
On P Systems Operating in Sequential Mode
�

Zhe Dang
�

and Oscar H. Ibarra
�����

�
School of Electrical Engineering and Computer Science

Washington State University
Pullman, WA 99164, USA

�
Department of Computer Science

University of California
Santa Barbara, CA 93106, USA

Abstract. In the standard definition of a P system, a computation step consists
of a parallel application of a “maximal” set of nondeterministically chosen rules.
Referring to this system as a parallel P system, we consider in this paper a se-
quential P system, in which each step consists of an application of a single non-
deterministically chosen rule. We show the following:

1. For 1-membrane catalytic systems (CS’s), the sequential version is strictly
weaker than the parallel version in that the former defines (i.e. generates) ex-
actly the semilinear sets, whereas the latter is known to define nonrecursive
sets.

2. For 1-membrane communicating P systems (CPS’s), the sequential version
can only define a proper subclass of the semilinear sets, whereas the parallel
version is known to define nonrecursive sets.

3. Adding a new type of rule of the form: �
	��
����	�������������������� � to the CPS
(a natural generalization of the rule �!	��"� � 	 � � ����� � in the original model),
where #%$'&)(+*-,/.102.3$'4�576�8 , to the sequential 1-membrane CPS makes it
equivalent to a vector addition system.

4. Sequential 1-membrane symport/antiport systems (SA’s) are equivalent to
vector addition systems, contrasting the known result that the parallel ver-
sions can define nonrecursive sets.

5. Sequential 1-membrane SA’s whose rules have radius 1, (1,1), (1,2) (i.e., of
the form 9:�;$'4�576=<�$19:�;$�>@?A<�$-9:�;$'4�576�BC	�$'>D?A<�$19:�;$'4�576�B'	���$=>D?A<) generate exactly
the semilinear sets. However, if the rules have radius 1, (1,1), (2,1) (i.e., of
the form 9:�
	�$C4�576�B=��$'>D?A<), the SA’s can only generate a proper subclass of
the semilinear sets.

Keywords: Catalytic P system, communicating P system, symport/antiport system, par-
allel system, sequential system, vector addition system, semilinear set.

E
The research of Oscar H. Ibarra was supported in part by NSF Grants IIS-0101134 and CCR02-
08595.E�E
Corresponding author (ibarra@cs.ucsb.edu).

1 Introduction

A P system consists of a finite number of membranes, each of which contains a multiset
of objects (symbols). The membranes are organized as a Venn diagram or a tree struc-
ture where membranes may contain other membranes. The dynamics of the system is
governed by a set of rules associated with each membrane. Each rule specifies how ob-
jects evolve and move into neighboring membranes. A precise definition can be found
in [15–17]. It has been introduced as a computing model which abstracts from the way
live cells process chemical compounds in their “compartmental” (membrane) structure.
Various models of P systems have been shown to be equivalent to Turing machines in
computing power. For example, recent results in [18, 19, 5] show that P systems with
one membrane (i.e., 1-region P systems) using only catalytic rules are already able to
simulate two counter machines and hence universal [13].

In a P system [15–17], a step of the computation is an application of a (multi-)set of
nondeterministically chosen rules in parallel to the current configuration to obtain the
next configuration. (Note that all the rules must be applicable at the same time.) The set
of rules is maximal in the sense that no additional rule can be added to the set which
still makes the resulting set of rules applicable. To distinguish this system from the one
we define below, we call this system a parallel P system.

Now define a sequential P system as a P system in which a computation step consists
of an application of a single rule in some membrane. The membrane and rule are chosen
nondeterministically.

Consider only P systems that generate objects/symbols. Let ������� ���	�
�
��� �
��� be
a language alphabet. We say that a P system � generates a string ������ �
�
� � �
�� (the order
the symbols are written is not important as we are only interested in the multiplicities
of each symbol) representing the � -tuple ��� � �	�
�
��� � ��� of nonnegative integers if, when
started with a specified initial configuration � of symbols that may contain symbols in
� and other symbols not in � , � can reach a configuration in a specified output mem-
brane where the string of symbols in that configuration is � � �� ���
� � �
�� . Note that we do not
require that this is a halting configuration. The set of such strings is called the reachabil-
ity set denoted by ����� � . If we are interested only in reachable halting configurations,
then we denote such a reachability set by ��� �!� � . Clearly �"�#��� �%$ ����� � .

