Journal of Automata, Languages and Combinatorics u (v) w, x=y
(© Otto-von-Guericke-Universitit Magdeburg

On the Decidability of Model-Checking for P Systems !

ZHE DANG

School of Electrical Engineering and Computer Science, Washington State University
Pullman, WA 99164, USA
e-mail: zdang@eecs.wsu.edu

OSCAR H. IBARRA

Department of Computer Science, University of California
Santa Barbara, CA 93106, USA
e-mail: ibarra@cs.ucsb.edu

CHENG L1

School of Electrical Engineering and Computer Science, Washington State University
Pullman, WA 99164, USA
e-mail: clifReecs.wsu.edu

and

GAOYAN XIE®

Department of Computer and Information Science, University of Massachusetts at Dartmouth
North Dartmouth, MA 02747, USA
e-mail: gxie@umassd.edu

ABSTRACT

Membrane computing is a branch of molecular computing that aims to develop models and
paradigms that are biologically motivated. It identifies an unconventional computing model, namely
a P system, from natural phenomena of cell evolutions and chemical reactions. Because of the nature
of maximal parallelism inherent in the model, P systems have a great potential for implementing
massively concurrent systems in an efficient way that would allow us to solve currently intractable
problems. In this paper, we look at various models of P systems and investigate their model-checking
problems. We identify what is decidable (or undecidable) about model-checking these systems under
extended logic formalisms of CTL. We also report on some experiments on whether existing conser-
vative (symbolic) model-checking techniques can be practically applied to handle P systems with a
reasonable size.

Keywords: membrane computing, P system, model-checking

I'The work by Zhe Dang, Cheng Li and Gaoyan Xie was supported in part by NSF Grant CCF-0430531. The
work by Oscar H. Ibarra was supported in part by NSF Grant CCF-0430945.
2The work was done when the author was a PhD student at Washington State University.

2 Z. Dang, O. H. Ibarra, C. Li, G. Xie

1. Introduction

There has been a flurry of research activities in the area of membrane computing (a branch of
molecular computing) initiated five years ago by Gheorghe Paun [12]. Membrane computing
identifies an unconventional computing model, namely a P system, from natural phenom-
ena of cell evolutions and chemical reactions. It abstracts from the way living cells process
chemical compounds in their compartmental structures. Thus, regions defined by a membrane
structure contain objects that evolve according to given rules. The objects can be described by
symbols or by strings of symbols, in such a way that multisets of objects are placed in regions
of the membrane structure. The membranes themselves are organized as a Venn diagram or
a tree structure where one membrane may contain other membranes. By using the rules in a
nondeterministic, maximally parallel manner, transitions between the system configurations
can be obtained. A sequence of transitions shows how the system is evolving. Various ways
of controlling the transfer of objects from a region to another and applying the rules, as well
as possibilities to dissolve, divide or create membranes have been studied [13]. Due to the
maximal parallelism inherent in the model, P systems have a great potential for implement-
ing massively concurrent systems in an efficient way that would allow us to solve currently
intractable problems (in much the same way as the promise of quantum and DNA computing)
once future bio-technology gives way to a practical bio-realization.

Designing a P system to achieve a pre-defined computational goal is difficult and extremely
error-prone. This is because, unlike traditional programming languages, the inherent maxi-
mal parallelism in the model makes the P system highly nondeterministic, concurrent, and,
more importantly, lack of control-flow structure (e.g., without “control states”). The diffi-
culties naturally call for algorithmic (i.e., decidable) solutions to the verification problem:
whether a designed P system does have the desired behavioral property. The solutions will
also be important in the future when people implement a P system in vivo. This is because an
erroneous P system will be deemed a failure in an expensive lab realization. It is highly de-
sirable to validate the P system in advance in vitro, e.g., through digital computers. Another
important application of results concerning decidable properties of P systems is in biology,
where such systems are now being proposed for the modeling and simulation of cells. While
previous work on modeling and simulation use continuous mathematics such as differential
equations, P systems will allow us to use discrete mathematics and algorithms. As a P system
models the computation that occurs in a living cell, an important problem is to develop tools
for determining reachability between configurations, i.e., how the system evolves over time.
Specifically, given a P system and a configuration U (a configuration is the number and dis-
tribution of the different types of objects in the various membranes in the system) and some
constraints f (e.g., a linear constraint over the numbers of different types of objects), is there
a configuration V satisfying f that is reachable from U? This is essentially a model-checking
[5] problem: whether a transition system meets a desired temporal property.

Unfortunately, to our best knowledge, model-checking theories for P systems have never
been studied so far. In our opinion, this is, probably, due to the short history of membrane
computing and also due to the theoretical difficulty of handling the maximal parallelism,
which is quite different from the conventional infinite state transition systems currently being
studied in model-checking.

In this paper, we try to identify what is decidable about model-checking of P systems.

On Model-Checking of P Systems 3

Clearly, since a P system is Turing complete in general, we have to focus on restricted P
systems in order to make the model-checking decidable. The first restriction is to focus on
P systems with only one membrane. Essentially, this is more like a technical convenience
than a real restriction. Since the P system model studied in this paper does not have priority
rules and membrane dissolving rules, multi-membranes can be equivalently collapsed into
one membrane through properly renaming symbols in a membrane. The second restriction
is to focus on bounded P systems (BPS) where rules are only in the form of w — v, where
u and v are multisets of objects with |u| > |v| (the size |u| denotes the number of objects
in u). Notice that, since we do not require that a BPS starts with a multiset whose size is
bounded by a fixed constant, the BPS is essentially an infinite state system (or more precisely,
a system with an unbounded number of states). An execution of a BPS can be understood as
a sequence of multisets (configurations). The formalism that we choose to specify the desired
behavioral property is CTLRFS and CTLMN, which allow us to reason upon the executions.
In short, CTLRES and CTLMN are simply CTL [4] augmented with atomic predicates in
REG and in LIN, respectively. More precisely, in REG, one can compare the multiplicity of
a symbol against an integer constant, while in LIN, one can compare a linear combination of
the multiplicities of all the symbols against an integer constant. Notice that basic properties
like halting are expressible in CTLEFS, The corresponding CTLREC (as well as CTLMY)
model-checking problem is to argue whether a given temporal formula is interpreted as an
empty multiset of configurations.

We first look at a non-cooperative BPS M where each rule is in the form of a — b, where a
and b are symbols, in Section 3. Surprisingly, for such systems, the CTLR®S model-checking
problem is undecidable, even for a simple form of 3/ (exist-until) properties. When we fur-
ther require that, in M, a symbol can evolve into at most one kind of symbol, we show that the
CTLRES becomes decidable. On the other hand, when CTLYN (roughly, dropping 3/ from
CTLIN) is considered, its model-checking problem becomes decidable for non-cooperative
BPS. Lastly, when some form of determinism is used to restrict a BPS, the CTLMN is decid-
able. We then turn to study the model-checking problems for BPS (which is not necessarily
non-cooperative, i.e., |u| can be greater than 1), in Section 4. We first give an exact automata-
theoretic characterization of (non)deterministic BPSs reachable and halting configurations.
That is, BPS is equivalent to each of the following three classes of automata: linear-bounded
multicounter machines, log n space-bounded Turing machines, two-way multihead finite au-
tomata. From this result, one can easily conclude that even CTLEFS is undecidable for
(non)deterministic BPS. In the section, we also study some notions of determinism that make
BPS decidable for various model-checking problems.

