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Abstract. We generalize the traditional definition of a multicounter machine
(where the counters, which can only assume nonnegative integer values, can be
incremented/decremented by 1 and tested for zero) by allowing the machine the
additional ability to increment/decrement each counter Ci by a nondeterministi-
cally chosen fractional amount δi between 0 and 1 (δi may be different at each
step). Further at each step, the δi’s of some counters can be linearly related in that
they can be integral multiples of the same fractional δ (e.g., δ1 = 3δ, δ3 = 6δ).
We show that, under some restrictions on counter behavior, the binary reachability
set of such a machine is definable in the additive theory of the reals and integers.
There are applications of this result in verification, and we give an example in
the paper. We also extend the notion of “semilinear language” to “dense semilin-
ear language” and show its connection to a restricted class of dense multicounter
automata.

1 Introduction

Dense counters are necessary in modeling many control systems and real-time applica-
tions. Their importance has already been noticed in model-checking. One of the focuses
during the past ten years is the study of hybrid automata [2,13] where dense counters
follow some complex continuous flow, typically characterized by differential equations,
and interact with bounded discrete control variables. Decidable results on reachability
has been obtained for many forms of hybrid automata (e.g., timed automata [3], multirate
automata [2,18], initialized rectangular automata [19]). On the other hand, linear hybrid
automata in general are undecidable for reachability [19]. In fact, the undecidability
remains even for timed automata augmented with one stop watch [19].

Another focus approaches dense counters in a different way. Ultimately, in the view
of an external observer, the evolution of a system containing dense counters in X can
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be characterized by a formula T (s,X, s′,X′), whose meaning is roughly: the system
transits from control state s to s′ while changing the counters from X to X′. In other
words, T characterizes a one-step transition of the system, called a dense counter system.
A fundamental question is then: what kinds of T would make the transitive closure T ∗

computable? Many model-checking queries (e.g., reachability) relies on the answer.
Some results studying special forms of T and its (restricted) transitive closure can be
found in e.g., [6,7,20,5,12].

Recently, it has been shown that some fundamental results in automata theory (such
as [14,15,8]) on some restricted discrete counter machines are quite useful in studying
various model-checking problems for infinite state systems containing discrete counters
(e.g., [9,11] etc.). Following this line, we believe that developing a fundamental theory
(which does not exist) in the view of automata theory for these machines but with dense
counters should be equally useful for studying dense counter systems. This automata-
theoretic approach is different from those taken in [6,20,5,12] mentioned earlier. As a
starting point, in this paper we will develop a preliminary automata theory for dense
counter machines.

We define a dense counter machine M as a finite state machine augmented with a
number of dense counters. The counters can assume nonnegative real values. At each
step, each counter Ci can be incremented/decremented by 0, 1 or a nondeterministically
chosen fractional amount δi between 0 and 1 (δi may be different at each step). We
will see that without loss of generality, we can assume that at a single step, for all i,
the δi’s are of the same amount δ (but still the δ may be different between steps). This
δ-increment/decrement is the essential difference between dense and discrete counters.
The machine M can also test a counter against 0 (= 0?, > 0?). Since counters are
assumed nonnegative,M crashes if a counter falls below 0. (Note that since the counters
can be tested against 0, the system can actually check if it will crash and if so enter a
distinguished state. So the assumption of “crashing” can be made w.l.o.g.) Given two
designated states sinit and sfinal inM, we study the possibility of computing the transitive
closure “�", called the binary reachability, of M:

X � X′ iff X at sinit reaches X′ at sfinal in M.

On the negative side, even the state reachability problem (whether sinit reaches sfinal,
or equivalently, whether � is empty) is in general undecidable. This is because a two
(discrete) counter machine can be simulated byM in which no δ-increments/decrements
are made. But, what if M only performs δ-increments/decrements (along with tests
against 0)? In this case, the undecidability remains even when there are only four dense
counters. Interestingly, still in this case, the state reachability problem becomes decidable
when there are two counters. The case for three counters is open.

