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Abstract. The linear reachability problem is to decide whether there is an execu-
tion path in a given finite state transition system such that the counts of labels on
the path satisfy a given linear constraint. Using results on minimal solutions (in
nonnegative integers) for linear Diophantine systems, we obtain new complexity
results for the problem, as well as for other linear counting problems of finite state
transition systems and timed automata. In contrast to previously known results,
the complexity bounds obtained in this paper are polynomial in the size of the
transition system in consideration, when the linear constraint is fixed.

1 Introduction

Model-checking [7, 22] is a technique that automatically verifies a finite state transition
system against a temporal property usually specified in, e.g., Computation Tree Logic
(CTL) [7] or Linear Temporal Logic (LTL) [20], by exhaustively exploring the finite
state space of the system. The usefulness of model-checking has been demonstrated
by several successful model-checkers (e.g., SMV [17], SPIN [15], BMC [3]) which
have been used to test/verify industrial-level hardware/software systems with significant
sizes.

Although both CTL and LTL are expressive, many temporal properties are out of
their scope. For instance, event counting is a fundamental concept to specify some im-
portant fairness properties. As a motivating example, we consider the design (depicted
as a finite state transition system

�
in Figure 1) of a process scheduler. The scheduler

schedules two kinds of processes: ��� and ��� according to some scheduling strategy.
A transition with label ��� (resp. ��� ) is taken when the scheduler chooses a ��� (resp.
��� ) process to run. It is required that the design shall satisfy some fairness properties;
e.g., starting from state 	�
 , whenever 	�
 is reached, the number of ��� processes sched-
uled is greater than or equal to the number of ��� processes scheduled and less than or
equal to twice the number of ��� processes scheduled. To ensure that the design meets
the requirement, we need check whether for any path  that starts from and ends with
	�
 , the linear constraint, ������������������������� �!���"������$# is satisfied, where �%�"�&����
'
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(resp. ���"�!���� ) stands for the count of labels ��� (resp. ��� ) on path  . Notice that this
property is nonregular [6] and, since the counts could go unbounded, the property is not
expressible in CTL or LTL.

In general, by considering its negation, the property can be formulated as a linear
reachability problem as follows.

– Given: A finite state transition system
�

with labels ��� #�������#���� , two designated
states 	�	 
�	 � and 	��
���� , and a linear constraint

� ����� #������ #���� � .
– Question: Is there a path  of

�
from 		 
�	 � to 	���
���� such that  satisfies

�
(i.e.,� � ����� ����$#������ #"����� ���� � holds)?

The reachability problem is decidable. To see this, one can treat
�

to be a finite
automaton with initial state 		 
�	 � and final state 	 ��
���� . ! � � � is the regular language
over alphabet "�#��#�������#��$�&% accepted by

�
. A naive decision procedure consists of the

following three steps: (i). Compute a regular expression for ! � � � , (ii). Calculate the
semilinear set of the regular expression defined by a Presburger formula ' [19], and
(iii). Check the satisfiability of the Presburger formula ')( �

. Unfortunately, the time
complexity of this procedure is at least * � �,+ -.+ � , where / 01/ is the number of states in

�
,

even when 2 is fixed. This is because the size of the regular expression, in worst cases,
is exponential in / 01/ [16].
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Fig. 1. An example of a scheduler

In this paper, we present a new algorithm solving the linear reachability problem.
This algorithm is completely different from the naive one. In the algorithm, we estimate
a bound < (called a bounding box) from

�
and

�
such that, the Question-part is true

iff the truth is witnessed by some  on which the count �=�?>$���� for each label ��@ is
bounded by < . Interestingly, after a complex loop analysis, estimating a bounding box
< is reduced to a number theory problem: finding nonnegative minimal solutions to
linear Diophantine systems. There has been much research on this latter problem for
homogeneous/inhomogeneous systems with (nonnegative) integer solutions [4, 5, 13,
21]. Suppose that

�
is in a disjunctive normal form over linear equations/inequalities.