Given the undecidability results in model-checking P systems, finally, in Section 5, we
conduct some experiments to see whether existing conservative (symbolic) model-checking
techniques such as Omega (which handles infinite state space) and SPIN (which handles
finite state space) for concurrent linear arithmetic programs can be practically applied to
handle P systems (which are not necessarily BPS, and also with multi-membranes, and even
with priority among rules) with a reasonable size. Previous experiments [1] used a model-
checker of rewriting systems where, like our SPIN experiments, object multiplicities have to
be restricted to a finite domain. One of the purposes of our experiments is to let us know if the
maximally parallelism and “lack of control-flow structure” in P systems would cause existing
symbolic encodings for concurrent systems to fail terribly. Our preliminary experiments show

4 Z. Dang, O. H. Ibarra, C. Li, G. Xie

that additional effort is needed in studying more efficient encodings and, in particular, new
techniques to extract the implicit control-flow from P system rules.

2. P Systems and Their CTL Model-checking Problems

Let N be the set of nonnegative integers and ¥ = {ay,. .., ar } be an alphabet, for some k,
and v be a (finite) multiset over the alphabet. In this paper, we do not distinguish between
several representations of w. That is, u can be treated as a vector in N* (the components are
the multiplicities of the symbols in X); u can be treated as a word where we only care about
the counts of symbols (i.e., its Parikh map). We now introduce formulas to define some sets
of multisets. An atomic regular predicate is in the form of #(a) ~ n, where a € ¥, n € N
and ~€ {>,<,=,>,<}. The predicate is interpreted as the subset of multisets u over X
such that the multiplicity #(a) of symbol a satisfies the predicate. A regular formula is a
Boolean combination of atomic regular predicates. We use REG to denote the set of regular
formulas. An atomic linear predicate is in the form of), _, ., n;-#(a;) ~ n, where the n;’s
and n are integers (positive, 0, negative), and ~€ {>,<,=,>,<,=p,,} with0 # m € N.
The predicate is interpreted as a subset of multisets over ¥ accordingly. A linear formula is
a Boolean combination of atomic linear predicates. We use LIN to denote the set of linear
formulas. A set S C N¥ is a linear set if there exist vectors vg, vy, .., v; in N¥ such that
S={v|v=vo+aw+...+aw, a; € N}. Aset S C N¥ is semilinear if it is a finite
union of linear sets. A Presburger formula is constructed from atomic linear predicates using
quantification and Boolean operators. It is known that the following items are equivalent: (1)
a set of multisets (treated as vectors) is semilinear, (2) the set is definable by a linear formula,
(3) the set is definable by a Presburger formula.

In this paper, we only focus on P systems without priority rules and membrane dissolving
rules. In this case, as we mentioned earlier, it suffices for us to consider P systems with
one membrane since multiple membranes can be equivalently collapsed into one by properly
renaming symbols within a membrane.

A (I-membrane) P system M is specified by a finite set of rules. Each rule is in the form of
u — v where u and v are multisets over alphabet ¥.. A configuration in M is a multiset. As
with the standard semantics of P systems [12, 13, 14], each evolution step, called a maximally
parallel move, is a result of applying all the rules in G in a maximally parallel manner. More
precisely, let u; = v;, 1 <4 < m, be all the rules in M. We use R = (r1,...,7,) € N™ to
denote a multiset of rules, where there are r; instances of rule u; — v;, foreach 1 < i < m.
Let U and V be two configurations (multisets) over X. The rule multiset R is enabled under
configuration U if U contains 21 <i<m Ti ~Us (i.e., U contains the multiset union of r; copies
of multiset u;, for all 1 < ¢ < m). The result of applying R over U is to replace, in
parallel, each of the r; copies of u; in U with v;. The rule multiset R is maximally enabled
under configuration U if it is enabled under U and, for any other rule multiset R’ that strictly
contains R, R’ is not enabled under configuration U. Notice that, for the same U, a maximally
enabled rule multiset may not be unique (i.e., M is in general nondeterministic). U can reach
V through a maximally parallel move, written U — s V, if there is a maximally enabled rule
multiset R such that V is the result of applying R over U. Formally, U — 5 V iff

Iry,...,rm € N.MaxEnable(ry,...,rmn, U) A Apply(ri,...,7m, U, V),

On Model-Checking of P Systems 5

where MaxEnable(ry, ..., 7y, U), indicating that (rq, ..., 7,,) is maximally enabled under
configuration U, is the following formula:

U > Z Pio s AV > T T > T (U > Z iU = T =T1A AT, =Th),
1<i<m 1<i<m

and Apply(r1,...,7m, U, V), indicating that V' is the result of applying (r1,...,7) over U,
is the following formula: V. =U — Y, ., 7i " ®;i + Y ; <;<.m T - Vi- Notice that, in above,
we treat the multisets (i.e., U, V, the u’s, and the v’s) as vectors in N*. Clearly, a maximally
parallel move in M is always definable by a Presburger formula. Starting from some initial
configuration, an execution of M goes through a sequence of configurations, where each
configuration is derived from the directly preceding configuration in one maximally parallel
move. Formally, we use U ~» 5y V to denote the fact that V' is reachable from V; i.e., for
some n and Uy, ...,U,, wehave U = Uy =>pr ... 52 U, = V.

From above, a P system M can be treated as a transition system between multisets or vec-
tors in N*. There has been an established theory, called model-checking, in algorithmically
answering verification queries over a transition system’s behavior. For a finite state transition
system, the queries can be specified in a temporal logic like the computation tree logic (CTL)
[4] and various model-checking algorithms are known [5]. For infinite state transition sys-
tems, the logic can also be interpreted in many cases (e.g., [3]). In below, we formulate the
CTL formalism that we will use to specify our verification queries for P systems.

Let A be a given class of atomic predicates. The CTL# formulas f are exactly defined
with the following grammar: f ::= A | fAf| fVf|~f|Jof |Vof | f3IU f| f VYU f, where
A € A is an atomic formula (predicate), and o stands for “next” and U/ stands for “until”. As
usual, the eventuality operator 3¢ f is the shorthand of true U f, and, its dual VO f is simply
=30 —f. We use CTLA to denote the fragment of CTLA where the formulas f are exactly
defined with the following grammar: f = A| fAf| fiVfa|—=f|Tof|Vof|To f| VO,
where A € A is an atomic formula (predicate).

Let M be a P system. We interpret each CTLA formula as a subset of configurations
of M. That is, the interpretation, written | f]M , is a subset of multisets of objects in M.
Formally, the interpretation is recursively defined as follows [3]:

o [A]M is a given subset of multisets of objects in M, where A € A;

o [fun fo™is [AIM N [fo]M

o [frv fa]™is [AIM U [fo]M;

o [=f1]M is the complement of [f1]*; (the universe is the set of all multisets of objects
in M)

o [Fo f1]M (resp. [V o f1]M) is the set of configurations U; such that, for some (resp.

any) execution Uy =y Us =y ..., we have Us € [f1]M;

o [f1 U f2]M (resp. [fi VU f2]M) is the set of configurations U; such that, for some

(resp. any) execution Uy —ar Us —3ar ..., we have Uy, ..., U, € [f1]M and U, 41 €
[f2]M, for some n.