On the positive side, we will show some restricted versions of M whose binary
reachability is definable in the additive theory of the reals and integers. The theory is
decidable, for instance, by the Büchi-automata based decision procedure presented in [4]
and a quantifier elimination technique in [21]. This will allow us to automatically verify
some safety properties for the restricted M: Are there X and X′ such that I(X,X′) ∧
X � X′? where I is definable in the additive theory of the reals and integers (e.g.,
x1 + x′

1 − 3x2 > 4∧ x3 − x′
2 is an integer ∧x′

2 − x1 < 7). Furthermore, some liveness
properties (e.g., infinitely ofteness [11]) can also be automatically verified:
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Are there X0, · · · ,Xn, · · · such that X0 � X1 � · · · � Xn � · · ·, I(X0)
holds, and, there are infinitely many n for which P (Xn) holds?

where I and P are definable in the additive theory of the reals and integers.
In this paper, we first consider a restricted version of M in which all the dense

counters are monotonic (i.e., never decreasing). Then we consider the case when all
the dense counters are reversal-bounded (the alternations between nondecreasing and
nonincreasing are bounded by a fixed integer, for each counter). The concept of “reversal-
boundedness" is borrowed from its counterpart for discrete counters [14]. It is not too
difficult to prove that in these cases � is definable in the additive theory of the reals
and integers. The proof becomes more difficult when M is further augmented with an
unrestricted dense counter (called a free counter). In the rather complex proof, we use a
“shifting" technique to simplify the behavior of the free counter.

The proofs can be easily generalized to the cases when counters inM are of multirate.
That is, a nonnegative integer rate vector (r1, · · · , rk) is now associated with a counter
instruction such that, for each counter xi (1 ≤ i ≤ k), an increment/decrement by 1
now corresponds to an increment/decrement by ri; an increment/decrement by δ now
corresponds to an increment/decrement by ri · δ. Also note that, in an instruction, the
δ need not necessarily be the same for each counter. For instance, one may have an
instruction by associating δ1 with x1, x2 and δ2 with x4, x5 as follows:

s: if x1 > 0 then for some 0 < δ1, δ2 < 1,
x′

1 = x1 + 3 · δ1, x′
2 = x2 − 4 · δ1, x′

3 = x3 + 5 · 1,
x′

4 = x4 − 6 · δ2, x′
5 = x5 − 7 · δ2,

goto s′.
The automata-theoretic approach taken in this paper is new and the decidable results

for the transitive closure computations on the counter systems are incomparable to pre-
viously known results (e.g., [6,20,5,12]). The models, e.g., the reversal-bounded dense
counter machines with a free counter, are incomparable with some restricted and decid-
able models for hybrid systems (e.g., timed automata [3], initialized rectangle automata
[19], etc). In the future, we plan to use the results in this paper as a fundamental tool
to reason about a broader class of dense counter systems. For instance, we may study a
subclass of timed automata whose accumulated delays [1] are decidable over a formula
of the additive theory of reals and integers. Our models are convenient in modeling
accumulated delays which are simply monotonic dense counters. We can also use the
model to specify some interesting systems with multiple dense/discrete counters.

Consider, e.g., the following version of the traditional producer-consumer system.
A system may produce, consume or be idle. When in state produce, a resource is pro-
duced, which may be stored and later consumed while in state consume. The system
may alternate between production and consumption states, but it may not produce and
consume at the same time. Production may be stored, and used up much later (or not
used at all). The novelty is that the resource may be a real number, representing for
instance the available amount of a physical quantity (e.g., fuel, water or time).

This system may be easily modeled by a finite state machine with a free purely-dense
counter, where the resource is added when produced or subtracted when consumed.
Since the free counter may never decrease below zero (e.g., it can tested against 0),
the system clearly implements the physical constraint that consumption must never
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exceed production. Using a dense-counter, there is an underlying assumption that a
continuous variable, such as our resource, changes in discrete steps only; however, this
is acceptable in many cases where a variable actually changes continuously, since the
increments/decrements may be arbitrarily small.

