
Automatic Verification of
Multi-queue Discrete Timed Automata

Pierluigi San Pietro
���

and Zhe Dang
�

�
Dipartimento di Elettronica e Informazione

Politecnico di Milano, Italia
pierluigi.sanpietro@polimi.it�

School of Electrical Engineering and Computer Science
Washington State University
Pullman, WA 99164, USA
zdang@eecs.wsu.edu

Abstract. We propose a new infinite-state model, called the Multi-queue Dis-
crete Timed Automaton MQDTA, which extends Timed Automata with queues,
but only has integer-valued clocks. Due to careful restrictions on queue usage,
the binary reachability (the set of all pairs of configurations ( ���

	�

of an MQDTA

such that � can reach
	

through zero or more transitions) is effectively semilin-
ear. We then prove the decidability of a class of Presburger formulae defined over
the binary reachability, allowing the automatic verification of many interesting
properties of a MQDTA. The MQDTA model can be used to specify and verify
various systems with unbounded queues, such as a real-time scheduler.

Keywords: Timed Automata, infinite-state model-checking, real-time systems.

1 Introduction

Real-time systems are widely regarded as a natural application area of formal methods,
since the presence of the time variable makes them more difficult to specify, design and
test. The limited expressiveness of finite automata has recently sparkled much research
into the automated verification of infinite state systems. Most research in the field has
concentrated on finding good abstractions or approximations that map infinite state sys-
tems into finite ones (e.g., parametrized model checking [19] and generalized model
checking [15]). A complementary approach to abstraction is the definition and study
of infinite-state models for which “interesting” properties are still decidable. Most of
the works have concentrated on very few models, such as Petri Nets (PN), Pushdown
Automata (PA) and Timed Automata (TA), and have studied the decidability and com-
plexity of model-checking various temporal and modal logics. A TA [4] is basically a
finite-state automaton with a certain number of unbounded clocks that can be tested
and reset. Since their introduction and the definition of appropriate model checking
algorithms [17], TA have become a useful model to investigate the verification of real-
time systems and have been extensively studied. The expressive power of TA has many
limitations in modeling, since many real-time systems are simply not finite-state, even
when time is ignored.
�

Supported in part by MIUR grants FIRB RBAU01MCAC and COFIN 2001015271.



Other infinite-state models for which forms of automatic verification are possible
are based on PN (e.g., [16]), on various versions of counter machines (e.g., [10]), on
PA (e.g., [5]), or on process calculi (e.g., [21]), but, at least in their basic versions,
they do not consider timing requirements and are thus not amenable for modeling real-
time systems. Among the infinite-state models that consider time, there are many timed
extensions of Petri Nets but their binary reachability is typically undecidable if the net
is unbounded (i.e., it is not finite state). A recent notable example of model checking
a timed version of Petri Nets is [2], where it is shown that coverability properties are
decidable, using well-quasi orderings techniques. A more general result holds for an
extension of TA, Timed Networks [1], for which safety properties have been shown to
be decidable. However, Timed Networks consist of an arbitrary set of identical timed
automata, which is a very special case, although potentially useful in modeling infinite-
state timed systems.

Recently, Timed Pushdown Automata (TPA) [13, 12] have been proposed, extending
pushdown processes with unbounded discrete clocks. Considering that both the region
techniques [4] and the flattening techniques [11] for TA can not be used for TPA, a totally
different technique is proposed to show that safety and binary reachability analysis are
still decidable [13, 12].

Queues are a good model of many interesting systems, such as schedulers, for which
automatic verification has rarely been attempted. Queues are usually regarded as hope-
less for verification, since it is well known that a finite-state automaton equipped with
one unbounded queue can simulate a Turing machine. However, there are restricted
models with queues for which reachability is decidable (e.g., [9]). Here, we consider the
Generalized Context-free Grammars ( ����� ) of [8], which use both queues and stacks
with suitable constraints to generate only semilinear languages, and which are well
suited to modeling of scheduling policies. However, automatic verification of ����� has
never been investigated, and ����� do not consider time.

In this paper, we study how to couple a timed automaton with a multi-queue automa-
ton (inspired by the ����� model) so that the resulting machine can be effectively used
for modeling, while retaining the decidability of a class of Presburger formulae over
the binary reachability set, with control-state variables, clock value variables and count
variables. Hence, such machines are amenable for modeling and automatic verification
of many infinite-state real-time systems, such as real-time process schedulers. The paper
is structured as follows. Section 2 defines the MQDTA, introduces its untimed version
(called Multi-queue-stack machine, MQSM) and proves the effective semilinearity of
the model, by using a ����� . Section 3 proves the main result of the paper, i.e., the
effective semilinearity of the binary reachability for MQDTA, by showing that clocks
may be eliminated and an MQDTA may be translated into an equivalent MQSM. Section
4 proves the decidability of a class of Presburger formulae over the binary reachability,
showing their applicability to an example.

2 Multi-queue Discrete Timed Automata
In this section we introduce the MQDTA model, which extends Discrete Timed Au-
tomata DTA by allowing a number of queues. The presentation is self-contained abd
does not require previous knowledge of DTA. A clock constraint is a Boolean combi-
nation of atomic clock constraints in the following form: �����
	��������� where � is an



integer, � 	 � are integer-valued clocks and � denotes
� 	�� 	�� 	�� 	 or � . Let �
	 be the

set of all clock constraints on clocks � . Let � be the set of integers and �� be the set
of nonnegative integers.