The CTLA model-checking problem is to decide whether, given a P system M and a CTLA
formula f, the set [f]M is empty. Notice that, in our definition of the CTL4 model-checking

6 Z. Dang, O. H. Ibarra, C. Li, G. Xie

problem shown above, we did not mention the initial configurations of M. In fact, a verifica-
tion question like whether a given initial configuration Uy, satisfies f can also be formulated
in our definition as follows: is [Aini¢ A f]™ empty? where A;p;; is an atomic regular predicate
where Ujpi is the only satisfying configuration.

In this paper, we focus on model-checking problems of CTLEFG and CTLYN. Unfor-
tunately, the maximal parallelism in P systems is too powerful to make P systems model-
checkable; even in simple cases, P systems are able to be Turing complete. This leads us to
study restricted forms of P systems where model-checking problems could be decidable. To
this end, we focus on bounded P systems (BPS), in which each rule is in the form of u — v
with |u| > |v| (Ju| denotes the number of objects in w).

3. CTL Model-checking of Non-cooperative Bounded P Systems

Let M be a non-cooperative BPS. That is, M is a 1-membrane P system whose rules are in
the form of @ — b or in the form of a — A (i.e., one object evolves into at most one object),
where a, b € . We first show that the CTLR®FY model-checking problem is undecidable for
M. Clearly, as we have mentioned earlier, when M has multi-membranes, it can be collapsed
into one with 1-membrane. Hence, all the results in this section can be easily generalized to
non-cooperative BPSs with multiple membranes.

Theorem 1 The CTLRES model-checking problem for non-cooperative BPSs is undecid-
able. In fact, the undecidability remains even for CTLREG formulas in the form of
INIT A (AJUH), where INIT, A and H are regular formulas in REG.

Proof. The proof reduces the halting problem of two-counter machines to the CTLREG
model-checking problem.

Consider a two-counter machine M that is a nondeterministic program with counters x;
and zo. Each counter stores a nonnegative integer value and can be incremented and decre-
mented by 1 and tested against 0. (When M tries to decrement a O-value counter, it crashes.)
More precisely, the transition table of M contains finitely many instructions, each of which
is in one of the following forms:

s; 1 x :=1x +1; goto s;;

s; 1 x:=1x — 1; goto s;;

si : (z == 07); goto s;; (fires only when 2 == 0)

s; : (z > 07); goto s;; (fires only when > 0)
where z is a counter, each s is a state in M (there are only a finite number of them). In the
above, we say that the instruction leads from s; to s;. In particular, two states, Sg¢art and Spat,
are designated as the starting state and the halting state, respectively. HALT is the problem
that decides whether there is an execution from Sg¢a,¢, With both counters initially being 0, to
Shalt- 1t is well-known that HALT is undecidable [11].

Given a two-counter machine M, we now construct a non-cooperative BPS M and a
CTLREC formula f as follows. Each state s in M is a symbol s in M. Suppose that M
has t instructions, Iy, ..., I;, for some ¢. For each instruction Ij, we create a new symbol,
also denoted by Iy, in M. The rules in M are created for each instruction I. Suppose that
instruction Iy, is in one of the forms shown in above and leads from state s; to state s;. The

On Model-Checking of P Systems 7

instruction is simulated by two (maximally parallel) moves in M i.e., we add the following
(totally 2¢) rules to M, where 1 < h < ¢:

s$;i = I

1 h — Sj-

Initially in M, #(sstars) = 1 (one copy of the symbol sggart), and #(s;) = 0 for each other
s; and #(Ip,) = 0 for each h. Clearly, the above rules only keep the state transition (instead
of counter behavior) for each instruction in M.

We now take care of the counter behavior for each instruction in M, by adding the fol-
lowing (totally 16) rules to M: (the increment rule-set) ¢, — dg; ¢z — +z; +2 — agz;
d; — cg; and (the decrement rule-set) a, — b;; a, = —z; —» — €z by — ay; where
x € {x1,22}. Hence, in M, we have totally 2¢ + 16 rules. Notice that #(a;) in M corre-
sponds to the counter value z in M. For each counter z, the symbols ¢, d;, +z, bz, —z, €z
are all auxiliary. Initially, the multiplicities for a,, dy, +4, bz, —z, €, are all 0. Hence, only
the multiplicities for ¢, are possibly not 0. The two rule sets, for each x, run in maximally
parallel, as follows. The increment rule-set evolves every c, (the ¢;’s serve as the supplies
for all the increments over x) into an intermediate d, or into +,. Then, each evolved +, is
changed into a, (i.e., an “increment” is made to) and each intermediate d,, is changed back
to ¢;. In parallel to these, the decrement rule-set evolves every a, into an intermediate b,, or
into —,. Then, each evolved —,, is changed into e, (since e, is not enabled at any time, the
rule set essentially makes a “decrement” to). The counter behavior in each instruction of
M is simulated by two maximally parallel moves of the 16 rules.

Unfortunately, the counter behavior is not faithfully simulated by the 16 rules. There
are two reasons. First, the state transitions that are kept in the 2¢ rules shown earlier are
not effectively associated with the 16 increment/decrement rules. Second, the amount of
“increment” and “decrement”, due to the nature of maximally parallelism, is not necessarily
1 that is indicated in an increment/decrement instruction. To overcome the problems, we
construct a CTLREC formula f to “regulate” M’s executions.

For each instruction Ip, we construct a regular Ay, (i.e., a Boolean combination of atomic
regular predicates) as follows (we only show the construction for instructions concerning the
counter z1; the case for 22 can be handled symmetrically):

e The instruction I}, is in the form of s; : 21 := x1 + 1; goto s;. In this case, we define
the formula A, to be

That is, when the 2¢ rules evolve the initial object sgtart into object Iy, (i.e., the instruc-
tion Iy is being simulated), we require that the amount of “increment” to x;, when
the increment rule-set for z1 runs, is 1 (i.e., #(+z,) = 1 shown in the formula) and
the amount of “decrement” to x;, when the decrement rule-set for x; runs, is O (i.e.,
#(—2,) = 1 shown in the formula). Additionally, the counter z» does not change (i.e.,
#(+2,) = 0A #(—4z,) = 0 shown in the formula).

e The instruction I}, is in the form of s; : 21 := x1 — 1; goto s;. In this case, we define
the formula A}, similar to the above case, to be

#(Ih) =1 = (#(_z1) =1A #(+z1) =0A #(+z2) =0A #(_z2) = 0)

8 Z. Dang, O. H. Ibarra, C. Li, G. Xie

e The instruction I, is in the form of s; : (1 == 07); goto s;. In this case, we define
the formula A, to be

#(Ih) =1 = (#(ban) = 0/\#(_3:1) = 0/\#(+®1) = 0/\#(+ﬂ?2) = OA#(_$2) = 0)

Notice that when #(I,) = 1, the number #(b,,) of intermediate symbols b,, cor-
responds to the number of a,, (the current value of £; when I}, is executed), as long
as both z; and z2 do not change (i.e., #(—z,) = O A #(+z,) = 0 A #(+4,) =
0N #(—z,) = 0).

e The instruction I, is in the form of s; : (z1 > 0?); goto s;. In this case, we define the
formula Ay, to be

#(In) =1 = (F#(bey) > OAH#(—2,) = 0A#(+2,) = OA#(+22) = 0A#(—2,) = 0).
We use A to denote the conjunction of all the A ’s; i.e.,
A= A\ A
1<h<t