Using the Borosh-Flahive-Treybig bound in [4], we are able to show that, in worst cases,
when / 01/ is A the size (which will be made clear later) of

�
, the bounding box < is

bounded by * ��/ 0B/ �?CED#CEF � , where ! is the maximal number of conjunctions in a single
disjunctive term of

�
. Using this bounding box, one can easily show that the linear



reachability problem is solvable in time

* ��/ 01/ � ������CED CEF�� C � �$# (1)

when / 01/ A 2 and the size of
�

. In particular, when 2 and
�

are fixed, the complexity
is polynomial in / 01/ . This is in contrast to the complexity of the naive algorithms that is
exponential in the state number / 01/ .

Our complexity result in (1) for the linear reachability problem can be further used
to obtain complexity bounds (which were unknown) for some other linear counting
problems involving linear constraints over counts. For instance, in contrast to the reach-
ability problem, we consider a linear liveness problem as follows. For an � -path � of

�
,

we say that � is
�

-i.o. (infinitely often) at state 	�� if there are infinitely many prefixes 
of � such that  ends at 		� and satisfies

�
. The liveness problem is to decide, given two

states 	 and 	 � , whether
�

has an � -path � that starts from 	 and is
�

-i.o. at 	 � . The ap-
plication issues of the problem can be found in [11]. In particular, among other results
in the same paper, it is shown that the liveness problem is decidable. However, the time
complexity is unknown. In this paper, we are able to use (1) to establish a complexity
bound for the liveness problem, which is similar to the bound given in (1).

We also consider the linear reachability problem when
�

is ordered; i.e., on any
path  from 	�	 
�	 � to 	��
���� , each label ��
 is after all the �$@ ’s, whenever ���� . For this
restricted model of

�
, we obtain a smaller complexity bound, * ��/ 0B/ � ����� � , than (1)

for the reachability problem, using the Pottier bound [21] (the Borosh-Flahive-Treybig
bound is not applicable here) for nonnegative minimal solutions to linear Diophantine
systems. Interestingly, this restricted model and the complexity bound can be used to
establish a new complexity result for timed automata [1]. We first consider discrete
timed automata where clocks take integral values. The linear reachability problem for
discrete timed automata is defined as follows:

– Given: A discrete timed automaton � , two designated states 	�	 
�	 � and 	���
���� , and
two linear constraints

�
and

� � over 2 variables.
– Question: are there clock values � � #������ #�� � #����� #������ #����� such that � 	 	 
�	 � #�� � #�������#�� ���

reaches � 	 ��
���� #����� #������ #����� � and both
� ��� � #������ #�� � � and

� � ������ #�������#����� � hold?

Though many temporal verification problems involving linear constraints over clocks
are known to be undecidable [1, 2, 12], the linear reachability problem is decidable for
timed automata (even when the clocks are dense) [8–10]. However, an upper bound
for the worst case complexity is unknown. Using the result for the linear reachability
problem when

�
is ordered, we can establish that the linear reachability problem for

discrete timed automata is solvable in time * ��/ 01/ � � � when / 01/ A 2 , the sizes of
�

and
� � , and the maximal absolute value of all the constants appearing in the clock

constraints of
�

. This result can be generalized to timed automata with dense clocks
using the pattern technique in [9].

2 Preliminaries

Let � be the set of nonnegative integers and 2 be a positive integer. A finite state
transition system can be defined as

�! � 0�##" #�$ � # (2)



where 0 is a finite set of states, "  "��� #�������#��$� % is a set of labels, $�� 0�� � "��
"���% ��� 0 is a set of transitions. When $	� 0
� "���%�� 0 , the system is called a finite
state machine. A path  of

�
is a finite sequence of transitions in the form of

� 	 
� 
 	 � �?����� � 	 @��@ 	 @�C � �?��� � 	�� ���� � �E� 	�� � (3)

for some � such that for each � � � �� , � 	�@  @ 	@�C � ��� $ . Path  is a simple cycle if
	�
�#������ # 	 � �E� are distinct and 	�
  	 � . Path  is a simple path if 	�
!#������ # 	 � ��� # 	 � are all
distinct. For any path  of