For convenience, we will also use the tuple of nonnegative integer representations
instead of bounded string representations, i.e., �&� �'�(���
��� �)� � instead of �*���� �
��� � � �� .

In this paper, we exhibit P systems where the sequential version is strictly weaker
than the parallel version. We show that sequential 1-membrane catalytic systems (CS’s)
generate/define exactly the semilinear sets. However, in contrast, it follows from the
constructions in [18, 19, 5] that parallel 1-membrane CS’s can generate nonrecursive
sets of tuples.

Similarly, for communicating P Systems (CPS’s) introduced in [18], it follows from
the constructions in [6] that there are parallel 1-membrane CPS’s that generate non-
recursive sets. But for sequential 1-membrane CPS’s, we show that the sets gener-
ated are a proper subclass of the semilinear sets. Interestingly, if we allow the model
of a CPS to use a new type of rules of the form: �,+.- ��/0+21'3	4)576%8:9
4)576%8 (general-
izing the rule �,+;- �*/0+21<3	4)576=8 in the original model), we show that the sequen-
tial version of this extended model is equivalent to a vector addition system (which

is known to be equivalent to a Petri net). We also show that sequential 1-membrane
symport/antiport systems (SA’s) are equivalent to vector addition systems. Interest-
ingly, sequential 1-membrane SA’s whose rules have radius 1, (1,1), (1,2) (i.e., of the
form �!� ������� � � �!� � � � � � ��� ��������� + � � � � � �!� �����	��� +23 � � � �) generate exactly the semilinear
sets. However, if the rules have radius 1, (1,1), (2,1) (i.e., of the form �!�,+ ��������� 3 � � � �),
the SA’s can only generate a proper subclass of the semilinear sets.

We note that current digital and bio technologies do not permit a direct implementa-
tion of a P system (under the parallel semantics). Our results show that, in many cases,
simulating a parallel P system with a sequential P system using the same types of rules
is possible.

There has been some related work on P systems operating in sequential mode. For
example, sequential variants of P systems have been studied, in a different framework,
in [4]. There, generalized P systems (GP-systems) were considered and were shown to
be able to simulate graph controlled grammars. A comparison between parallel and se-
quential modes of computation in a restricted model of a
 automaton was also recently
investigated in [2], where it was shown that the parallel version is equivalent to a linear
space-bounded nondeterministic Turing machine (NTM) and the sequential version is
equivalent to a simple type of a one-way � �
� � space-bounded NTM.

The paper has five sections in addition to this section. Section 2 compares the
computational power of 1-membrane catalytic systems that operate in sequential mode
to parallel 1-membrane catalytic systems. Section 3 does a similar comparison for 1-
membrane communicating P systems (CPS). Section 4 introduces a natural extension
of 1-membrane CPS, called ECPS, and show that these systems are equivalent to vector
addition systems. Section 5 looks at sequential 1-membrane symport/antiport systems.
Section 6 is a brief conclusion.

We conclude this section with the following observation:

Observation: Let � be any P system. Suppose that ���#��� � is the parallel halting reach-
ability set of � (thus we are looking at the parallel version) is nonrecursive. Then
the parallel reachability ���!� � is also nonrecursive. It follows that P systems that are
Turing-universal have nonrecursive reachability sets.