We note that decidable versions of timed or hybrid automata do not appear to be able
to specify the producer-consumer example above (even though we cannot rule out that
some other decidable model can). In timed automata, when the resource is interpreted
as time, the amount of production (respectively, consumption) is equivalent to the “total
accumulated time spent while in state produce (respectively, consume)". Implementing
the constraint production − consumption ≥ 0 is then tantamount to implementing a
stop watch, which is known to lead to undecidability of the model. In hybrid automata,
a continuous variable for production − consumption must have different flow rates
in state produce (nonnegative) and in state consume (nonpositive). A rate change, at
least for the decidable class of initialized rectangular automata, forces the variable to be
reinitialized to a predefined value after a state change: the value a variable had in state
produce is lost in state consume. Adding more variables does not appear to solve the
problem, either, since no variable comparison is possible.

The dense-counter model of the example can be easily adapted to more complex
situations. For instance, suppose that a constraint on the system is that total production
is at most twice the amount of consumption. This can be described by adding two
reversal-bounded dense counters, namely p, c, to store the total production (p) and twice
the total consumption (c). For the sake of clarity, a nondeterministic version of the
producer-consumer model M is shown in Figure 1, in which counter count denotes
the difference between the total production and the total consumption. Each arc has a
boolean guard and may specify an increment or decrement that is a multiple of a δ,
0 < δ < 1, for each counter count, p, c. Recall that δ may be different at eah step. If
no variation is specified, then the counter stays. When in the (initial) state idle, M may

true,∃0 < δ < 1

p := p + δ
count := count + δ

count > 0,∃0 < δ < 1
count := count − δ
c := c + 2δ

c := c − δ
p := p − δ

true, ∃0 < δ < 1

produce

consume

end

check

idle

p > 0

true

true

p = 0

count > 0

Fig. 1. A producer-consumer system M.

start producing or, nondeterministically, may go into the checking state if p > 0. While
producing (in state produce), counter p is increased together with count (hence, of the
same amount). Eventually consumption starts: counter c is increased in state consume of
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the double amount used to decrease count. ThenMmay go back to the idle state. Notice
that count may never go below 0, otherwise M crashes (alternatively, count could be
tested against 0, but crashing is ruled out since it leads anyway to a nonaccepting path).

When finished producing and consuming, M goes into state check, where it decre-
ments both p and c until p goes to 0. At this time, it moves to the final state end. Hence,
if the value of c is not greater or equal to p, M crashes. Nondeterminism allows the
automaton to guess a sequence of decrements δ that leads to p = 0 and hence to the
final state end. To verify that the system really produces at most twice than it consumes,
it is enough to check whether M may reach state end. Similar linear bounds, such as
“total production should not exceed consumption more than 5 per cent", can be dealt
with analogously.

A more sophisticated verification capability is given by the fact that the binary
reachability �M is not only computable but may be represented with a formula in
the additive theory of reals and integers (hence, decidable). For instance, consider the
property that the system may be implemented with finite storage (i.e., count is bounded).
This can be expressed by the following decidable formula:

∃y > 0 ∀s∀X
(
(idle,0) �M (s, X) ⇒ X(count) ≤ y

)

whose meaning is that there is a bound y > 0 such that, starting in idle state with all
counters equal to 0, M can only reach configurations (s,X) where the value of count
in X, X(count), is not greater than y.

In the simple case of Figure 1, the property is obviously violated since for instance
production in state produce may go on unbounded without consumption.

Due to space limitation, proofs are omitted in the paper. The full version of the paper
is accessible at www.eecs.wsu.edu/˜zdang.