�
, let � ���� denote the 2 -ary vector � � ��� ����$#������ # ����� ���� � ,

where each � �?> ���� stands for the number of label �$@ ’s occurrences on  , � � ��� 2 .
Let � � #�������#�� � be nonnegative integer variables. An atomic linear constraint is in

the form of �
� � ��� ����� �

�
� � ���

�
(4)

where � � "  #�� % ,
�
� #������ #

�
� and

�
are integers. When � is

 
(resp. � ), the constraint

is called an equation (resp. inequality). The constraint is made homogeneous if one
makes

�  � in the constraint. A linear constraint
�

is a Boolean combination of
atomic linear constraints (using ( #�� #! #!" ). Without loss of generality, throughout this
paper, we assume that the linear constraint

�
is always written as a disjunction

� �#�
�����$� �&%

, for some ' , of conjunctions of atomic linear constraints. When '  � , �
is called a conjunctive linear constraint.

�
is made homogeneous if each atomic linear

constraint in
�

is made homogeneous; we use
��(*),+

to denote the result. In particular, a
conjunctive linear constraint

�
is a linear Diophantine equation system if each atomic

linear constraint in
�

is an equation.
Suppose that

�
is a conjunctive linear constraint, which contains - equations and.*/ - inequalities. One may write

�
into 0�1 �32 , where � � "  #�� %�4 , 0 (

.
by 2 ) and 2

(
.

by 1) are matrices of integers, and 1 is the column of variables � � #������ #�� � . As usual,
�50 # 2 � is called the augmented matrix of

�
, and 0 is called the coefficient matrix of

�
.

We use /�/ 0 /�/ �!6 7 to denote 8:9<; @�"<= 
 /
�
@ 
�/ % (

�
@ 
 is the element of row � and column �

in 0 ) and use /�/ 2 /�/ 7 to denote the maximum of the absolute values of all the elements
in 2 . Assume > is the rank of �50 # 2 � , and ? � (resp. ? � ) is the maximum of the absolute
values of all the >@�A> minors of 0 (resp. �B0 # 2 � ).

When
�

is a linear Diophantine equation system (i.e., -  .
), for any given tuples

���&� #������ #�� �"� and ������ #�������#����� � in � � , we say ��� � #�������#�� � � � ������ #������ #����� � if � @ � ���@
for all � � � � 2 . We say ��� � #�������#�� �"������ �� #������ #�� �� � if ���&� #�������#�� � � � ��� �� #�������#�� �� �
and � @  ���@ for some � � ��� 2 . A tuple ��� �� #�������#����� � is a minimal solution to

�
if

������ #������ #����� � is a solution to
�

but any ��� � #�������#�� � � with �5� #�������#��������� � #�������#�� � ��
������ #������ #����� � is not. Clearly, there are only finitely many minimal solutions to

�
. It

has been an active research area to estimate a bound for minimal solutions, and the
following Borosh-Flahive-Treybig bound [4] is needed in this paper.

Theorem 1. (Borosh-Flahive-Treybig bound) A linear Diophantine equation system
�

has solutions in nonnegative integers iff it has a solution ��� � #�������#���� � in nonnegative
integers, such that > unknowns are bounded by ? � and 2 / > unknowns are bounded by
�C8:9<;%� 2 # . � / > � � �D? � .
The Borosh-Flahive-Treybig bound gives a bound for one of the minimal solutions in
nonnegative integers to the inhomogeneous system

�
. In contrast, the following Pottier



bound gives an upper bound for all of the “minimal solutions” to a conjunctive
�

(which
is not necessarily a linear equation system); this result can be simply obtained from
Corollary 1 in [21].

