	 a semilinear

commutative language R (over alphabet �
�
� � � � �

�� � � � �� � � � �� �) such that, for any two configurations
�

and
�
_ , the

string �
�
� �
�
_ � �
 iff

� ^ �
_ .

We now construct an OFA - associated with two oracles (both are R) to simulate 	 . Initially, - writes the initial
configuration of 	 to the first query tape, in the form of �

�
� � . Then, - works in rounds. The B -th round (B starts from

1) is to perform the following two items:

14

– - guesses a configuration
�
M . Then - writes �

�
M � to the first query tape. In parallel to this, - also writes �

�
M �

to the second query tape.
– - performs a positive query with the content of the first query tape and right after this, - erases the first tape (so
- is memoryless).

The above description only works when B is odd. In the case when B is even, one needs to replace “first” with “second”
(and vice versa) in the description of the two items. Nondeterministically at the end of some B -th round, - guesses
that it is the time to accept. Then - makes sure that the state encoded in

�
M is the accepting state of 	 . Clearly, -

accepts a nonempty language iff 	 has a halting execution; i.e., 	 halts. The result follows.
(b.1). Let - be a � -query 	�

�

�����
f � h . Without loss of generality, we assume that - makes exactly � queries

in an accepting run. Also, we assume that the queries are made to oracles � � �����	��� �
 , respectively. Let 	 � �	����� � 	

be reversal-bounded DCMs (whose input has an end marker) with characteristic � and recognizing � � ���	��� � �
 , re-
spectively. We now build another reversal-bounded NCM 	 to simulate - . 	 starts with the initial state of - and
simulates - ’s moves. When - reads the input tape, 	 does nothing to its own input. When - write a symbol to a
blank query tape, 	 makes a guess on one of the following two cases:

– there is a query to oracle � � that will be performed on the tape before the next reset (if any) happens. In this case,
	 starts running 	 � on every symbol that is written on the tape subsequently until - indeed queries. For each
such write, 	 reads a symbol � from its own input tape. At the time of querying, checking whether 	 � enters an
accepting state gives the query answer.

– there will not be a query to oracle � � that will be performed on the tape before the next reset (if any) happens. In
this case, 	 does nothing on every write to this tape until the tape is reset.

Notice that, on every move of - , 	 faithfully simulates - ’s state transitions. 	 accepts when - enters an accepting
state. Clearly, 	 accepts a nonempty language iff - does. In particular, 	 only accepts a unary language. A word � 	
is accepted by 	 iff - has a successful run on some input word where query strings are not longer than � . Since 	
is an NCM, to estimate � , it is sufficient for us to calculate a characteristic for 	 , which is a product of 	 � ���	��� � 	
 ,
along with the finite-state transition graph of - . One can show that a characteristic of 	 , and hence a query bound for
- , is � � �
 �
 �
 * � .

(b.2). Suppose � � ��� � ���	��� � �
 � . Let � be a prefix closed language in PRQTS � � � and accepted by a reversal-bounded
DCM 	 with characteristic � . Observe that, from the description of 	 , one can effectively compute a finite number of
“corner points”

� � � �����	��� �
 �
such that each � � is in �1C,�	���������#� , and � is the union of all � � 3 � �&� ' ,{- � � � �D- � - � � . This gives the fact that � is
regular. Hence, the result follows from Theorem 2. However, since we currently are unable to give a good estimation
of the sizes for the corner points, the exact query bound for (b.2) is unknown.

(b.3). Since - is memoryless and single, - resets the query tape after each query. Now, we define another - _
that is exactly as - but starts from a state � (in -) with blank query tape and ended with a reset right after a query
(this is the only query that - _ performs). Clearly, the maximal query bound for this - _ (among all �) governs the
desired query bound for - . Notice that - _ is 1-query, the result follows from (b.1).

Proof of Theorem 6.

Proof. (a). We need only to prove the first part of (a). Let � � �	����� � � � be any V oracles in 	�

� � � � . For each �D- � - V ,
we use 	/� to denote a 	

� � � � that recognizes �G� . Now we construct an FA 	 that simulates - �

���
f � h � � � ���	��� � � � � .