2 Preliminaries

A dense counter is a nonnegative real variable. A dense multicounter machine M is a
finite state machine augmented with a number of dense counters. On a move from one
state to another, M can add an amount of 0, +1,−1, +δ, or −δ for some nondetermin-
istically chosen δ, with 0 < δ < 1. On a move,M can also test a counter against 0 while
leaving all the counters unchanged. Formally, we have the following definitions. A dense
counter changes according to one of the following five modes: stay, unit increment, unit
decrement, fractional increment, fractional decrement. We use X to denote a vector of
values for dense counters x1, · · · , xk. In the sequel, we shall use X(xi) to denote the
component for xi in X. A mode vector is a k-tuple of modes. There are 5k different
mode vectors. Given a mode vector m = (m1, · · · , mk) and an amount 0 < δ < 1, we
define

Rm,δ(X,X′)

as follows: Rm,δ(X,X′) iff for each 1 ≤ i ≤ k, X(xi) ≥ 0 and X′(xi) ≥ 0, and each
of the followings holds:

– if mi is stay, then X′(xi) = X(xi);
– if mi is unit increment, then X′(xi) = X(xi) + 1;
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– if mi is unit decrement, then X′(xi) = X(xi) − 1;
– if mi is fractional increment, then X′(xi) = X(xi) + δ;
– if mi is fractional decrement, then X′(xi) = X(xi) − δ.

We use
Rm(X,X′)

to characterize the relationship between the old values X and the new values X′ un-
der the mode vector; i.e., Rm(X,X′) is true iff there exists some 0 < δ < 1 such
that Rm,δ(X,X′) holds. Notice that when m does not contain any mode of fractional
increment/decrement, the amount δ is irrelevant.

Formally, a (nondeterministic) dense counter machine M is tuple

〈S, {x1, · · · , xk}, sinit, sfinal, T 〉, (1)

where S is a finite set of (control) states where sinit and sfinal are the initial and the
final states. x1, · · · , xk are dense counters. T is a set of transitions. Each transition is
a triple (s,m, s′) of a source state s, a mode vector m, and a destination state s′. A
configuration of M is a pair (s,X) of a state and (nonnegative) dense counter values.
We write

(s,X) m−→ (s′,X′),

called a move of M, if (s,m, s′) ∈ T and Rm(X,X′). As usual, (s,X) reaches
(s′,X′), written (s,X) � (s′,X′), if there are states s0 = s, s1, · · · sn = s′, mode
vectors m1, · · · ,mn, counter values X0 = X,X1, · · · ,Xn = X′, for some n, such that

(s0,X0) m1→ (s1,X1) · · · mn→ (sn,Xn). (2)

The set of all pairs (X,X′) satisfying (sinit,X) � (sfinal,X′) is called the binary
reachability of M. M can be thought of as a transducer, which is able to generate X′

from X whenever (X,X′) is in the binary reachability.
Before proceeding further, some more definitions are needed.M is monotonic (resp.

purely dense, purely discrete) if, in every transition (s,m, s′) in T , the mode vector m
does not contain any mode of unit/fractional decrement (resp. unit increment/decrement,
fractional increment/decrement). Let r be a nonnegative integer. A sequence of modes
is r-reversal-bounded if, on the sequence, the mode changes from a unit/fractional in-
crement (followed by 0 or more stay modes) to a unit/fractional decrement and vice
versa for at most r number of times. On an execution in (2) from s to s′, counter xi is
r-reversal-bounded if the sequence of modes for xi is r-reversal-bounded. Counter xi

is reversal-bounded in M if there is an r such that, on every execution from sinit to
sfinal, xi is r-reversal-bounded. M is a reversal-bounded dense multicounter machine
if every counter in M is reversal-bounded.M is a reversal-bounded dense multicounter
machine with a free counter if all but one counters in M are reversal-bounded. The no-
tion of reversal-boundedness is generalized from the same notion for discrete counters
[14]. Also notice that a dense counter in M can be effectively restricted to be reversal-
bounded, since one may use additional control states to remember each reversal and not
to go over the bound. A discrete multicounter machine is a dense multicounter machine
that is purely discrete and whose counters start from nonnegative integer values. Sim-
ilarly, one can define a monotonic discrete multicounter machine, a reversal-bounded
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discrete multicounter machine, and a reversal-bounded discrete multicounter machine
with a free discrete counter (NCMF).