Definition 1 (MQDTA). A Multi-queue Discrete Timed Automaton (MQDTA) with ����
FIFO queues is a tuple ��� 	�� 	�� 	���� 	�� 	�� 	�� � 	� � � 	��"!$# where: � is the queue alpha-

bet; � � 	� � � 	��%! are queues; � is a finite set of (control) states; � is a finite set of
clocks with values in �& ; �'�)(*� is the final state; �,+-�/.0� is the restart set; � is a
finite set of edges, such that each edge 12(3� is in the form of �4� 	�5 	'687 � 	� � � 	�79!$: 	�; 	��'<=#
where � 	��'<>(?� with �*@�A�B� (the final state �B� does not have a successor); 5C+D� is
the set of clock resets; ;E(F� 	 is the enabling condition.

The queue operation is characterized by a tuple 6G7 � 	� � � 	�7 ! : with 7 � 	� � � 	�7 ! (F�IH ,
to denote that each 7KJ is put at the end of the queue �LJ , M �ON&� � .

Let P be an MQDTA with � queues. Intuitively, the queues are totally ordered from
� � to �"! and for a pair 68Q 	��B:�(R� , � will be the next start state of P if the head of the
first nonempty queue is Q . Notice that, for �*� � , the MQDTA reduces to a DTA.

The semantics is defined as follows. A configuration S of P is a tuple �4� 	�T � 	� � � 	
T ! 	 � � 	� � � 	���UV# where �W(X� 	�� � 	� � � 	���UO(X�Y are the state and the clock values re-
spectively. T � 	� � � 	�T ! (F�%H are the contents of each queue, with the leftmost character
being the head and rightmost character being the tail. We use SYZ\[ to denote each T]J in
S , with S_^ , SE`Ba 	� � � 	�SE`Bb to denote � 	�� � 	�c�c�c 	���U respectively.

Let S?d=e�f ghfjilk a fjmjmjm f k�nVopf qrf e
slt

�]u SE< denote a one-step transition along an edge �4� 	�5 	�6G7 � 	� � � 	
7h!$: 	�; 	��'<=# in P satisfying the following conditions:

– The state � is set to a new location ��< , i.e., S_^v�w� 	�S_<^ �w�'<4c
– Each clock changes according to 5 . If there are no clock resets on the edge, i.e.,
5x�wy , then clocks progress by one time unit, i.e., for each �3(R� , Sz<` �wS `&{ M . If
5W@�wy , then for each �3(*5 , SE<` � � while for each �W@(35 , SE<` �|S ` .

– The enabling condition is satisfied, i.e., ;�64SE: is true.
– The content of each queue is updated: S}<Z_[ �|SEZ\[~7hJ for each M �CN&� � .

Besides the above defined one-step transition, an MQDTA P can fire a restart transition

when it is in the final state �l� . Let S���� ep�G� � ���u S_< denote a restart transition in P satisfying
the following four conditions:
1) S ^ �w�B� , i.e., this restart transition only fires at the final state.
2) Some queue in S is not empty. Let Q�(�� be the head of the first (in the order from
� � to � ! ) nonempty queue. The next state should be indicated in the restart set � . That
is, 6rQ 	�SE<^ :�(R� .
3) Let Q be the head of the � -th queue where M � � � � and S}Z\� is not empty, and for
all M ��N ��� , SEZ\[ is empty. Assume SEZ\�
�|Q]T for some T�(F�%H . Then, SE<Z\� �|T , and
for all M ��N�� � with

N @�D� , SE<Z_[ ��S_Z_[ . That is, the head Q must be removed from
the queue, while the other queues are not modified.
4) Clocks are reset, i.e., S}<` � � for all �*(F� .

From now on, P is a MQDTA specified as above. We simply write S/u"�DSE< if S
can reach SE< by either a one-step transition or a restart transition. The binary reachabil-
ity � � is the reflexive and transitive closure of u�� A configuration S/�,��� 	�T � 	� � � 	



T ! 	 � � 	� � � 	�� U # can be encoded as a string
� S�� by concatenating the symbol represen-

tation of � , the strings T � 	� � � 	�T]! , and the (unary) string representation of � � 	� � � 	 � U
with a delimiter “ � ”. The binary reachability � � can be considered as the language:��� S���� � � �
	hSx� � ��� c
An example. Consider a LAN printer, which may accept two types of jobs: Large (  )
and Small ( � ). When a job is being printed, no other job can interrupt it. However, if a
job takes too long to be completed, then the printer preempts it and puts it into a special,
lower priority queue, called the batch queue. The timeout for the  jobs is 200 seconds,
while for the � jobs is only 100. The jobs in the batch queue (called batch jobs, � ) can
be printed without time limits, but they are overridden (i.e., put at the end of the batch
queue) whenever  or � job arrives. The arrival of new jobs is not completely random:
if the printer is busy printing, then the interval between the arrival of new jobs is at
least 50 seconds. The specification of the example is formalized with an MQDTA with
two clocks (called � N�� 1������ and ;�� ��� respectively) and two queues. The set of states
is:

� ��������� 	���� N ���� 	���� N ����� 	���� N ����� �
. The alphabet of the queues is:

�  	�� 	�� �
. The

graph of the transition function is shown in Fig. 1. Multiple transitions from one state
to another state are denoted by multiple labels instead of by multiple arcs. The labels
used on the transitions have the following syntax: [clock condition] / [queue update]
[clock assignment]. The notation for clock conditions and assignments is obvious. A
queue update such as 6��: MK6�� :�� means that  and � are written on queue 1 and queue
2, respectively. The automaton starts the execution in the ��������� state. When either an �
or an  job is put into queue 1, the automaton enters �V� : it reads the queue content and
executes a ��1�������� � transition (denoted by the dashed arrows). A ��1�������� � transition goes
from �B� to the next state depending on the queue content: if the front of the queue is �
it enters state ��� N ����� , if it is  it enters state ��� N ���� , if it is � it enters state ��� N ����� .
When a �B1���������� transition is executed, all the clocks are reset (i.e., � N!� 1����"�#	 � �

and
;�� ���$	 � � are executed).

start

printB

printS

timeout>= 100 /(B)2 timeout>= 100 /(B)2 

/(L)1 (B)2
/(S)1 (B)2

/(S)1
/(L)1

last>50 /(L)1 last:=0
last>50 /(S)1 last:=0 last>50 /(L)1 last:=0

last>50 /(S)1 last:=0

B
sf

printL

timeout<100 
timeout<200 

S L

last>50 /(S)1 last:=0
last>50 /(L)1 last:=0

Fig. 1. The state transition graph of the %'&)(+*-, of the example.

The proof of the main result of this paper, i.e., � � is a semilinear language, is based
on the following untimed version of MQDTA, which allows both queues and stacks. A
Multi-queue-Stack Machine (MQSM) . with � (FIFO) queues,

�
(LIFO) stacks and

a one-way input tape is a tuple: ��� 	0/	�� 	01 	�� 2 	��B� 	43
	�� � 	� � � 	��%!�	 � � 	� � � 	 �65I# , where
� is a finite set of states with the initial state �72�( � and the final state �B�O( � , /



is the input alphabet, � and 1 are two disjoint alphabets for the queues � � 	� � � 	��%!
and the stacks � � 	� � � 	 � 5 respectively. The queues and the stacks are arranged so that
� � 	� � � 	��%! are followed by � � 	� � � 	 �65 . 3 is a finite set of transitions. We distinguish
three kinds of transitions:

A push-transition has the form �4� 	 � 	'687 � 	� � � 	�7 ! 	 � � 	� � � 	 � 5 : 	��'<=# . That is, from
state ��(�� , . moves its input head to the right and reads an input symbol � ( /
(if � ��� , however, . the input head does not move, i.e., . executes an � -move),
puts 7 � 	� � � 	�7 ! (��IH at the end of queues � � 	� � � 	�� ! , and pushes

� � 	� � � 	 � 5 ( 1"H
into the stacks � � 	� � � 	 � 5 . Thus, a push-transition is an element of �-.�6�/��

�
�
� :�.

6G�%H�: ! .O6�1"H': 5 .�� . A pop-stack-transition has the form �4�V��	 � 	�� 	��'<=# . That is, from
the final state �l��(O� , on the input symbol � ( /	�

�
�
�
, . pops the top of the first

nonempty stack and transits to state �B<}(�� . Thus, a pop-stack-transition is an element
of

� �B� � .C6�/
�
�
�
� : . 1 .�� . A pop-queue-transition has the form of ����� 	 � 	 Q 	��'< # .

That is, from the final state �l� , on the input symbol � ( /��
�
�
�
, . pops the top of

the first nonempty queue and transits to state �l< (F� . Thus, a pop-queue-transition is an
element of

� �B� � .)6�/��
�
�
� :�.%�3."� . Therefore, 3 is a finite subset of 64�R.)6�/��

�
�
� :�.

6G�%H�: ! .�6�1"H�: 5 .x�Y:��36 � � � � .�6�/�
�
�
� :Y. 1X.x�Y:��*6 � � � � .�6�/�

�
�
� :z. �D.x�Y: .

A configuration of . is a tuple �4� 	���� Q � 	� � � 	�Q ! � � � 	� � � 	�� 5 # , where � (?� is the
state, � ( / H is the input word, Q � 	� � � 	 Q ! ( � H are the contents of the queues
(with the leftmost character being the head and the rightmost character being the tail),
� � 	� � � 	�� 5 ( 1"H are the contents of the stacks (with the leftmost character being the
top and rightmost character being the bottom). The one-step transition ��� of . is a
binary relation over configurations. That is,

�4� 	���� Q � 	� � � 	 Q !���� � 	� � � 	 � 5�#���� ��� < 	�� < � Q <� 	� � � 	 Q <! ��� < � 	� � � 	 � <5 #
iff one of the conditions is satisfied:

– The transition is a push-transition �4� 	 � 	'687 � 	� � � 	�79!�	 � � 	� � � 	 � 5%: 	��'<=#�( 3 . Then:
� � � � < , for each M ��N>� � , Q <J �-Q J 7 J , and for each M � � � �

, � <� � � � � � .
– The transition is a pop-stack-transition ����� 	 � 	�� 	��'<r# ( 3 . Then: �"�X�B� , �X� � � < ,

for each M �/N
� � , Q <J � Q J ��� . There exists M � � � �
such that � � ��� � <� and

for all M ���x� ����M , ��<U � � U ��� , and for all � { M ���x� �
, ��<U � � U .