Notice that the halting condition of M can be expressed as an atomic regular predicate H that
is #(snait) = 1. As we have mentioned earlier, initially, M starts with one copy of Sgtart;
ie.,

#(sstart) = LA A #(g) =0. ()
Sstart ZqE{81,e»8k L1, It }
In the above, s1,..., s are all the states in M. Additionally, the initial multiplicities for
symbols az,dy, +4, bz, —z, €z, Where z € {1, 22}, are all 0; i.e.,
#(q) = 0. (2)

¢€{az,da,t2,02,— 2,2 },@E{T1,22}

Notice that, initially, we do not restrict #(c,). We use INIT to denote the conjunction of (1)
and (2). To faithfully simulate M, we would like M to start with some multiset (e.g., some
multiplicities for symbols ¢;, and c,) satisfying INIT, and then the “regulator” A is always
been satisfied, and finally, the halting condition H is satisfied; i.e., M satisfies the CTLRFG
formula f defined as INIT A (A 3 H). From above, it is clear that HALT holds for counter
machine M iff [f]™ is not empty for the non-cooperative BPS M. Since INIT, A and H are
all regular formulas in REG, the result follows. O

We should point out that in the proof of Theorem 1 we did not use rules in the form of
a — A. Hence, Theorem 1 still holds when only rules in the form a — b are used. Because
of the theorem, we will study a restricted form of M that makes CTLREG model-checking
decidable. A non-cooperative BPS M is special when, for any a, if @ — b and a — ¢ with
b,c # A are rules in M, then b = ¢ (i.e., a could be disappear with @ — A but it can not
evolve into two kinds of symbols).

Theorem 2 The CTLREC model-checking problem for special and non-cooperative BPSs is
decidable.

On Model-Checking of P Systems 9

Proof. Let M be a special and non-cooperative BPS whose alphabet is ¥ and f be a
CTLRFG formula. The CTLRFS formula f is built up from atomic regular predicates in
the form of #(a) ~ n, where a € X, n € N and ~€ {>,<,=,>, <}, using Boolean
connectors and temporal operators. We use constant B to denote the maximal constant n that
appears in the atomic regular predicates in f.

Before we proceed further with the proof, we need some more definitions. Let ¥ =
{ai,...,ax}. Consider a formula in the form of

N #@) ~i ni 3)

1<i<k

where each ~;€ {=,>,>} and each 0 < n; < B. A B-mube is the set of tuples

(#(a1),-..,#(ag)) in N that satisfy a formula in (3). Clearly, a configuration of M is a
multiset over ¥, which can be represented as a vector in N*. We use the notation

13,y @)

to represent the tube. For instance, [2>,42,17] represents all the multisets with more than
2 ay’s, at least 4 az’s, and 1 a3. The empty set () or a finite union of B-tubes is called a B-
regular set, which serves as the symbolic representation of the interpretation set [f]™ (which
is also a set of configurations) in the following model-checking procedure for CTLEEG for-
mula f, which is analogous to the procedure proposed in [3].

Observe that, for each fixed B, B-regular sets are closed under Boolean combinations (i.e.,
= (complement), N, U). To prove that [f]™ is a B-regular set for every CTLRE® formula f,
we use an induction over the definition of f:

e f is an atomic regular predicate. Clearly, [f]* is a B-regular set.

o fis—fi,fi A faor fi V fa, and both [f1]™ and [f2]™ are B-regular sets. Using the
observation, we know that [f]™ is also a B-regular set, according to the definition of
[AM.

e fisJo f; and [f1]M is a B-regular set. Then, by definition, [3 o f1]¥ = {u :
Ju,u —=pr v A v € [f1]M}. We use Pre([f1]M) to denote the set. It suffices for us
to show that Pre([f1]™) is a B-regular set when [f1] is a B-tube; e.g., in the form
of [ny™,...,n;*] with each 0 < n; < B. We will construct each constituent B-tube
[m1*,...,m,*]in Pre([f1]™). For each symbol b, we use H~'(b) to denote all the
symbols a such that @ — bis a rule in M. H~1(b) could be an empty set. Because M
is special, all of the sets H ~!(b) are disjoint for distinct b’s. Now, we fix any i with
H(a;) # 0. Suppose that a;, , . . ., a;, (for some t) are all the symbols in H*(a;).
Then the B-tube [m7", ..., m, *] must satisfy the following conditions:

- if ~;is =, then } 7, .., my; = n; and, for each j,
* ~;. is = whena;; = Aisnotarulein M.
* ;. is > when otherwise.
This is because each of the n; copies of symbol a; is evolved from one of the

a,-j ’S.

o o .
— if ~;is >, then 32, o, my; = n; and each ~] is >.

10 Z. Dang, O. H. Ibarra, C. Li, G. Xie

— if ~; is >, then Z1§jgt m;; = n; and, among ~; , ..., ~; , there is exactly one
> and the rest are all >.

The above three conditions are called CONDITION(:) for i satisfying H ~1(a;) # 0.
Now, we define CONDITION(4) for i satisfying H ~'(a;) = (). That is, there is no rule
like @ — a; in M, for any a. There are two subcases:

— a; = Aisarulein M. In this case, due to maximal parallelism, there shouldn’t
be any a;-objects in a configuration that is reached from a configuration in [m; *,

...,m;’“]. Hence, if ~; is > or n; > 0, then we have already calculated
Pre([fi]™), which is simply §. That is, the CONDITION() is simply false.
Otherwise, the CONDITION(?) is as follows: m; = 0 and ~/ is >.

— a; — Aisnotarule in M; i.e., a; is not enabled by any rule in M. In this case,
every copy of a; is kept after a maximal parallel move; i.e., the CONDITION(%)
is m; = n; and ~i=n~;.

We use CONDITION to denote the conjunction of all CONDITION(:) for all .
When CONDITION is false, Pre([fi]™) is empty. Otherwise, Pre([fi]™) is ex-

actly the union of all the [m7?,...,m} *] that satisfy CONDITION. Notice that such

[mlNll, cen m:;“] is always a B-tube. Therefore, B-regular sets are closed under Pre;
ie., [f]™ = Pre([f1]M) is also a B-regular set.

e fisVo fi and [f1]M is a B-regular set. Noticing that [f]M = —Pre(=[fi]), the
result that [f]M is also a B-regular set can be followed easily.

o fis fi U fo and both [f1]M and [f2]™ are B-regular sets. Using [3], the set [f]™ can
be calculated as the limit of the monotonic sequence Qq, Q1, . . ., where Qo = [f2]¥,
and each Q11 = Q; U ([f]™ N Pre(Q;)). Since, as shown above, B-regular sets
are closed under Boolean operations and Pre. Therefore, each @); is a B-regular set.
Also, since there are only a finite number of distinct B-regular sets (for the given B),
the monotonic sequence Qo, - . . of B-regular sets must converge; i.e., [f]M = Q;, for
some 7. Hence, [f]M also a B-regular set.

e fis fi YU f> and both [f1]M and [f2]M are B-regular sets. This case can be ar-
gued similarly, since, using [3], the set [f]™ is the limit of the monotonic sequence
Qo,Q1,---, where Qo = [f2]¥, and each Qi1 = Q; U ([f1]™ N Pre(Q;) N
(—Pre(=Qi)))-

Hence, for the CTLRE® formula f, its interpretation [f]* is always a B-regular set. The
decidability follows, since it takes linear time to check whether the calculated B-regular set
[f]M is empty or not. However, the above induction process is hard for complexity anal-
ysis when treated as a symbolic model-checking procedure. In fact, there is a much easier
algorithm.