Let m and n be positive integers. Consider a formula
∑

1≤i≤m

aixi +
∑

1≤j≤n

bjyj ∼ c,

where each xi is a nonnegative real variable, each yj is a nonnegative integer variable,
each ai, each bj and c are integers, 1 ≤ i ≤ m, 1 ≤ j ≤ n, and∼ is =, >, or≡d for some
integer d > 0. The formula is a mixed linear constraint if ∼ is = or >. The formula is
called a dense linear constraint if ∼ is = or > and each bj = 0, 1 ≤ j ≤ n. The formula
is called a discrete linear constraint if ∼ is > or =, and each ai = 0, 1 ≤ i ≤ m. The
formula is called a discrete mod constraint, if each ai = 0, 1 ≤ i ≤ m, and ∼ is ≡d for
some integer d > 0.

A formula is definable in the additive theory of reals and integers (resp. reals,
integers) if it is the result of applying quantification (∃) and Boolean operations (¬ and∧)
over mixed linear constraints (resp. dense linear constraints, discrete linear constraints);
the formula is called a mixed formula (resp. dense formula, Presburger formula). It is
decidable whether a mixed formula is satisfiable (see [21] for a quantifier elimination
procedure for mixed formulas).

Theorem 1. The satisfiability of mixed formulas (and hence of dense formulas and
Presburger formulas) is decidable.

A set of nonnegative real/integer tuples is definable by a mixed formula with free vari-
ables: a tuple is in the set iff the tuple satisfies the formula. Similarly, a set of nonnegative
real (resp. integer) tuples is definable by a dense (resp. Presburger) formula if a tuple is in
the set iff the tuple satisfies the formula. One may have already noticed that, for the pur-
pose of this paper, our definition of mixed/Presburger/dense formulas is on nonnegative
variables.

Consider a mixed formula R(x1, · · · , xn, y1, · · · , ym). By separating each dense
variable xi into a discrete variable 
xi� for the integral part and a dense variable �xi� for
the fractional part, R(x1, · · · , xn, y1, · · · , ym) can always be written into the following
form (after quantifier elimination), for some l: R1 ∨ · · · ∨ Rl, where each Ri is in the
form of

∃z1, · · · , zn, t1, · · · , tn. x1 = z1 + t1 ∧ · · · ∧ xn = zn + tn∧

P (z1, · · · , zn, y1, · · · , ym) ∧ Q(t1, · · · , tn), (3)

where z1, · · · , zn are (nonnegative) discrete variables, and t1, · · · , tn are dense variables
(defined on the interval [0, 1)). This representation can be easily obtained from [21].
In the representation, P is a conjunction of discrete linear constraints and discrete mod
constraints and Q is a conjunction of dense linear constraints. For the given R, we define
J(N, X1, · · · , Xn, Y1, · · · , Ym) if there are xi

1, · · · , xi
n, yi

1, · · · , yi
m, for all 1 ≤ i ≤ N ,

such that for all 1 ≤ i ≤ N , R(xi
1, · · · , xi

n, yi
1, · · · , yi

m) and

X1 =
∑

1≤i≤N

xi
1, · · · , Xn =

∑

1≤i≤N

xi
n, Y1 =

∑

1≤i≤N

yi
1, · · · , Ym =

∑

1≤i≤N

yi
m.

Notice that all the above variables are nonnegative.



100 Gaoyan Xie et al.

Lemma 1. J(N, X1, · · · , Xn, Y1, · · · , Ym) is definable by a mixed formula.

Let R1, · · · , Rk be mixed formulas over n dense variables and m discrete vari-
ables. M is a monotonic multicounter machine with discrete counters y1, · · · , ym and
dense counters x1, · · · , xn. All the counters start from 0. M moves from its initial state
and ends with its final state. On a move from one state to another, M increments its
counters (x1, · · · , xn, y1, · · · , ym) by any amount (δ1, · · · , δn, d1, · · · , dm) satisfying
Ri(δ1, · · · , δn, d1, · · · , dm) – here we say Ri is picked. The choice of i is given in the
description of M and only depends on the source and destination state of the move. We
define R(X1, · · · , Xn, Y1, · · · , Ym) iff (X1, · · · , Xn, Y1, · · · , Ym) are the counter values
when M reaches the final state.