– The transition is a pop-queue-transition �4� � 	 � 	 Q 	�� < #�( 3 . Then: ���/� � , � � � � < ,
there is a M �ON>� � such that Q J �-Q Q <J , for all M ��� ��N �CM , Q U �-Q <U ��� , for allN { M ���x� � , Q U �|Q�<U , and for all M ���x� � , � < U � � U .

The transition relation �-H� is the transitive closure of the binary relation � � over
configurations. A string � ( /EH is accepted by . if ����2 	���� Q 2 	�� 	� � � 	�� ��� 	� � � 	!� #��OH�
�4�B� 	!� ��� 	� � � 	!�"�!� 	� � � 	�� # c
Theorem 1. Languages accepted by Multi-queue-stack machines are semilinear.

Proof. The proof of this result is based on the fact that the language accepted by MQSM
may be generated by a Generalized Context-free Grammar. In fact, an MQSM is actually
a ����� in disguise, and it is just a variant of the accepting device of ����� , the multi-
queue-pushdown automaton [7]. ����� only generate suitable permutations of context-
free languages, and hence their languages are semilinear and the semilinear sets are
effectively constructible. #$



3 Main Results

To prove the main result of the paper, we need a few more definitions. Let / �� � � 	�c�c�c 	�� ! � be an alphabet, for some �X� M . A Parikh transform � translates each

� ( /)H into �
��� a i � o�  � � 4�

� � b i � oU . Let �O@( / be a symbol. For every ��� M , a lan-
guage  is segmented if every word of  has the form � � � � �  � � 0� �
! , where each
� J ( /)H . � is abused on every word � � � � �� � � 4� �
! of a segmented language  ,
with �)6�� :F���)6 � � :��� � � 0���)6 �
!$: , and �)6�&:*� � �)6	� : 	
� (  �

. A segmented
language  is locally commutative if �,(  iff �)6	� :�(��)6��: .
Lemma 1. For all languages  � and  � , with  � segmented and locally commutative,
the following statements hold: 1. �)6� � : is a semilinear language iff  � is. 2. If  � and
 � are semilinear languages then so is  ��  � .
Proof. 1. Let � be the Parikh mapping (see [18] for this traditional definition). Simply
notice that �E6��)6� � :�:>� �_6� � : . 2. Suppose that each word  � has ��� M occurrences of
� , and let � be the language of all the words in 6!/��

� � � : H with exactly � occurrences
of � . Let �� be the segmented language  ��� � , which is semilinear because  � is
semilinear and � is obviously semilinear and commutative. Since  � + � , then  ���
 � �  ��� 6 � �  � :&� �� �  � . Hence, �)6� ���  � :Y���)6��� �  � :Y���)6���': � �)6� � : ,
since  � is locally commutative and �� is segmented. Then, from the proof of part (1)
above, �_6� ��  � :Y�+�_6��)6� ���  � :�:&� �E6��)6����: � �)6� � :�: c Since elements in �)6���':
and �)6� � : are made of tuples, and from part (1), �)6�
��: and �)6� � : are semilinear
languages, also �)6����: � �)6� � : is a semilinear language [14]. The result follows from
part (1). #$

Lemma 2. Let -+ � � S
��� � � � 	hS 	 � are configurations of P �
be a semilinear language.

Then, given a clock constraint ;�(�� 	 , >< 	 � ��� S
� � � � �_(  	h;�64S_`�a 	� � � 	�SE`'b�: � is also
a semilinear language.

The proof of Lemma 2 is immediate from Lemma 1.
Let P = be an MQDTA with clocks � � 	� � � 	 � U and queues � � 	� � � 	��%! . We now

show a technique to eliminate the tests (which are the enabling conditions, i.e., Boolean
combinations of � J ��� , � J � � � ��� with � an integer constant) in an MQDTA P . Let�

be one plus the maximal absolute value of all the integer constants that appear in
the tests in P . Denote the finite set

� � �%��� � �
� � � 	� � � 	 � 	� � � 	 � �

. Entries � J � and� J for M � N 	�� � �
are finite state variables with values in

� � � . Intuitively, � J � and
� J

are used to record � J � � � and � J respectively. However, during the computation of P ,
when � J � � � (or � J ) goes beyond

�
or below � � , � J � (or

� J ) stays the same as
�

or � � . On executing an edge 1 , the new entry values � <J � and
� <J can be expressed by

only using the old values � J � and
� J through entry updating instructions. For instance,

suppose the set of clock resets is 5O� � � � � for 1 . The entry updating instructions on
this edge are: for all M �|N 	p� ��

with
N 	��3@��� , � <��� 	 � � ��� <� � � � � � �4� <J � 	j� � J���� <J � 	 �

�KJ � � � <J 	j� � J � � <� 	j� �
. The detailed construction of the entry updating instructions on

any edge 1 is omitted, since it is a variant of the one presented in [13]. The addition of
appropriate entry updating instructions on each edge guarantees that: after P executes
any transition, (1). � J � � � ��� iff � J � ��� , (2). � J ��� iff