For a multiset u, we use |u| to denote the total number of objects in u. Observe that, for
any B-regular set S, S is not empty iff there is a multiset u € S with |u| < k- (B + 1),
where k = |X|. Since the calculated [f] is a B-regular set, to check the emptiness of
[f]M, it suffices to restrict the P system M such that it only starts with multisets u € S with
|u| < k-(B+1). Since M is a BPS, every reachable multiset v also satisfies [v| < k-(B+1).

On Model-Checking of P Systems 11

Therefore, the restricted M is a finite state transition system, whose state space is bounded
by O((k - (B + 1))*). Model-checking f (i.e., the traditional CTL model-checking [4]) over
the finite state transition system takes time O(t- (k- (B +1))¥), where ¢ is the size of formula

f. 0

Because of the undecidability result in Theorem 1, we would like to investigate a fragment
of a CTL logic that makes the model-checking problem for non-cooperative BPSs decidable.
Before we proceed further, we need an intermediate result. Let M be a non-cooperative BPS,
whose alphabet is ¥ = {a1,...,a;}. Recall that we use u ~» s v to denote the fact that
multiset u can reach multiset v in M through some number of maximally parallel moves. We
first show a characterization on the reachability relation ~» ; C N* x N*, which leads to
Theorem 4 later.

Theorem 3 The reachability relation ~»,;C N¥ x N¥ for a non-cooperative BPS M is
definable by a linear formula in LIN.

Proof. Without loss of generality, we may assume that the rules in M are in the form of
a — b (i.e., M does not have erasing rules like a — A). Let ' be an alphabet in which each
symbol is a pair of two symbols in X; i.e., I' = 3 x X. We now build a finite automaton A that
works on an input word w over alphabet ', as follows. First, A guesses a nonempty subset
T of T, called the reachability table. Then, for every pair (a, b) € T, A nondeterministically
simulates a copy of M over the object a; all the copies run in parallel. Nondeterministically
at some moment, A shuts down the simulations simultaneously for all the copies. Then, A
makes sure that, for each pair (a,b), the copy of M for the pair ends up with the object b.
Now, A starts to read the input w. For each symbol in T (i.e., a pair (a,b) € ¥ x X) that A
reads, A makes sure that the pair is in the table T'. At the end of the input, A accepts. We
use u (resp. v) to denote the multiset formed by collecting all the objects in the first (resp.
second) coordinate for all pairs in w. Clearly, w is accepted by A iff u ~» s v. Notice that
the language L(A) accepted by A is a regular and hence semilinear language. From here,
one can show that ~» 3, C NF* x N* defines a semilinear set; i.e., ~» s is definable by a linear
formula. O

Theorem 4 The CTL™™N model-checking problem for non-cooperative BPSs is decidable.

Proof. Let M be anon-cooperative BPS, whose alphabetis ¥ = {a1, ..., ax }. We will show
that, for any CTLMN formula £, the set [f]M is effectively semilinear (i.e., definable by a
linear formula). Therefore, testing the emptiness of [f]™ is immediately decidable. Hence,
the result follows. We use an induction on the definition of CTL*™ formulas f. For the base
case when f is an atomic linear formula, | f]M is clearly semilinear (i.e., definable by the
atomic linear formula). The cases when f is = f1, fi A fo or f1 V fo are all straightforward,
since semilinear sets are closed under Boolean operations. We now focus on the remaining
cases of f:

e fisJofy and [f1]M is semilinear. Notice that [f]™ = {u: Jv.u =y v Av € [f1]M}.
Observe that the one-step maximally parallel move — 57 is definable by a linear formula
and hence semilinear. Using the fact that semilinear sets are closed under Boolean

12 Z. Dang, O. H. Ibarra, C. Li, G. Xie

operations as well as quantification, we conclude that [f]™ is also semilinear. The case
when f is Vo f; can be handled similarly.

e fisJo fyand [f1]M is semilinear. Notice that [f]M = {u : Jv.u~pr v Av € [f1]V}.
From Theorem 3, ~»j; is definable by a linear formula. From the arguments made in
the above item (by replacing — 57 with ~»), we conclude that | f]M is also semilinear.
The case when f is VO f; can be handled similarly.

4. Reachability in Bounded P Systems

We now consider a bounded P system (BPS) M that is not necessarily noncooperative. That
is, rules in M are in the form of v — v with |v| < |u]. Clearly, from Theorem 1, the
CTLREG model-checking problem remains undecidable for M. However, encouraged by the
decidability results in Theorem 4 for non-cooperative bounded P systems, we would like to
know whether the CTLEFG model-checking problem for (not necessarily non-cooperative)
BPSs would still be decidable. In this section, we will prove that this is not true, even in
very simple cases. We say that, when started with some given configuration, a BPS M has a
halting computation if M has an execution that leads to a halting configuration (i.e., none of
the rules is enabled).

We first consider the following problem: Given a bounded P system M with rules of the
form u — v, where |u| = |v| = 1 or 2 and a fixed multiset w and a distinct symbol o not in
w, is there an n such that when M is started with multiset wo™ (the multiset union of w and n
copies of 0), it eventually halts? We shall refer to this as the emptiness problem for bounded
P systems. We will show that this problem is undecidable. In fact, this result holds even
when the system is deterministic in the sense that the maximally parallel multiset of rules
applicable at each step in the computation is unique. The proof idea is sketched as follows,
which is to relate the computation of M to a restricted type of multicounter machine, called
linear-bounded multicounter machine, whose emptiness is known undecidable.

Consider a deterministic (nondeterministic) multicounter machine Z that is linear-bounded
in the sense that when given an input n in one of the counters (called the input counter) and
zeros in the other counters, computes in such a way that the sum of the values of the counters
at any time during the computation is at most n. One can normalize the computation so that
every increment is preceded by a decrement (i.e., if Z wants to increment a counter C, it first
decrements some counter D and then increments C) and every decrement is followed by an
increment. We do not require that the contents of the counters are zero when the machine
halts.

We will show that we can construct a deterministic (nondeterministic) bounded P system
M which uses a fixed multiset w such that, when M is started with multiset wo™, it simulates
Z and has a halting computation if and only if Z halts on input nn. (Again, we do not assume
that the halting configuration of M to be in any special form.) Moreover, the rules of M are
of the form u — v, where |u| = |v| = 1 or 2. Clearly, it follows that the computation of M is
linear-bounded in the sense that any reachable configuration has length exactly |w| + n (i.e.,
the size of the computation space is always the same).