Theorem 2. (Pottier bound) For any conjunctive linear constraint
�

that contains -
equations and

. / - inequalities, there are two finite sets 0 and 0 (*),+  " � � #�������# ��� % ,
for some � , of vectors in � � such that

– each element in 0 (resp. 0 (*),+ ) is a solution to
�

(resp.
� (*),+

),
– For any � � � � , � is a solution to

�
iff there are ��� #�������#�� � � � , �  � 
 � ��� � � �

����� � � � � � for some � 
 � 0 ,
– each component of all the vectors in 0 � 0 (*),+ is bounded by � � � /�/ 0 /�/ � 6 7 �

/�/ 2 /�/ 7 � ��C 4 C�� .
Therefore, for a conjunctive linear constraint

�
, every solution can be represented as

the sum of a small solution and a nonnegative linear combination of small solutions
to

� (�)�+
(clearly, the inverse is also true). Here, “small” means that the solutions are

bounded by the Pottier bound.
When

�
is a linear constraint (i.e., ' � � ), the Pottier bound of

�
is defined to

be the maximal of all the bounds obtained from Theorem 2 for each conjunctive linear
constraint in

�
.

An inequality can be translated into an equation by introducing a slack variable
(e.g., ��� / � � � �	� into ��� / � � �

/�
  � where



, a new variable on � , is the
slack variable). So if

�
is a conjunctive linear constraint (in which there are - equa-

tions and
. / - inequalities) over ��� #�������#��,� , we may write

�
into an equation system� � ��� #�������#��,� #����?C � #��,��C 4 ����� with

.
equations, where ���?C � #����?C 4 �� are the slack vari-

ables.
In the next section, we will derive a bounding box < for the linear reachability

problem such that its Question-part is true iff the truth is witnessed by a  satisfying
� ��> ���� � < for each � � � � 2 . From this < , the time complexity for solving the
linear reachability problem can be easily obtained.

3 A Bounding Box � for the Linear Reachability Problem

Let
�

be a finite state transition system specified in (2). A set of 2 -ary nonnegative
integer vectors � is a small linear set (wrt the given

�
) if � is in the form of

"�� 
 ���
��� 
������ 
���
�� each � 
 � � %�# (5)

where nonnegative integer > satisfies

>�� / 01/ � # (6)

2 -ary nonnegative integer vectors � 
 #������ #�� � satisfy

� 
 � / 01/ � ����# (7)



and for each �  ��#������ # > , ��
 � / 0B/�����# (8)

where � stands for the identity vector. � is a small semilinear set if it is a union of
finitely many small linear sets.

Recall that the linear reachability problem is to decide whether there exists a path
 in
�

from 	�	 
�	 � to 	��
���� such that  satisfies a given linear constraint
� ��� � #������ #��,� � .

Let � be all paths of
�

from 		 
�	 � to 	���
���� . We use � ����� to denote the set of 2 -ary
nonnegative integer vectors " � ���� �� ���=% . Using a complex loop analysis technique
by reorganizing simple loops on a path, one can show that � ����� is a small semilinear
set.

Lemma 1. � ����� is a small semilinear set. That is, it can be represented as, for some� , 1

� �����  �
���,@ ��� � @ (9)

where each � @ is a small linear set in the form of (5).

Remark 1. One might have already noticed that, (9) and (5) appear nothing new, since
they simply rephrase the known fact that � ����� defines a semilinear set [19]. However,
the bounds for the coefficients shown in (6,7,8) are new.

Now let’s turn to the property formula
�

. Recall that
�

is written as a disjunction
of ' conjunctive linear constraints

�  �
���,@ � %

� @�� (10)

Fix any � � � �3' . Suppose that
� @ contains

.
atomic linear constraints. After adding

(at most
.
) slack variables ��� #�������#	� 4 , � @ can be written into the following form:
�� �

�
��� ��� � ����� �

�
������ ��� ��� �  �

�
...�

4 �?��� � ����� �
�
4 ���,� ��� 4 � 4  �

4
(11)

where the
�
’s and � ’s are integers (each � is -1 or 0). Let 0 be the coefficient matrix for

variables � � #�������#�� � and 2 be the column of
�
� #������ #

�
4 in (11). Define � �  /�/ 0 /�/ � 6 7

and � �  /�/ 2 /�/ 7 . We may assume �B����� (otherwise let �B�  � ). In the sequel, we
shall use the following notions: � � (the maximum of all the values � � among all

� @ ’s),� � (the maximum of all the values � � among all
� @ ’s), and ! (the maximum of all the

values
.

among all
� @ ’s).