� J ��� , for all M ��N 	�� � �
and

for each integer � � � �F� �
. The proof of this statement (omitted here) is similar



to one in [13], though here we deal with different machine models and different clock
behaviors. Thus, by adding entry updating instructions, each � J � � � ��� (or � J ��� ) can
be replaced by � J � ��� (or

� J ��� ). The resulting automaton is denoted by P < .
The replaced tests and the entry updating instructions in P2< can be further elimi-

nated by expanding the states � . The result automaton is called P � with states � � +
�/. � � � i U��  U o . In short, each expanded state in � � indicates the original state �F(-�
and values (totally

� � { �
many) of entries � J � and

� J . Each edge 1 (connecting a pair of
states � 	��'< in � ) in P"< is thus split into a finite number of edges in P � . Each split edge in
P � connects two expanded states

�� 	 ���< in � � with the their original states being � and �B<
respectively, and the values of the entries in

�� satisfying the test on 1 (thus the replaced
tests are eliminated in P � ), and the values of the entries in

�� and
��B< being consistent with

the entry updating instructions on 1 (thus the entry updating instructions are eliminated
in P � ). Recall that, for an MQDTA, there is only one final state � � . So, in P � , all the
expanded states with their original state being � � are merged into one state � � – doing
this will not change the behavior of P � since the final state is used to initiate a restart
transition and its enabling condition cannot depend on clock values. The restart set � �

of P � is modified as the set of all pairs 6rQ 	 ��': such that 68Q 	��B: (�� in P < and
�� has the

original state � and all the entry values in
�� are 0 (since after a restart transition from

�'� to � , all the clocks � � 	� � � 	�� U become zero.). Now, P � is an MQDTA with states � � ,
restart set � � , clocks � � 	� � � 	�� U , and queues � � 	� � � 	��%! . Each enabling condition in
P � is simply true.

Based upon the above simulations, we can establish the following theorem, noticing
that PL< simulates P as we indicated before.

Theorem 2. For all configurations S and
�

of P , S � � �
iff there are configurations

S � and
� �

of P � such that S � � � � � �
, and the following conditions hold:

– The original states of the extended states S �^ and
� �^ are S\^ and

� ^ respectively.
The entry values � J � and

� J in the extended state S �^ are the initial entry values
constructed from S as: if

� S}`�[ ��S_`�� � � �
, � J � 	 �wS_`'[ ��SE`�� ; if SE`�[ ��SE`���� �

,
� J � 	j� �

; if S_`'[ �?SE`��2� � � , �KJ � 	j� � � ; if SE`'[ � �
,
� J)	 � S_`'[ ; if SE`�[ � �

,� J 	 � �
; for each M �ON 	p� ���

.
– Clock values and queue contents are the same in S and S � , and in

�
and

� �
.

Theorem 3. If � � � is semilinear, then so is � � .

Proof. From Theorem 2, the entry values in the extended states S �^ and
� �^ can be

dropped by applying a homomorphism. However, � � is the homomorphic image not
only of � � � , but of a proper subset of � � � . In fact, as stated in Theorem 2, the entry
values in the extended state S �^ are the initial entry values constructed from S . This
condition can be expressed as a clock constraint, since the entry values � J � and

� J are
bounded. The result is immediate by applying Lemma 2 on P � , and applying the ho-
momorphism to &< as in the lemma. #$

Theorem 4. The language � � � is semilinear.

Proof. The language � � � is
��� S���� � � � 	 Sx� � � � � c An MQSM . to simulate P � has

an input alphabet including all the following symbols:



– symbols �� and
�� for each � in the state set of P � . �� is used to encode the state S ^ of

S , and
�� is used to encode the state

� ^ of
�

.
– symbols �� J and

�� J , M ��N���
. �� J is used to encode the unary string representation

of the clock value S ` [ , and
�� J is for

� ` [ .
– symbols �Q and

�Q for each Q ( � . Letters �Q are used to encode queue words
S_Z}a 	� � � 	�SEZ n of S . Letters

�Q are for those of
�

.
– � � { ��� { � delimiters � 	 �� 	 �� 	 �� J 	 �� J�	 �� � 	 �� J�	 �� � , for M �ON>���

and M � � � � .
– padding symbols �� and

�� J for M ��NY���
.

The format of the input to . is:

���
	� 	�� a 	� a�������	��� n
	� n 	�

��� aa 	� a������	� �� bb 	� b 	������� � �� �� � a �� a������ �� � n
��
n ��
� � aa �� a � �=aa �� a������ �� � � bb �� b � � bb �� b

The part before � is the encoding for S , and the part after � is for the encoding for
�

.
The first part has four segments, from left to right:

– �S ^ is a symbol encoding the state S ^ , followed by a delimiter �� .
– �S_Z}a �� �  � � !�SEZ n

�� ! is the concatenation of the queue words S}Z_[ , using the delim-
iters �� � 	� � � 	 �� ! . Note that, instead of using S}Z\[ for a queue word, we use �S}Z\[ by
replacing each Q3(F� with �Q .