Theorem 2. R(X1, · · · , Xn, Y1, · · · , Ym) is definable by a mixed formula.

The following results [9] are also needed in the paper.

Theorem 3. The binary reachability for a reversal-bounded discrete multicounter ma-
chine with a free counter is Presburger. Therefore, the same result also holds for a
monotonic discrete multicounter machine and a reversal-bounded discrete multicounter
machine.

3 Decidability Results

In this section, we show a decidable characterization for various restricted versions of
dense multicounter machines. The following two results can be shown using Theorem
2.

Theorem 4. The binary reachability of a monotonic dense multicounter machine is
definable by a mixed formula.

Theorem 5. The binary reachability of a reversal-bounded dense multicounter machine
is definable by a mixed formula.

Now, we consider a dense multicounter machine M with k reversal-bounded coun-
ters x1, · · · , xk and a free counter x0, in which sinit and sfinal are two designated states.
We further assume that M satisfies the following conditions:

– (Cond1) On any execution sequence in M from sinit to sfinal, the reversal bounded
counters are nondecreasing (i.e., never reverse),

– (Cond2) On any execution sequence in M from sinit to sfinal, each move will
change the free counter x0 by a fractional decrement, a fractional increment, a unit
decrement, or a unit increment (i.e., the free counter can not stay),

– (Cond3) On any execution sequence in M from sinit to sfinal, the initial and ending
values of the free counter are both 0, and in between, the free counter remains
positive (> 0).

We first show a binary reachability characterization of M under the three conditions.
The proof of the result is rather complex. It uses a technique of shifting the free counter
values so that the free counter behavior is simplified.
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Lemma 2. The binary reachability of reversal-bounded dense multicounter machines
with a free counter, satisfying the above three conditions, is definable by a mixed formula.

In fact, the three conditions in Lemma 2 can be completely removed, using Theorem
2 and Lemma 2.

Theorem 6. The binary reachability of reversal-bounded dense multicounter machines
with a free counter is definable by a mixed formula.

Now we generalize M to have multirate dense counters. The counters are multirate
if a move in M, in addition to the mode vector m, is further associated with a k-ary
positive integer vector r = (r1, · · · , rk). The vector r is called a rate vector. The move
can bring counter values from X to X′ whenever Rm(X,X′′), where X′′ is defined as
follows, for each 1 ≤ i ≤ k,

X′′(xi) =
X′(xi) − X(xi)

ri
.

For instance, suppose k = 2 and m is (fractional increment, fractional decrement). Let
r = (4, 5). Then the effect of the move is to increment x1 by 4δ and decrement x2 by
5δ, for some 0 < δ < 1.

One can show that Theorem 6 (and hence Theorem 4 and Theorem 5) still holds
even when the dense counters are multirate, using the following ideas. Let M be a
reversal-bounded dense multicounter machine with a free counter. Let x0, x1, · · · , xk

be all the counters in M (x0 is the free counter). Suppose that the reversal-bounded
counters x1, · · · , xk are monotonic (the technique can be easily generalized). We now
construct another M′ to simulate M as follows. In M′, each xi, 1 ≤ i ≤ k, is replaced
with many monotonic counters, namely, yi

m, for all mode vectors m. WhenM performs
an instruction with mode vector m and a rate vector (r0, r1 · · · , rk), M′ performs the
same instruction, repeated for r0 times, on counters (x0, y

1
m, · · · , yk

m) with mode vector
m but with rate (1, · · · , 1) (i.e., single rate instead of multirate). Let 1 ≤ i ≤ k. What
is the relationship between xi in M and all the yi

m in M′? We use δi to denote the net
change to counter xi after M performs the instruction. We use δi

m to denote the net
change to counter yi

m after M′ performs the simulated instructions. Clearly,

δi =
ri

r0
· δi

m.