Due to the disjunctive representations of (10) and (9), we can consider only one
conjunction of

�
in the form of (11) and only one linear set in the form of (5). That

is, by substituting �  ��� � #������ #�� � � in (11) with the expression in (5): �  � 
��
1 Note that though � may be large, it is irrelevant here.



=� � 
���� � 
���
 , the equation system (11) is transformed into the following equation system

with unknowns � � #������ # � � and � � #������ # � 4 :
�� �
� ��� � � � ����� � � � � � � � � � � �  �� � �

...�
4 � � � � ����� � �

4 � � � � � 4 � 4  �� �4 �
(12)

Hence, the linear reachability problem is reduced to finding a nonnegative integer solu-
tion to (12). Using (7) and (8), a simple calculation reveals that, in (12), all of the

�
’s

are bounded by / 01/ � � and all of the
� � � #������ # � �4 are bounded by / 01/ � � ��� � � .

We use ? � to denote the maximum of the absolute values of all the �&� � , � � �&� . ,
minors of the coefficient matrix for system (12) and ? � to denote that of the augmented
matrix. Using the above mentioned bounds for the coefficients and constants in (12),
one can conclude that

? � � ��/ 0B/ � � � 4 .�� 9��	� ? � � ��/ 01/ � � ��� � � � ��/ 01/ � � � 4 ��� .
� � (13)

A direct application of the Borosh-Flahive-Treybig bound in Theorem 1 shows that sys-
tem (12) has solutions in nonnegative integers iff the system has a solution � � � #������ # � � #� � #������ # � 4 � in nonnegative integers, among which > unknowns are bounded by ? � and

.
unknowns are bounded by �C> � ���D? � (here, without loss of generality, we assume the
worst case that the rank of coefficient matrix of (12) is

.
). Applying the bounds ?� and

�C> � ��� ? � to � 
 in (5) and using (7) and (8), the linear reachability problem is further
reduced to the problem of finding a  � � satisfying:

� ���� � ��/ 0B/ � � �C> / . ��/ 01/ ? � � . / 01/��5> � ��� ? � � � � (14)

and
� � ����� ����$#������ #$����� ���� � . Noticing that

. � ! , and > � / 01/ � according to (6), we
apply the bounds of ? � and ? � in (13) to (14) and define a bounding box

<  ��/ 0B/ �?C � � � � ! / 01/���/ 0B/ � � ��� ��/ 0B/ � � � � � � � � ��/ 01/ � ��� D ��� ! � � / 01/ � � (15)

Hence,

Theorem 3. Given a finite state transition system
�

, two states 	 	 
�	 �$# 	��
���� � 0 , and a
linear constraint

� � � � #������ #�� � � , the following two items are equivalent:

– There is a path  of
�

from 		 
�	 � to 	��
���� satisfying
�

,
– The above item is true for some  further satisfying � ���� � < � � , where < is

defined in (15).

Notice that < in (15) is independent of ' in (10). Also, when the number of states / 01/
in
�

is much larger than 2 and the metrics of
�

; i.e., / 01/ A 2 # � � # � � #�! , the bounding
box is in the order of

<  * ��/ 01/ �?CED C F ��� (16)

In this case, one can easily show that the linear reachability problem is solvable in time

* ��/ 01/ � ������CED CEF�� C � �?� (17)



4 The Linear Liveness Problem

An � -path � of
�

is an infinite sequence such that each prefix is a path of
�

. Let
	 and 	�� be any two designated states of

�
. We say that � is

�
-i.o. (infinitely often)

at 	�� if there are infinitely many prefixes  from 	 to 	 � of
�

such that  satisfies
�

(i.e.,
� � ����� ���� #������ #$� ��� ���� � holds). The linear liveness problem can be formulated as

follows:

– Given: A finite state transition system
�

in (2), two designated states 	 and 	 � , and
a linear constraint

� ����� #������ #��,��� .
– Question: Is there an � -path � that starts from 	 and is

�
-i.o. at 	 � ?