On Model-Checking of P Systems 13

It is convenient to use an intermediate P system, which we shall call RCPS, a restricted
version of the CPS (communicating P system) introduced in [16]. A CPS has multiple mem-
branes labeled 1, 2, ..., where 1 is the skin membrane. The rules in any membrane are of the
forms:

(1) a — ag,
(2) ab — ayby,
(3) ab = agzbyceome,

where a, b, ¢ are objects, x,y (which indicate the directions of movements of @ and b) can
be here, out, or in;. The designation here means that the object remains in the membrane
containing it, out means that the object is transported to the membrane directly enclosing
the membrane that contains the object (or to the environment if the object is in the skin
membrane). The designation ¢n; means that the object is moved into the membrane, labeled
7, that is directly enclosed by the membrane that contains the object. A rule of the form (3)
can only appear in the skin membrane. When such a rule is applied, ¢ is imported through
the skin membrane from the environment (i.e., outer space) and will become an element
in the skin membrane. In one step, all rules are applied in a maximally parallel manner.
For notational convenience, when the target designation is not specified, we assume that the
symbol remains in the membrane containing the rule.

Let V' be the set of all objects (i.e., symbols) that can appear in the system, and o be a
distinguished object (called the input symbol). A CPS M has m membranes, with a dis-
tinguished input membrane. We assume that only the symbol o can enter and exit the skin
membrane (thus, all other symbols remain in the system during the computation). We say
that M accepts o™ if M, when started with 0™ in the input membrane initially (with no o’s in
the other membranes), eventually halts. Note that objects in V' — {0} have fixed numbers and
their distributions in the different membranes are fixed initially. Moreover, their multiplicities
remain the same during the computation, although their distributions among the membranes
may change at each step. The language accepted by M is L(M) = {o™ | o™ is accepted by
M}

It is known that a language L C o* is accepted by a deterministic (nondeterministic)
CPS if and only if it is accepted by a deterministic (nondeterministic) multicounter machine.
(Again, define the language accepted by a multicounter machine Z to be L = {o™ | Z when
given n has a halting computation }). The “if” part was shown in [16]. The ‘only if” part
is easily verified. Hence, every unary recursively enumerable language can be accepted by a
deterministic CPS (hence, also by a nondeterministic CPS).

In a recent paper [10], it was shown that L C o* is accepted by a deterministic (nondeter-
ministic) linear-bounded multicounter machine if and only if it is accepted by a deterministic
(nondeterministic) CPS which is restricted in that the environment does not contain any ob-
ject initially. The system can expel objects into the environment but only expelled objects
can be retrieved from the environment. The restricted system is called deterministic (nonde-
terministic) RCPS.

We can now modify the construction in [10] by introducing a new membrane in the skin
membrane which would simulate the environment. This is possible since, in an RCPS, the
environment does not contain any object initially and only o can be expelled into the environ-
ment and can be retrieved from the environment. It follows that the modified RCPS need only

14 Z. Dang, O. H. Ibarra, C. Li, G. Xie

use rules of the forms (1) and (2). But the modified RCPS, call it M, has multiple membranes.
We will convert this to a 1-membrane system M’. Suppose that M has membranes 1, ..., m.
For each object a in V', M’ will have symbols a1, ..., a,,. In particular, for the distinguished
input symbol 0 in V, M" will have o1, ..., 0,,,. Hence the distinguished input symbol in M’ is
04y, Where ig is the index of the input membrane in M. We can convert M to the system M’
as follows:

1. If a = ag is a rule in membrane ¢ of M, then a; — a; is arule in M, where j is the
index of the membrane into which a is transported to, as specified by z.

2. If ab = agay is a rule in membrane ¢ of M, then a;b; — a;by, is a rule in M, where
1 and j are the index numbers of the membranes into which a and b are transported to,
as specified by x and y.

Thus, corresponding to the initial configuration wo™ of M, where o™ is in the input membrane
to and w represents the configuration denoting all the other symbols (different from w) in
the other membranes, M’ will have initial configuration w'oj, , where w' are symbols in w
renamed to identify their locations in M.

Clearly, M" accepts o, if and only if M accepts 0", and M' is a deterministic (non-
deterministic) bounded P system. Now it is easy to show that the emptiness problem for
deterministic linear-bounded multicounter machines (i.e., given Z, is there an input n such
that Z halts?) is undecidable. Hence, we have:

Theorem 5 It is undecidable to determine, given a deterministic (nondeterministic) BPS M
and a fixed multiset w, whether there is an n such that M starting with multiset wo™ has a
halting computation.

For the next result, we need the fact that linear-bounded multicounter machines, log n space-
bounded TMs, and two-way multihead FAs are all equivalent (for both the deterministic and
nondeterministic versions). As a corollary to Theorem 5, we can show that Theorem 4 does
not hold for deterministic (nondeterministic) bounded P systems, even in very simple cases.
Recall that Halt is a regular formula in REG that defines all the halting configurations. For
a fixed multiset w, the set of all wo™ is clearly definable by a regular formula I,, in REG.
Theorem 5 essentially says that the emptiness of [I,, A 3¢ Halt]™ is undecidable. Hence, in
contrast to Theorem 4, we have,

Corollary 6 The CTLEEG model-checking problem for (nondeterministic) bounded P sys-
tems is undecidable. The undecidability remains even for CTLEEG formulas in the form of
INIT A 3¢ H where INIT and H are regular formulas in REG.

We have seen that the emptiness problem for deterministic bounded P systems is undecid-
able. We now look at a special case when the cardinality of the maximally parallel multiset
of rules applicable at each step is at most 1. Thus the computation of the system would be
sequential. More generally, consider a (nondeterministic) bounded P system whose compu-
tation is restricted in that at every step, only one nondeterministically selected rule is applied.
Call such a system a sequential bounded P system. In contrast to Theorem 5, We show that
the emptiness problem for sequential bounded P system is decidable. In fact, this result is

On Model-Checking of P Systems 15

true even if the system is not bounded, i.e., in the rules of the form v — v, we no longer
require that |v| < |u|. We can show that such a sequential P system is equivalent to a par-
tially blind multicounter machine (PBCM). Note that a PBCM [7] can increment/decrement
any counter by 1 or leave it unchanged; however, it can not test a counter for zero. When
there is an attempt to decrement a zero counter, the machine gets stuck and the computation
is aborted. The machine starts with the input counter set to a value n with all other counters
set to zero. We say that the machine accepts if it eventually halts in an accepting state with
all the counters zero.

It can be shown that a language L C o* is accepted by a sequential P system if and only
if it is accepted by a PBCM. Since the emptiness problem for PBCMs is decidable (as this
problem is reducible to the reachability problem for vector addition systems (i.e., Petri nets))
[7], we have:

Theorem 7 The emptiness problem for sequential P systems (and, hence, also for sequential
bounded P systems) is decidable.

A BPS M is separated if for any two distinct rules u; — v; and u; — v; in M, the
multiset union of u; and v; is disjoint with the multiset union of u; and v;. For instance, the
system with rules ab — ae and c¢d — d is separated. But the system with rules ab — ae and
cd — e is not. In contrast to Corollary 6, we have the following result. Currently, we do not
know whether the result still holds when we modify the above “separated” definition into the
following: for any two distinct rules u; — v; and u; — v; in M, multisets u; and u; are
disjoint.

Theorem 8 For separated bounded P systems, the model-checking problem for formulas in
the form of INIT A 3o H, where INIT and H are regular formulas in REG, is decidable.

Proof. Let M be a separated BPS, whose alphabet is ¥ = {ay, ...,a;}. Without loss of
generality, we assume that, in INIT A 3o H, INIT is given as

/\ #(az) N%NIT n%NIT

1<i<k

and H is given as

N #(@) ~ nff

1<i<k

where ~INT LHe (= >Y and nINT nf € N. We first assume that there is only one rule,
u — v, in M. Clearly, one may treat multisets « and v as vectors (¢1, . . .,) and (s1, . . ., 8k),

respectively, in N¥. Let m be a number. Consider the following statement, denoted by P(m):

“there are two vectors (multisets) U and V such that, U € [INIT]M,V € [H]M,
and U can reach V' in at most m maximally parallel moves.”