– ��#" � a� �� �  � � $�� " � bU �� U is the unary string representations �� " � [J of the clock value SE`'[
using the symbol ���J , concatenated by delimiters �� � 	� � � 	 ��2U .

– a padding word �� � is a unary string over character �� . The number � is used to
indicate the number of transitions in P � that lead from S to

�
.

The second part has three segments from left to right, the first two being defined sim-

ilarly, while the third one
��
% � a� �� � �� � a�

�
� �  � � ��

% � bU
�� U

�� � bU
�
�2U is the unary string repre-

sentation
��
% � [J of the clock value

� `'[ using the symbol
���J , concatenated by delimiters�

� � 	� � � 	 �� U . But we do not simply use
��
% � [J : instead, there is a padding

�� � [J (a unary

word of length � J over the character
�� J ) after each

��
% � [J , separated by a delimiter

�� J .
These clock padding words will be made clear later.

Besides queues � � 	� � � 	��"! , . has stacks � � 	� � � 	 � U . Each stack � J is used to
store the clock value of � J of P � . At start, . first pushes a new symbol & J twice onto
each stack � J – these symbols are used as indicate the bottom of each stack. . then
reads the input tape up to the padding word �� � . During the process, . stores the queue
contents and clock values into � � 	� � � 	��%! and � � 	� � � 	 � U respectively. Then, . starts
to simulate P � from the state S ^ read from the input tape. Each move of P � causes .
to read a symbol

�
and to simulate the queue operations using its own queues. The

clock changes in P � are simulated by using the stacks of . . Suppose that currently P �
executes an edge with a set 5 of clock resets. If 53� y , then, after firing the transition,
all clocks progress by one time unit. . simulates this by pushing the symbol

��\J onto
the stack ��J for each M �,NF� �

. Otherwise, if 5 @� y , then, after the firing of the
transition, the clocks in 5 are reset and the others are left unchanged. . simulates this
by pushing a special symbol & J onto the stack � J for each � J ( 5 , and by pushing
nothing ( � ) on the other stacks. During the simulation of P � , . never pops the stacks,
and in fact it need not, since all the enabling conditions in P � are simply true. After



having read all the padding word
�
� , when . reads the delimiter � , it must make

sure that the current state of P � corresponds to the symbol
�� ^ on the input tape. .

also pushes a new symbol � J onto each queue � J , in order to use them later to decide
whether a queue is empty. . then moves to the final state � � , which is also the final
state of P � . There, . starts checking that the rest of the input tape is consistent with
its current queue and stack contents. Such check requires . to pop repeatedly from
its queues and stacks; these operations require, from the definition of an MQSM, that
pop-queue-transitions and pop-stack-transitions occur in a final state and that the next
state after a pop operation only depends on the current input character and the queue or
stack symbol just read. But we use different sets of alphabets in the encoding of the rest
of the input tape. Therefore, a pop-queue-transition executed now cannot be confused
with a normal pop-queue-transition in . ’s simulating P � when reading the padding
word �� � .

. proceeds by emptying each
N
-th queue, from � � to � ! , while checking the cor-

respondence between the current top symbol of a queue and the symbol on the input
tape. . can also check when the queue �LJ becomes empty by checking that the cur-
rent input character is the delimiter

�� J and that the current top of the queue is � J (the
symbol . pushed before). After all the queues are successfully compared and emptied,

. starts to compare the clock values
��
% � [J on the input tape with the stack ��J , from

� � to � U . For each � J , . reads the input
��
% � [J and pops a symbol from � J . Once the

bottom symbol & J becomes the current top symbol, the current input character must be
the delimiter

�� J . After this, . empties � J by reading through the clock padding word�� � [J , but it makes sure that the delimiter
�
�LJ , right after the clock padding word, is cor-

respondent to the last symbol &>J on the stack (remember that initially we pushed two
& J ’s onto the stack. Thus, � J is a guess of how many symbols there are between the first
& J and the last & J in the stack. What if such a guess is wrong? In that case, since we use
different

�� J for each
N

to represent both the stack word and the clock values on the input
tape, . always knows, assuming the guess is wrong, whether a stack symbol

�� J hits an
unexpected symbol like

�� � – either the guess of � J is too small or it is too large. In this
case, and in all the other cases where comparisons fail, . moves into a deadlock state
– a special state where no further transition is possible.