Let � be any fixed state of - . 	 works almost the same as the 	 in the proof of Theorem 2 (a). The difference is that,
during 	 ’s simulation on - , 	 nondeterministically remembers point when - is at state � . Then, 	 continues the
simulation and makes sure that, after the point, - has read at least one input symbol and has passed the accepting
state for at least once. At this time, 	 still continues the simulation and, nondeterministically, it guesses that it is time
to accept. At this moment, it makes sure that the current states of - and all 	 � ’s are exactly the same as those at the
remembered point. It is not hard to show that 	 accepts a nonempty language for some � iff - �

���
f � h� � �G�����	��� � � � �

does. The result follows immediately, since 	 has � � � ��� � � -:� � states.

15

(b.1). Since -
�
�
�
f � h� is positive, single and 1-query, on an accepting � -run, - � does not perform any queries

after certain point when an accepting state is reached. Before the point, - � behaves like the 1-query OFA - �
�
�
f � h .

After the point, - � behaves like a Buchi automaton (without accessing to the oracle). Hence, it suffices to consider
the query bound for testing the emptiness of the 1-query OFA, shown in Theorem 3 (b.2).

(b.2). Without loss of generality, we assume that an accepting � -run of - � queries the oracle for infinitely many
times. One can also show that, on the run, there are two points such that at both points - � is at the same state and
is right after a reset (resulting from a query since -�� is memoryless). Furthermore, in between these two points, the
run passes an accepting state and consumes at least one input symbol. In fact, the existence of the two points is the
iff-condition on whether the � -run is an accepting run. Checking the existence can be reduced to the case of Theorem
3 (b.3). The result follows.

(b.3) Let � be an oracle in 	 � 	 � � � � and - � be associated with � . On an accepting � -run of the - � , there are
two cases to consider:

Case 1. there are infinite number of reset transitions on the � -run. Recall that each reset makes the query tape
blank. The existence of such an � -run can be fully decided by answering the following question for each pair of states
� and � _ in - : Can - start from state � with blank query tape and end with state � _ also with blank query tape during
which at least one input symbol is read and an accepting state is passed? The questions can be answered with a query
bound

9 	 f

 �
) � �) �

�
 h (6)

using Theorem 3 (b.4).
Case 2. there are a finite number of reset transitions on the � -run. The � -run can be split into two parts. The first

part is from the initial state � � to a state, say � , right after the last reset transition. The second part, starting from �
and with a blank query tape, is the suffix of the � -run right after the last reset transition. The existence of the first
part is testable shown in (6) using Theorem 3 (b.4). Notice that - � does not reset on the second part, denoted by � .
We further assume that on � , - � writes and queries infinitely many times on the query tape. Otherwise, it is easy to
show that the existence of � is testable in (6). Without loss of generality, we let � be � � . With these assumptions, � is
essentially an accepting � -run of - � (with oracle �) on which the query tape grows to infinity and an accepting state,
say � � , repeats infinitely often. As the result of � , we use � to denote the � -word that occupies the query tape. Let 	
be a 	�� 	 � � � � that accepts � . Since 	 is deterministic, we may run 	 along with the infinitely many write transitions
performed during � : a query can be faithfully answered by looking at whether 	 is at its accepting state. One can also
observe the stack behavior during this infinite run of 	 and pick infinitely many points on the run where the stack stays
lowest (i.e., the stack height beyond the point is not lower). In particular, we have the following Property:

There must be two points �z� and � � on � such that all of the following conditions are satisfied:
– At the two points, the states of - are the same;
– From point �z� to point � � on � , - has passed � � at least once, has read at least one input symbol, has

queried the oracle for at least once, and has written at least one symbol on the query tape;
– The state (resp. top symbol of the stack) of 	 at point � � is the same as the state (resp. top symbol of the

stack) of 	 at point � � ; (recalling that 	 runs along -)
– From point �z� to point � � , 	 does not pop the stack content underneath the top symbol at point � � .

In fact, one can also show that the Property implies the existence of � since the segment from � � to � � forms a loop.
Therefore, testing the existence of � is equivalent to testing the Property. In the Property, the query tape content up
to point � � can be accepted by a PDA with � ��� -:� � � � states by composing 	 with - properly. Using the technique
presenting in the proof of Theorem 3 (b.1), one can show that the Property as well as the existence of � is testable
shown in (6).

The result follows by combining Case 1 and Case 2.
(c.1). Since -�� is � -query, after certain point on an � -run, - does not perform queries anymore. The result

follows easily from Theorem 4 (b.1).
(c.2). The result follows from a similar argument made in the proof of Theorem 4 (b.2) and then from Theorem 6

(a).
(c.3). Similar to (b.2) except that we use Theorem 4 (b.3) instead of Theorem 3 (b.3).

16