In [11], this problem is shown decidable. However, the time complexity is unknown. In
this section, we reduce the liveness problem to a linear reachability problem.

Recall that
�

is in the form of (10),
�  � ���,@ � % � @ , and

� (*),+@ is the result of
making

� @ homogeneous. One key observation is as follows. The Question-part in the
linear liveness problem is true iff, for some � � � � ' , (a). there is a path of

�
from 	

to 	�� satisfying
� @ , and, (b). there is a path of

�
from 		� to 	�� satisfying

� (�)�+@ . A proof
of this observation can be followed from [11] using the pigeon-hole principle (noticing
that each atomic linear constraint in

� @ is in the form of (4) where � � "  #�� % ). Both
items are equivalent to the linear reachability problem for

�
concerning

� @ and
� (*),+@ ,

respectively. By trying out all of the ' number of
� @ ’s and

� (�)�+@ ’s, and using Theorem
3 and (17), we conclude that:

Theorem 4. The linear liveness problem is solvable in time shown in (17), when / 0B/ A
' # 2�# � � # � � #�! .

5 Ordered Finite State Transition Systems

Let
�

be a finite state transition system in (2). Suppose that an order of labels ��� #�������#��$�
is fixed, say � �  ����� )� � .

�
is ordered if, on any path  from 	 	 
�	 � to 	 �
���� , each label

� @ appears before each label � 
 , whenever �  � . In this case,
�

behaves as follows:
reading � � ’s for 0 or more times, then reading � � ’s for 0 or more times, and so on. For
this restricted version of

�
, we will derive a better complexity bound than (17) for the

linear reachability problem.

Lemma 2. The linear reachability problem for ordered
�

is solvable in time

* �5' � / 01/ � �	� � ��� � � � # (18)

where � is the Pottier bound for
�

(i.e., the maximum of the Pottier bounds for all� @ ’s). Furthermore, since � is independent of / 01/ , the linear reachability problem for
ordered

�
is solvable in time

* ��/ 0B/ � ����� � # (19)

when / 01/&A ' # 2�# � .

Interestingly, this model of
�

and the complexity bound can be used to obtain a
complexity bound for timed automata in the next section.



6 The Linear Reachability Problem for Timed Automata

A timed automaton [1] is a finite state machine augmented with a number of clocks. All
the clocks progress synchronously with rate 1, except when a clock is reset to 0 at some
transition. We first consider discrete timed automata where clocks take integral values.
Formally, a discrete timed automaton � is a tuple

� 0�#�"���� #�������#���� %�#�$ � #
where 0 is a finite set of (control) states, ��� #�������#��,� are clocks taking values in � ,
and $ is a finite set of edges or transitions. Each edge � 	�#�� # . # 	 � � denotes a transition
from state 	 to state 		� with enabling condition

.
in the form of clock regions (i.e.,

����� #�� / � ��� # where ��#	� are clocks, � denotes � #*� # or
 

, and � is an integer) and a
clock reset set � � " �"#������ # 2,% . Sometimes, we also write the edge as 	 " 4 � 	�� , or simply
	 " � 	�� when

.
is � > 
 - . Without loss of generality, we assume that / � /�� � . That is,

each transition resets at most one clock. (Resetting several clocks can be simulated by
resetting one by one.) When �  ��

, the edge is called a progress transition. Otherwise,
it is a reset transition. � is static if the enabling condition on each edge is simply � > 
 - .