2 1-Membrane Catalytic Systems

First we recall the definition of a parallel catalytic system (CS) (i.e., the original defini-
tion) with one membrane. Such a system � operates on two types of symbols: catalytic
symbols called catalysts (denoted by capital letters � , � , etc) and noncatalytic symbols
called noncatalysts (denoted by lower case letters � � + � 3 � 9 , etc). An evolution rule in �
is of the form �"� -���� , where � is a catalyst, � is a noncatalyst, and � is a (possibly
null) string (an obvious representation of a multiset) of noncatalysts. A CS � is speci-
fied by a finite set of rules together with an initial multiset (configuration) � � , which is
a string of catalysts and noncatalysts. As with the standard semantics of P systems [15–
17], each evolution step of � is a result of applying all the rules in � in a maximally
parallel manner. More precisely, starting from the initial configuration, � � , the system
goes through a sequence of configurations, where each configuration is derived from
the directly preceding configuration in one step by the application of a (multi-)set of

rules, which are chosen nondeterministically. Note that a rule �"� - ��� is applicable
if there is a � and an � in the preceding configuration. The result of applying this rule
is the replacement of � by � . If there is another occurrence of � and another occurrence
of � , then the same rule or another rule with �"� on the left hand side can be applied. We
require that the chosen subset of rules to apply must be maximally parallel in the sense
that no other applicable rule can be added to the subset. Configuration � is reachable if
it appears in some execution sequence; � is halting if no rule is applicable on � .

It is important to note that our definition of catalytic system is different from what
is usually called catalytic system in the literature. Here, we do not allow rules without
catalysts, i.e., rules of the form � - � . Thus our systems use only purely catalytic rules.
Also, in our definition, there is no target indication associated with the objects, i.e., we
do not allow objects to exit the membrane into the environment.

We denote by ����� � the Parikh map of all reachable configurations with respect to
noncatalysts only. (Thus, if � �'�(���
�
� � � are the noncatalysts, then ����� � ���*� ��� � ��� � ����
��� ���	� ��� � ��
 � is a reachable configuration in � � , where

����
 ��� � is the number of oc-
currences of noncatalyst � � in � .) For convenience, when we talk about configurations,
we sometimes do not include the catalysts. ���!� � is called the reachability set of � .
� � ��� � will denote the set of all halting reachable configurations. Let � be the set of all
nonnegative integers and � be a positive integer. It is known that for any set � $ � �
that can be accepted by a Turing machine, we can construct a CS � with only purely
catalytic rules such that � � �!� � ��� [18, 19, 5]. In fact, [5] shows that three catalysts
(even when each catalyst appears exactly once in the initial configuration) are already
sufficient for universality. Thus, in general, a parallel 1-membrane CS can define a non-
recursive reachability set.

2.1 Sequential 1-Membrane CS

In a sequential 1-membrane CS, each step of the computation consists of an applica-
tion of a single nondeterministically chosen rule. We show below that sequential 1-
membrane CS’s define exactly the semilinear sets.

We need the definition of a vector addition system. An � -dimensional vector addi-
tion system (VAS) is a pair � ����� ����� , where ����� � is called the start point (or start
vector) and � is a finite set of vectors in � � , where � is the set of all integers (positive,
negative, zero). The reachability set of the VAS ��� ����� is the set ����� � � ���
 for some�
, � � �"! � � ! �
��� ! ��# � where, for all $&% �'% � , each � � � � and �"! � � ! ���
� ! � �)(+* � .

The halting reachability set � � �!� � � �,�
 ��� � �!� � � �-! �/.(+* for every � in � � .
An � -dimensional vector addition system with states (VASS) is a VAS ��� �0��� to-

gether with a finite set 1 of transitions of the form 2 - �43 � � � , where 3 and 2 are states
and � is in � . The meaning is that such a transition can be applied at point 5 in state 2
and yields the point 5�! � in state 3 , provided that 56! � (+* . The VASS is specified by
� �7��� � 1 � 2 � � , where 2	� is the starting state.

The reachability problem for a VASS (respectively, VAS) � is to determine, given
a vector 5 , whether 5 is in ����� � . The equivalence problem is to determine given two
VASS (respectively, VAS) � and �98 , whether � �!� � � ���!�&8 � . Similarly, one can define
the reachability problem and equivalence problem for halting configurations.