Similarly, we use ∆i to denote the net change to counter xi on a path of M, and use
∆i

m to denote the net change to counter yi
m on the simulated path of M′. One can show

∆i =
ri

r0
·
∑

m

∆i
m.

Since M′ preserves the free counter x0, and counters in M′ is with single rate, from
Theorem 6, we can show,

Theorem 7. The binary reachability of multirate reversal-bounded dense multicounter
machines (with a free counter) is definable by a mixed formula.
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So far, we have only focused on dense multicounter machines with at most one free
counter. Now considerM with multiple free counters. Suppose that all the counters start
from 0 in M. The state reachability problem for M is: is there an execution path in
M from the initial state to the final state? Obviously, if M contains two counters, the
problem is undecidable. This is because, when the two dense counters only implement
discrete increments/decrements, M is a Minsky machine [17] (a two (discrete) counter
machine). A more interesting case is when M contains purely dense free counters only;
i.e., the counters do not perform any discrete increments/decrements. The following
theorem states that the state reachability problem is undecidable even when M has only
four purely dense free counters.

Theorem 8. The state reachability problem for purely dense multicounter machines is
undecidable. The undecidability remains even when there are only four purely dense
free counters.

Turning now to the case when M has only two purely dense free counters, we have
the following decidable result. The case when there are three counters is open.

Theorem 9. The state reachability problem for machines with only two purely dense
free counters is decidable.

4 Safety/Liveness Verification

From the binary reachability characterizations given in the previous section, one can
establish decidable results on various verification problems for a reversal-bounded dense
multicounter machineM with a free counter, even when counters in M are of multirate.

The binary reachability problem forM is defined as follows: Given a mixed formula
I(X,X′), are thereX and X′ such that I(X,X′) holds and (sinit,X) reaches (sfinal,X′)
in M? An example of the problem is as follows:

Is there (x1, x2, x3, x
′
1, x

′
2, x

′
3) satisfying “x′

1−2x1 +x2 is an integer ∧x′
3 +

x′
2 > x3 + x2 + x1 + 1" and (sinit, x1, x2, x3) reaches (sfinal, x

′
1, x

′
2, x

′
3) in

M?

Using Theorem 1 and Theorem 6, one can show that the binary reachability problem is
decidable.

Additionally, one can also consider the mixed i.o. (infinitely often) problem for M
as follows. Given two mixed formulas I and P , the problem is to decide whether there
is an infinite execution path of M

(s0,X0) → (s1,X1) → · · · → (sn,Xn) → · · ·

such that s0 = sinit, I(X0) holds, and there are infinitely n1 < n2 < · · · such that
P (Xni) holds for all i. An example of the problem is as follows: Is there an infinite run
of M such that

x3 > x2 + x1 − 1 ∧ 2x2 − x1 is an integer

is satisfied for infinitely many times? The problem can be used to formalize some fairness
properties along an ω execution path of a transition system (see also [11]). Because of
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Theorem 6, M is a mixed linear system in the sense of [10]. From the main theorem in
[10], one can conclude that the mixed i.o. problem is decidable.

A dense monotonic counter machine with a free counter (with multirate counters)
can be used to model a dense counter system with counter instructions in the following
form

∃0 < δ < 1. x′
0 = x0 + r0 · t0 ∧ x′

1 = x1 + r1 · t1 ∧ · · · ∧ x′
k = xk + rk · tk,

where, r0, · · · , rk are positive integers (rates), x0 is the free counter, and x1, · · · , xk are
the monotonic counters. We use the primed variables to indicate the new values. The term
t0 for the free counter x0 is one of 0, δ,−δ, 1,−1. The term ti, 1 ≤ i ≤ k, for monotonic
counter xi is one of 0, δ, 1. In addition, the counters can be tested against 0. Though the
machine models are intended to be a fundamental tool to reason about a broader class
of dense counter systems, using Theorem 6, one can also use the model to specify some
interesting systems with multiple dense/discrete counters (e.g., the consumer/producer
system in Section 1).