. accepts the input iff all comparisons are successful and the input head is at the
end of the tape. Notice that . has no � -moves. Denote with  6�. : the language ac-
cepted by . . Thus,  6�. : is a semilinear language from Theorem 1. Notice that .
does not check whether the input is in a correct format. Let  < be the regular lan-
guage composed of all the strings in the correct format-it is a segmented language with
� � { �V� { � segments. It is easy to check that �< is also a semilinear, locally commutative
language. Thus, &< < �  6�. : � >< , i.e., the set of all input strings accepted by . and in
the correct format, is also a semilinear language from Lemma 1. �< < is different from the
language � � � , but not too much. From the previous construction, S�� � � �

iff there
are � , � � 	� � � 	 ��U , such that the input word given as in the beginning of this proof can
be accepted by . . Thus, define a homomorphism � such that, �_6 �� :v���\6

�� J :)� � ,
�\6!�V:O���_6 �� J :����_6 �� :O���_6 �� :����\6 �� J :O���_6 �� � :����\6 �� J :O���_6 �� � :�� � ,
�\6���':0���\6 ��B:0� � , �\6 �Q�:0���\6 �Q�:0� Q 	��_6 �� J :0���_6 �� J :0� M , for all M � N0� �

and
M � � � � , for all � being a state of P � , for all Q3(F� . Obviously, �_6��< <=:Y��� � � . Thus,



� � � is a semilinear language (since the homomorphic image of a semilinear language
is still semilinear). #$

The following main theorem can be shown by combining Theorems 3 and 4.

Theorem 5. � � is a semilinear language for any MQDTA P .

An MQDTA P has no input tape, i.e., there is no event label on edges. However, if each
edge is labeled, we can extend the states of P by combining a state with a label. In this
case, a configuration contains only the current event label instead of the whole input
word consumed. This may make applications more convenient to be dealt with, though
all results still hold.

4 Verification Results

In this section, we formulate properties that can be verified for an MQDTA. Given
an MQDTA P , let S 	 �  � � denote variables ranging over configurations, and let S ^
(state variables), S}`�[ (clock value variables) and S}Z � (queue content variables) de-
note, respectively, the state, the clock � J ’s value and the content of the queue � � of S ,
M � Nv� � 	�M � � � � . We use a count variable ���]64S_Z\��: to denote the number of
occurrences of a character Q?(�� in the content of the queue � � in S , M � � � � . An
MQDTA-term � is defined as follows: � 	 	j� � � S�`�[ � ����6GSEZ �': � � �+� � � { � , where
� is an integer, Q/(�� , M ��NL� � 	�M � � � � . An MQDTA-formula

�
is defined as

follows:
� 	 	j� � � � � � mod ��� � ��� � � ����� � � ^ �
	 , where �|@� �

is an integer
and 	 is a state of P . Thus,

�
is a quantifier-free Presburger formula over control state

variables, clock value variables and count variables. For
� ��M , let � be a formula in

the following format: � �� J  5 6 � J�� S J � � � J : , where each
� J is a MQDTA-formula

and all S J and
� J are configuration variables. Let ��� be a closed formula such that each

free variable in � is existentially quantified. Then, the property ��� can be verified.

Theorem 6. The truth value of ��� with respect to an MQDTA P is decidable for any
MQDTA-formula � .

Proof. Let  6G� : be the language of the string encodings of the tuples of all the config-
urations that satisfy a MQDTA-formula � . Thus,  6��":Y��� J��  6GS J � � � J : �  6 � J�:�� .
We will show that  6��": is a semilinear language. Since all the proofs are constructive,
the semilinear set of  6��": can be effectively constructed from � and P . Thus, testing
whether ��� � � � ;���1 , which is equivalent to testing the emptiness of  6��": , is decidable
[14]. Since semilinearity is closed under union, without loss of generality we show that
 �
�  � is a semilinear language, where  � �  6GS-� � � : and  � �  6 � : . From
Theorem 5,  � is a semilinear language. Notice that  � is locally commutative – the
reason is that the contents of the queues are used only by count variables. �)6� � : , the
result of applying the Parikh transform � , is a semilinear language. Thus, from Lemma
1, part (1),  � is a semilinear language. Hence,  ���  � is a semilinear language from
Lemma 1, part (2). #$

For instance, the following property: “for all configurations S and
�

with S/� � �
,

clock � � in
�

is the sum of clocks � � and � � in S , and symbol Q � appears in the first
queue � � in

�
is twice as many as symbol Q � does in the second queue � � in S .” can



be expressed as, ��S�� � 6GSF� � � u 6 � ` � �DS ` a { S ` � � � � aB6 � Z a�:
� � � � � 64S Z � :�:�: c
The negation of this property is equivalent to � � for some MQDTA-formula � . Thus,
it can be verified.

Verification of an example. Consider the LAN printer example of Section 2. A prop-
erty verifiable with our model is that the first queue is actually bounded: it can never
contain more than 4 elements. This can be formalized as follows: for every S 	 � , such
that S � � �

: S ep�G� � � � ���_6GS Z � :�� ���z6GS Z � :W� ����6GS Z � :�� � � ���\6 � Z � : {
���z6 � Z � : �	� . Notice that the binary queue of P need not be bounded, but the bound-
edness is a decidable property of P . If this is the case, the implementation of the system
might rely on a small buffer of size 4 to implement the queue. More sophisticated prop-
erties can also be verified, and the system itself could be made more complex.

5 Conclusions

We introduced a new version of Timed Automata augmented with queues (MQDTA),
and we proved that its binary reachability is effectively semilinear, allowing the auto-
matic verification of a class of Presburger formulae over control state variables, clock
value variables and queue content.