The semantics of � is defined as follows. A configuration is a tuple of a control
state and clock values. Let � 	"#�� � #�������#�� ��� and � 	�� #����� #�������#����� � be two configurations.
� 	�#��&� #������ #�� � � " � 	 � #����� #������ #����� � denotes a one-step transition satisfying all of the
following conditions:

– There is an edge � 	�#�� # . # 	�� � in
�

,
– The enabling condition of the edge is satisfied; i.e.,

. ��� � #�������#�� � � is true,
– If �  ��

(i.e., a progress transition), then every clock progresses by one time unit;
i.e., ���@  � @ � � , � � � � 2 , (iv). If for some � , �  "#� % (i.e., a reset transition),
then � 
 resets to 0 and all the other clocks do not change; i.e., � �
  � and ���@  � @
for each � � �	� � � 2 .

We say that � 	�#��&� #������ #�� � � reaches � 	 � #�� �� #������ #�� �� � if

� 	�#��&� #�������#�� � � "�
 � 	 � #�� �� #�������#�� �� � #
where " 
 is the transitive closure of " .

The linear reachability problem for discrete timed automata is defined as follows.

– Given: A discrete timed automaton � , two designated states 	 	 
�	 � and 	 ��
���� , and
two linear constraints

�
and

� � over 2 variables.
– Question: are there clock values � � #������ #�� � #����� #������ #����� such that � 	 	 
�	 � #�� � #�������#�� ���

reaches � 	 ��
���� #����� #������ #����� � and both
� ��� � #������ #�� � � and

� � ������ #�������#����� � hold?

The problem is decidable, even when clocks are dense. Its decidability proofs and ap-
plication examples can be found in [8, 10, 9]. However, as we mentioned earlier, the
time complexity for the problem is unknown. Using (18), we will obtain a complexity
bound in this section.

Without loss of generality, we assume that both
�

and
� � in the linear reachabil-

ity problem for timed automata are a disjunction of ' conjunctive linear constraints.



Each conjunctive linear constraint contains at most ! atomic linear constraints among
which there are at most $ equations. Similar to Section 3, we use � � (resp. � � ) to
represent the maximal value /�/ 0 /�/ �!6 7 (resp. /�/ 2 /�/ 7 ) of all the conjunctive linear con-
straints 0�1 ��2 in

�
and

� � . The complexity of the linear reachability problem will be
measured on, among others, ! , $ , ' , � � , � � , / 01/ , and 2 .

We first consider a simpler case when � is static. Before we proceed further, more
definitions are needed. A reset order  is a sequence � � #�������# � � , for some � �3� � 2 ,
where each � @ contains exactly one element in " �"#������ # 2,% , and all of the � @ ’s are pair-
wisely disjoint. Let � 
  " �"#�������#�2,% / � � ��@ � � �.@ . An execution path of � is of reset
order  if every clock in � 
 does not reset on  , and for rest of the clocks, their last
resets are in this order: ��@ � #�������#��.@ � , with ���  " ����%!#������ # � �  " � � % . For the instance
of the linear reachability problem of static � , we consider the Question-part witnessed
by an execution path that is of any fixed reset order  (there are only finitely many re-
set orders). From this instance and the given  , we will construct an ordered finite state
transition system

���
and a linear constraint

� �
. Then, we reduce the linear reachability

problem of � to the linear reachability problem of
���

. The key idea behind the con-
struction is as follows. Suppose � 
 � � . The execution path can then be partitioned into
� � � segments separated by the � last resets given in  . We use � 
 #	� � #������ #	� � to denote
the number of progress transitions made on each segment respectively. Suppose that the
path starts with clock values � � #������ # � � and ends with clock values � � #�������#�� � . Observe
that each � @ can be represented as a sum on (some of) � � #�������# � � and � 
 #	� � #������ # � � .
The case when � 
  � is similar. Following this line, one can show:

Lemma 3. The linear reachability problem for static discrete timed automata � is solv-
able in time

* � 2 � �*' � �"� 2 � � 2 � ��� �&/ 01/ � � ��� � �"� � � 2�� � � � � � �
� � �?C � D C � � ��� � � ��� (20)