5 Discussions

It is a natural idea to transform a dense counter machine M into a dense counter au-
tomaton (i.e., acceptor) A in which a one-way input tape is provided. In contrast to a
traditional word automaton, a dense word is provided on the input tape. We elaborate
on this as follows. A block B is a pair (c, δ), where c ∈ C is the color of the block and
0 ≤ δ ≤ 1 is called the block’s length. There are only finitely many possible colors in
C. Let Blocks be the set of all blocks on colors in C and Blocks∗ be the free monoid
generated by the infinite set Blocks. Hence, there exists an associative operation (called
concatenation) of blocks with an identity ε. The Kleene closures ∗ and + are defined as
usual using concatenation. A dense word is an element of Blocks∗ and a dense language
is a subset of Blocks∗. Given a dense word w as input, A reads the blocks in w one by
one. On reading a block, A updates its control state and the counters in the same way
as M does, except that A knows the color of the block, can distinguish whether the
length of the block is 0, 1, or strictly greater than 0 and strictly less than 1. A can incre-
ment/decrement some of the counters by 0, 1, or the length of the block. In this way, one
can similarly define dense monotonic counter automata, dense reversal-bounded counter
automata, and dense reversal-bounded counter automata with a free counter.

For a dense word w, we use #c(w) (resp. lc(w)) to denote the total number (resp.
length) of blocks with color c in w. We use Parikh(w) to denote the tuple of counts
#c(w) and lc(w) for each c ∈ C; i.e.,

Parikh(w) = (#c1(w), · · · , #cn(w), lc1(w), · · · , lcn(w)).

For a dense language L, we use Parikh(L), the Parikh map of L, to denote the set of
all Parikh(w) for w ∈ L. A dense language L is a mixed semilinear dense language
if Parikh(L) is definable by a mixed formula F over n integer variables and n dense
variables: For all x1, · · · , xn ∈ N and for all y1, · · · , yn ∈ R,

(x1, · · · , xn, y1, · · · , yn) ∈ Parikh(L)
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iff F (x1, · · · , xn, y1, · · · , yn) holds. The above definition of a Parikh map for a dense
language can be seen as a natural extension of the concept of Parikh maps for discrete
languages. Indeed, one can treat a discrete language L as a special dense language LL,
where a symbol in C is understood as a unit block. One can easily verify that L is
a semilinear discrete language iff LL is a mixed semilinear dense language. So, over
discrete languages, our definition of “mixed semilinearity" coincides with the traditional
“semilinearity" definition.

It is straightforward to verify the following theorem, using the results in Section 3.

Theorem 10. Dense languages accepted by dense reversal-bounded counter automata
with a free counter are mixed semilinear languages. Hence, the emptiness and infiniteness
problems for these automata are decidable.

One can define a deterministic dense reversal-bounded counter automaton in the
usual way, with the additional requirement that the transition the automaton makes on
an input block (c, δ) with 0 < δ < 1 should be the same if the block is replaced by any
(c, δ′) with 0 < δ′ < 1.

The following corollaries are easily verified:

Corollary 1. Let A1 and A2 be dense reversal-bounded counter automata.

1. We can effectively construct dense reversal-bounded counter automata A and A′

accepting L(A1) ∩ L(A2) and L(A1) ∪ L(A2), respectively.
2. IF A1 is deterministic, we can effectively construct a deterministic dense reversal-

bounded counter automaton accepting the complement of L(A1).

If one of A1 or A2 (but not both) has a free counter, then A and A′ will also have
a free counter. It follows that the class of languages accepted by deterministic dense
reversal-bounded counter automata is closed under the boolean operations.

Corollary 2. The emptiness, infiniteness, and disjointness problems for dense reversal-
bounded counter automata are decidable. The containment and equivalence problems
for deterministic dense reversal-bounded counter automata are decidable.

Notice that the universe problem for dense reversal-bounded counter automata is
undecidable, since the undecidability holds even for discrete counters [14]. Obviously,
from Theorem 10, when the automata (even with a free counter) are deterministic, the
universe problem is decidable.
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