Clearly, to decide [INIT A 3o H]M # (), one need only to decide whether 3P holds (i.e.,
P(m) holds for some m). Observe that for any fixed m, the truth of P(m) can be easily
decided (in this case, all the pairs of U and V satisfying the condition form a Presburger
relation).

16 Z. Dang, O. H. Ibarra, C. Li, G. Xie

We first assume that there is some 1 < i < k such that both ~I™7T and ~# are =. With
this assumption, P can be decided easily:

o niNT = nH Tn this case, if t; # s;, then IP can be decided using P(1) (using one
maximally parallel move). Now, we handle the scenario when t; = s;. If nINM7T <
t; (i.e., the rule is not enabled on U), then clearly 3P can be decided using P(1).
Otherwise (i.e., niNT > ¢,), the a;-objects are always kept the same in all the Vs that
are reached from the same U in [INIT]™. That is, the symbol a can be dropped from
¥ and the rule. Hence, using an induction over the size of X (the theorem clearly holds
when k = 1), 3P can be decided.

o niNT > In this case, 3P can be decided using P(1) when t; < s;, or, t; > s; and
E‘”T < t;. When n}NIT > ¢; > s;, 3P can be decided using P(niNT — nH) (each
maximally parallel move decrements at least one a;).

INIT < ’fL

e n; . This case is analogous to the above item.

We then assume the assumption does not hold. That is, for each 1 < i < k, either ~INIT

or ~ is >. Similar to the above, we can argue that when, for some 1 < ¢ < k, one of the
followmg conditions is true,

® S; = 0
o ~INIT g = ~His> andt; > s,
° ~£NIT is >, ~His=,andt; < s;,

3P can be decided easily (either use induction on a smaller X or decide 3P with P(myg) for
some constant mg). The remaining case is when, for each 1 < i < k, s; > 0 and one of the
following conditions is true,

o ~INIT jg = His> and t; < s;,

o ~INITjs > ~His= andt; > s,
o ~INIT 1s>and~ is >.

We now define a new system M’ with the only rule

= (1, t) = 0" = (s1,.., 83),

and with new INTT' as

~INIT' INTT
N #(a) ~¥)

1<i<k

/\ #(ai) ~if i"

1<i<k

and new H' as

The new system M is modified from M as follows:

o when ~INT jg = and ~H is >, or, ~INT js > and ~H is >, we have t} = ¢; and s}, =
. U 1
s, In this case, we also have ~INIT! — JINIT INTTY — INIT - H f’, nH = n,H
o ~INIT js > and ~H is =, we will switch the s; and the tz, ie,ti =s;and s, =t

Also, N%NIT :NH n%NIT’ H H INIT INIT

i =n; = sim!NT and ' = n}

On Model-Checking of P Systems 17

Similarly, we define P’'(m) to be

“there are two vectors (multisets) U and V such that, U € [INIT']M', V e
[H'IM", and U can reach V in at most m maximally parallel moves.”

It is left to the reader to verify that 3P holds for M iff AP’ holds for the new M'. In fact,
3P’ is always true for the new M'. Hence, 3P is decided simply to be true.

The proof can be generalized to the case when there are multiple rules in the separated
system. |

Notice that separated systems can demonstrate nonlinear reachability relations. For in-
stance, consider such a system M with rules ea — a and ccb — cbd. Define INIT to be
#() =1 A#(a) =1A#(d) = 0and H to be #(e) > 0 A #(c) > 2. Then, the set of all
V € [H]M that is reachable from some U € [INIT]M (i.e., U ~s s V) is exactly the set of
V satisfying the following nonlinear relation: #(e) > 0 A #(c) > 2 A #(a) = 2#(@. We
conjecture that Theorem 8 can be generalized to the entire CTLREC,

We now investigate the case when a BPS M is bounded maximally parallel; i.e., there is
a constant K such that on every execution of M, every maximally parallel move only fires at
most K instances of rules. Examples of such M include purely catalytic systems [16, 17, 6],
and following the same ideas of the proof of Theorem 5 but using constructions in [16, 17, 6],
one can show that simple reachability queries like formulas INIT A 3o H in CTLEFC are
undecidable for these M’s. To make the query decidable, we add one more restriction. A
maximally parallel move from u = (¢1,...,%x) (the vector representation of the multiset u)
tov = (81,...,8k) is 1-non-monotonic if t5 < $a,...,t; < Sg. M is 1-non-monotonic if its
executions consist of 1-non-monotonic maximally parallel moves only. With this restriction,
we can show that linear reachability queries are decidable:

Theorem 9 For bounded maximally parallel and I-non-monotonic BPSs, the model-
checking problem for formulas in the form of INIT A 3¢ H, where INIT and H are linear
Sformulas in LIN, is decidable.

Proof. (sketch) Let M be a bounded maximally parallel and 1-non-monotonic BPS. We use
counters z1, ...,z to denote #(a1),. .., #(ax), respectively, in a configuration. One can
show that M can be faithfully simulated by a counter machine A with counters z1, . .., T,
where the x; is the only unrestricted counter and the other counters z2, ...,z are nonde-
creasing. In particular, A has instructions to test a counter against an integer constant. This
capability is sufficient to simulate a bounded maximally parallel move (and check it is indeed
maximally parallel) in M. Such an A is studied in [9] and it is known that the reachability
relation (over the counter values) of A is definable by a linear formula (whose emptiness is
decidable). The result follows. O

Let N be a constant. A configuration u = (t1, . . ., t) is 1-unbounded if each of ¢, . . ., g,
is bounded by N (i.e., only the first ¢; is possibly larger than N). M is 1-unbounded if
its executions consist of 1-unbounded configurations only. In this case, we can generalize
Theorem 9 to the full CTLMN,

Theorem 10 The CTLY™N model-checking problem for bounded maximally parallel and 1-
unbounded BPSs is decidable.

18 Z. Dang, O. H. Ibarra, C. Li, G. Xie

Proof. (sketch) Let M be a bounded maximally parallel and 1-unbounded BPS. We use
counters &1, . . ., T to denote #(a1), - - ., #(ax), respectively, in a configuration. Similar to
the above proof, one can show that M can be faithfully simulated by a counter machine A
with counters 1, . . ., £k, where the 1 is the only unrestricted counter and the other counters
Z3, - .., Zy are all bounded by constant N. Therefore, A is essentially a one-counter machine
since one can build the other counters into A’s finite control. We now treat the unrestricted
counter z1 as a (unary) stack and hence A is a stack machine. Let f be a linear formula
over variables #(a1), . .., #(ag). Since #(a1) (i.e., the x1) is the only unbounded variable,
essentially the formula can be rewritten into a one-variable linear formula over the ;. When
one treats 1 as a unary word, the formula defines a regular set. That is, the CTLY'N model-
checking problem for M can be reduced to the CTL model-checking problem for the stack
machine A with respect to regular stack words. The result follows since the latter problem is
known decidable [2]. O

5. Experiments

From the results presented so far, even simple reachability queries like formulas INIT A
J o H in CTLREG are undecidable for a bounded P system M in general. In this section,
we investigate conservative behavior approximations that can be applied over M such that
every execution of the approximated system is also an execution of the original M. Hence,
such a conservative behavior approximation at least provides a way to help us analyze the
original system, partially. This resembles similar approximation techniques in traditional
model-checking of (in)finite state transition systems.