Hence, when / 01/&A 2�#,' # � � # � � , the linear reachability problem for static � is solv-
able in time

* ��/ 0B/ � ����� ��� (21)

Now, we consider the case when � is not necessarily static. Let
	

be one plus the
maximal absolute value of all the constants appearing in enabling conditions in � . We
use 
 to denote the result of (20) after replacing / 01/ with �D� � � 	 � � 7 C � �#/ 0B/ , ! with
! � 2 , $ with $ � 2 , � � with 8:9<; � � � # ��� , � � with 8 9$;�� � � #

	 � . From [12, 10],
one can construct a static � � with two designated states 		�	 
�	 � and 	���
���� and with at most
�D� � � 	 � � 7 C � � / 01/ number of states to simulate � faithfully. From this result, one can
show, using Lemma 3,

Theorem 5. The linear reachability problem for discrete timed automata is solvable in
time

* � 2 � �!�D� � 	 � � ��
 ��� (22)

Again, when / 01/ and
	

are A the size of
�

and
� � , the time complexity of linear

reachability problem for discrete timed automata is

* ��/ 0B/ � ����� � 	 �?C ��� 7 C �#��� � � ��� � ��C �� �?C � D C � � ��� � � ��� (23)



Remark 2. Using the techniques in Section 4, one can obtain a complexity bound sim-
ilar to (23) for the linear liveness problem [12] for discrete timed automata. Also the
complexity in (23) is more sensitive to

	
than to / 01/ .

We turn now to the case when � is a timed automaton with 2 dense clocks. One
can similarly formulate the semantics and the linear reachability problem for � (e.g.,
see [9]). With the pattern technique presented in [9], it is easy to show the following.
From � and

� # � � , one can construct a discrete timed automaton � � with 2 discrete
clocks and two linear constraints � # � � such that the linear reachability problem of
timed automaton � concerning

� # � � is equivalent to the linear reachability problem of
discrete timed automaton � � concerning � # � � . In addition, the number of states in � �
is * � �  � �?C ��� 7 � / 01/ � , where 0 is the state set in � . (There are at most �  ���?C ��� 7 patterns
[9].) Furthermore, � and � � only depend on

� # � � and 2 (independent of � ). Hence,
we have the following conclusion:

Theorem 6. The linear reachability problem for timed automata with dense clocks can
still be solvable in time shown in (23), when / 01/�# 	 A 2 and the size of

�
.

7 Conclusions

We obtained a number of new complexity results for various linear counting problems
(reachability and liveness) for (ordered) finite state transition systems and timed au-
tomata. At the heart of the proofs, we used some known results in estimating the upper
bound for minimal solutions (in nonnegative integers) for linear Diophantine systems.
In particular, when all the parameters (such as the number of labels/clocks, the largest
constant

	
in a timed automaton, the size of the linear constraint to be verified, etc)

except the number of states / 01/ of the underlying transition system are considered con-
stants, all of the complexity bounds obtained in this paper is polynomial in / 01/ . This is,
as we mentioned in Section 1, in contrast to the exponential bounds that were previously
known. In practice, a requirement specification (e.g., the

�
in a linear counting prob-

lem) is usually small and simple [14]. In this sense, our results are meaningful, since the
large size of / 01/ is usually the dominant factor in efficiently solving these verification
problems.

The counts of labels in a finite state transition system can be regarded as monotonic
counters. Therefore, our result also provides a technique to verify safety properties for
a special class of counter machines � with monotonic counters: starting from a state 	 ,
whether it is always true that the counter values in � satisfy a given linear constraint
whenever � reaches 		� . In the future, we will study whether the techniques in this
paper can be generalized to handle the case when � is further augmented with an
unrestricted counter (i.e., can be incremented, decremented, and tested against 0) or
even a pushdown stack. Additionally, it is also desirable to study whether our techniques
can be further generalized to the reachability problem of some classes of Petri nets [18].

The authors would like to thank P. San Pietro and the anonymous referees for many
valuable suggestions.
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