An MQDTA is more powerful than the other timed (finite-state or pushdown) mod-
els, and it can be used for modeling various systems where FIFO policies are used. Such
models are based on discrete–rather than dense–time. This choice is perfectly adequate
for synchronous real-time systems, where there is always an underlying discrete model
of time, but it is also suitable for modeling various asynchronous systems where discrete
time is a good approximation of a dense one. Since this is the first paper introducing
and investigating the model, we did not develop explicitly a verification algorithm. Us-
ing an automata-theoretic approach, we reduced the problem of checking reachability
properties to checking certain Presburger formulae over integer values. Hence, the the
complexity of the verification has a very high upper bound (nondeterministic double
exponential). This is not as hopeless as it may seem. For instance, the Omega-library
of [20] could be used to implement a verification algorithm, since the library is usually
reasonably efficient for formulae without alternating quantifiers (as in our case). Also,
a very high upper bound is typical of the automata-theoretic approach, but often the
upper bound may be reduced by using a (more complex) process algebra approach.

The MQDTA has some limitations in expressivity: for instance, it cannot check how
long a symbol has been stored in a queue before being consumed. Moreover, when a
queue is read, all the clocks are reset. However, the model could be powerful enough to
describe and verify useful, real-life infinite-state systems (such as the simple job sched-
uler with timeouts and a priority queue of Section 2) that, at the best of our knowledge,
cannot be modeled and automatically verified by any other formalism. The model only
considers queues, but in general stacks could be used instead or together with queues,
since the ����� model (on which MQDTA are based) allows both kinds of rewriting
policies. This can be useful, since for instance a stack can model recursive procedure
calls, and the queues may model a process scheduler.

Our results imply that it is decidable to verify whether the paths of the reachability
satisfy constraints expressed in a fragment of Presburger arithmetic. This can be easily
achieved by recording, in one additional queue of the automaton, the history of the



moves. For instance, it is possible to verify that the total time a symbol has been waiting
in a queue does not exceed a given threshold, even though, as remarked above, this
control cannot be done by the MQDTA itself.

References

1. P. Abdulla and B. Jonsson. Model checking of systems with many identical timed processes.
Theoretical Computer Science, 290(1):241–264, 2002.

2. P. Abdulla and A. Nyln. Timed petri nets and bqos. In ICATPN’2001, 22nd Int. Conf. on
application and theory of Petri nets, 2001.

3. R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Information and
Computation, 104(1):2–34, May 1993.

4. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, April 1994.

5. M. Benedikt P. Godefroid and T. Reps. Model checking of unrestricted hierarchical state
machines. In ICALP 2001, of LNCS 2076, pp. 652–666. Springer, 2001.

6. L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi Reghizzi. Multiple pushdown lan-
guages and grammars. Int. Journal of Found. of Computer Science, 7:253–291, 1996.

7. L. Breveglieri, A. Cherubini, and S. Crespi Reghizzi. Real-time scheduling by queue au-
tomata. In FTRTFT’92, vol/ 571 of LNCS, pages 131–148. Springer, 1992.

8. L. Breveglieri, A. Cherubini, and S. Crespi Reghizzi. Modelling operating systems sched-
ulers with multi-stack-queue grammars. In Fundamentals of Computation Theory, volume
1684 of LNCS, pages 161–172. Springer, 1999.

9. G. Cece and A. Finkel. Programs with quasi-stable channels are effectively recognizable. In
CAV’97, volume 1254 of LNCS, pages 304–315. Springer, 1997.

10. H. Comon and Y. Jurski. Multiple counters automata, safety analysis and Presburger arith-
metic. In CAV’98, volume 1427 of LNCS, pages 268–279. Springer, 1998.

11. H. Comon and Y. Jurski. Timed automata and the theory of real numbers. In CONCUR’99,
volume 1664 of LNCS, pages 242–257. Springer, 1999.

12. Zhe Dang. Binary reachability analysis of pushdown timed automata with dense clocks. In
CAV’01, volume 2102 of LNCS, pages 506–517. Springer, 2001.

13. Zhe Dang, O. H. Ibarra, T. Bultan, R. A. Kemmerer, and J. Su. Binary reachability analysis
of discrete pushdown timed automata. In CAV’00, LNCS 1855, pages 69–84. Springer, 2000.

14. S. Ginsburg and E. Spanier. Semigroups, presburger formulas, and languages. Pacific J. of
Mathematics, 16:285–296, 1966.

15. P. Godefroid and R. Jagadeesan. Automatic abstraction using generalized model checking.
In CAV’02, volume 2404 of LNCS, pages 137–150. Springer, 2002.

16. B. Grahlmann. The state of pep. In AMAST’98, LNCS 1548, pages 522–526. Springer, 1998.
17. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-

time systems. Information and Computation, 111(2):193–244, June 1994.
18. R. Parikh. On context-free languages. Journal of the ACM, 13:570–581, 1966.
19. A. Pnueli and E. Shahar. Livenss and acceleraiton in parameterized verification. In CAV’00,

volume 1855 of LNCS. Springer, 2000.
20. W. Pugh. The omega test: a fast and practical integer programming algorithm for dependence

analysis. Communications of the ACM, 35(8):102–114, 1992.
21. B. Steffen and O.Burkart. Model checking the full modal mu-calculus for infinite sequential

processes. In ICALP’97, volume 1256 of LNCS, pages 419–429.