One such approximation is to let M to execute for at most B maximally parallel steps
for a given constant B. Clearly, since B is a fixed, the reachability relation of M now is
expressible as a Presburger formula, which can be calculated with a Presburger manipulator
like Omega [15]. Another approximation is to force M to crash whenever M reaches a
multiset with more than B objects for a given constant B. Under this approximation, M can
be simulated by a finite-state transition system and, accordingly, tools like the LTL model-
checker SPIN [8] can be used to analyze it. In fact, these two approximations are applicable
to a general P system (which is not necessarily a BPS) with multi-membranes, priority rules
and dissolving membranes. Below, we briefly report our experiences in using Omega and
SPIN to conservatively analyze a general P system, which is taken from literature [14]. Since
Omega (resp. SPIN) has been proved effective in handling even fairly large infinite (resp.
finite) real-world applications [3, 8], the primary purpose of our experiments is to identify
whether these tools are also effective for a general P system with a reasonable size, where
the inherent maximal parallelism makes the model highly nondeterministic, concurrent, and,
more importantly, lack of a control-flow structure.

The example P system M is shown in Figure 1. It has three membranes where, in particu-
lar, membrane 2 (resp. membrane 3) is dissolved (i.e., objects in the membrane immediately
become objects in the outside membrane and the membrane and the membrane’s rules are all
gone) whenever the rule in membrane 2 (resp. membrane 3) that contains ¢ fires. In mem-
brane 2, the relation ff — f > f — § says that, roughly, in a maximally parallel move,
the former rule is given higher priority to fire than the latter rule. The P system is to compute
a quadratic relation between certain objects; see [14] for details. Using Omega, we encode

On Model-Checking of P Systems 19

a maximally parallel move — s in a Presburger relation which contains 34 variables (i.e.,
N7 x N'7). Notice that a symbol may need up to three variables to represent, in order to
specify its multiplicity in one of the three membranes. Additionally, a number of quantified
variables are needed to encode the maximal parallelism, the priority rules and the dissolving
membranes. Since the Omega encoding is not difficult, we omit its details. We used Omega
to compute the reachability relation of M within B maximally parallel moves. Unfortunately,
the tool crashed when computing with B = 6 (memory usage was 1.6GB including virtual
memory), though it was successfully completed with B = 5 (in 489 CPU seconds).

b—d
d — de

(Ff—=F)>(—98)

e — eout

Figure 1: An example P system

To use SPIN, we encode M in Promela, the front-end specification language in SPIN.
A Promela process is defined for each membrane, where the process exits when its corre-
sponding membrane dissolves. Object-transfers across a membrane are simulated through
rendezvous communications among processes, and the priority relation between evolution
rules is implemented by carefully designed guards of the related selections. Again, we omit
the detail of the Promela encoding. Using SPIN’s default option, we checked the system for
deadlock states. Unfortunately, SPIN could not finish any run within one hour as we varied
the variable types from byte to short and long, respectively. Then, we checked a liveness
property: eventually, the evolution of this P system will come to an end, i.e., only the skin
membrane is left and no evolution rules in the skin can be applied; this is equivalent to check-
ing that eventually all the three processes shall reach the ends of their bodies. Surprisingly,
SPIN handled this property easily — the total time consumed, as we varied the variable types
from byte to short and long, increased merely from less than 0.1 second to several seconds
and several minutes. The results of these checkings are all “false” since the inner membranes
may not necessarily dissolve. Another property we checked about this P system is that: when-
ever the evolution of this P system comes to an end, the number of e objects outside the skin
membrane is the square of the number of d objects inside the skin membrane. Again, SPIN
gave the correct answer (“true”) fairly fast (in less than 1 second) for each of the three cases
(byte, short, long).

Through these preliminary experiments, we prefer SPIN over Omega to serve as the back-
end solver in a future P system model-checker. On the other hand, Omega has its own strength
in handling infinite state systems. Still, more research is needed for both approximation
methods to create a more efficient encoding. All our experiments were run on a PC server
with two 1GHz PIII processors running Linux with 1GB physical memory.

20 Z. Dang, O. H. Ibarra, C. Li, G. Xie

References

[1] O. ANDREIL, G. CIOBANU, D. LUCANU, Executable Specifications of P Systems. In:
Proc. 5th Workshop on Membrane Computing. 2005, 126-145.

[2] A.BOUAIJJANI, J. ESPARZA, O. MALER, Reachability analysis of pushdown automata:
application to model-checking. In: Concurrency (CONCUR 1997). Lecture Notes in
Computer Science 1243, Springer-Verlag, 1997, 135-150.

[3] T. BULTAN, R. GERBER, W. PUGH, Model-checking concurrent systems with un-
bounded integer variables: symbolic representations, approximations, and experimental
results. ACM Trans. Program. Lang. Syst. 21 (1999) 4, 747-789.

[4] E. M. CLARKE, E. A. EMERSON, A. P. SISTLA, Automatic Verification of Finite-
State Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on
Programming Languages and Systems 8 (1986) 2, 244-263.

[S] E. M. CLARKE, O. GRUMBERG, D. A. PELED, Model Checking. The MIT Press, 1999.
[6] R. FREUND, L. KARI, M. OSWALD, P. Sosik, Computationally univer-

sal P systems without priorities: two catalysts are sufficient. Available at
http://psystems.disco.unimib.it, 2003.

[7] S. GREIBACH, Remarks on blind and partially blind one-way multicounter machines.
Theor. Comput. Sci. 7 (1978), 311-324.

[8] G. J. HoLZMANN, The Model Checker SPIN. /IEEE Transactions on Software Engi-
neering 23 (1997) 5, 279-295.

[9] O. H. IBARRA, Reversal-Bounded Multicounter Machines and Their Decision Prob-
lems. Journal of the ACM 25 (1978) 1, 116-133.

[10] O. H. IBARRA, The number of membranes matters. In: Proc. 4th Workshop on Mem-
brane Computing. 2003, 218-231.

[11] M. MINSKY, Recursive unsolvability of Post’s problem of Tag and other topics in the
theory of Turing machines. Ann. of Math. 74 (1961), 437-455.

[12] G. PAUN, Computing with membranes. Journal of Computer and System Sciences 61
(2000) 1, 108-143.

[13] G. PAUN, Membrane Computing: An Introduction. Springer-Verlag, 2002.

[14] G. PAUN, G. ROZENBERG, A guide to membrane computing. 7CS 287 (2002) 1, 73—
100.

[15] W. PuGH, The Omega Test: a fast and practical integer programming algorithm for
dependence analysis. Communications of the ACM 35 (1992) 8, 102-114.

[16] P. SosiK, P systems versus register machines: two universality proofs. In: Pre-
Proceedings of Workshop on Membrane Computing (WMC-CdeA2002), Curtea de
Arges, Romania. 2002, 371-382.

[17] P. SOSIK, R. FREUND, P systems without Priorities Are Computationally Universal. In:
WMC-CdeA2002. LNCS 2597, Springer, 2003, 400-409.