Next, we recall the definition of a semilinear set. A set � $ � � is a linear set if there
exist vectors � � � � �'�(�	�(�	� � � in � � such that � � � �
 � � � � ! � � � � ! �	�(� ! ��� � � � � � �� � � The vectors � � (referred to as the constant vector) and � �'� � �0�	�(�	� � � � (referred to
as the periods) are called the generators of the linear set � . A set � $ � � is semilinear
if it is a finite union of linear sets. The empty set is a trivial (semi)linear set, where
the set of generators is empty. Every finite subset of � � is semilinear – it is a finite
union of linear sets whose generators are constant vectors. Clearly, semilinear sets are
closed under union and projection. It is also known that semilinear sets are closed under
intersection and complementation.

We summarize the following known results concerning VAS and VASS [20, 7, 1, 8,
12]:

Theorem 1. 1. Let � be an � -dimensional VASS. We can effectively construct an ���"!� � -dimensional VAS �98 that simulates � .
2. If � is a 2-dimensional VASS � , then ����� � is an effectively computable semilinear

set.
3. There is a 3-dimensional VASS � such that � �!� � is not semilinear.
4. If � is a 5-dimensional VAS � , then ����� � is an effectively computable semilinear

set.
5. There is a 6-dimensional VAS � such that ����� � is not semilinear.
6. The reachability problem for VASS (and hence also for VAS) is decidable.
7. The equivalence problem for VAS (and hence also for VASS) is undecidable.

Clearly, it follows from part 6 of the theorem above that the halting reachability
problem for VASS (respectively, VAS) is decidable.

A communication-free VAS is a VAS where in every transition, at most one compo-
nent is negative, and if negative, its value is -1. They are equivalent to communication-
free Petri nets, which are also equivalent to commutative context-free grammars [3, 9].
It is known that they have effectively computable semilinear reachability sets [3]. The
proof of the next theorem uses ideas in [10].

Theorem 2. Every sequential 1-membrane CS can be simulated by a communication-
free VAS � , and vice versa.

Proof. Let � be a sequential 1-membrane CS with noncatalysts � �<�	�
���
� � � . Suppose that
the start configuration of � has � catalysts � �<�(���
�
� ��� , where each catalyst can appear a
multiple number of times in the start word. Since the operation of � is sequential (i.e.,
only one catalytic rule can be applied at any step), it is easy to see that � is equivalent
to a 1-membrane CS with only one catalyst � in the start configuration, where all rules
of the form � � � - � � � are written as �"� - ��� . For notational convenience, also call
the new system � . Suppose � � is the initial configuration.

First assume that each rule in � has the form �"� - ��� , where � is not contained
in � . If �"�*6 -��"� � �� �
�
� � #���� �6
	 � � #���� �6�
 � �
�
� � #

�� is a rule in � , then the following transition is
in � : � � � �	�
�
��� � 6
	 �'��� $ � � 6�
 �'�(���
�
� � � � . The start vector of � is a � -dimensional vector� , where the components correspond to the multiplicities of the � � ’s in � . It is easy to
see that � simulates � .

Now we show how to convert a CS � to another system �'8 which satisfies the
property above. The system �'8 has many catalysts and simulates � . Number the rules
of � by $ �	�
���
��� .

CS �"8 will have catalysts � � � � �	�
���
� ��� and noncatalysts � �<�	�
���
� � � � 9 �<�	�
���
� 9�� . Its
initial configuration is � �-� �<�
�
� ��� . The rules of �"8 are defined as follows:

Case 1: Suppose �"� � - ��� is a rule in � , and � does not contain � � . Then this rule is
in �"8 .
Case 2: Suppose �"� � - �"� # � � is rule number � in � , where

� ($ and � does not
contain � � . Then we have the following rules in �'8 :

�"� � -��"9 # � � and� � 9 � - � � � � .
We say that 9 � is � � -related since it is associated with a rule with � � on the LHS (left
hand side). It is easily verified that any reachable configuration in � 8 with the property
that for each � , the number of occurrences of � � + the number of occurrences of � � -
related 9 � ’s (over all instruction number �) – call the sum � – uniquely corresponds to
a reachable configuration in � where the number of occurrences of � � is equal to � .
(Note that reachable configurations in � are over � � �	�
���
� � �). Thus, � 8 simulates � .

Since in �"8 every rule
	 +�- 	 � (where

	
is a catalyst, + is a noncatalyst, and �

a string of noncatalysts) has the property that � does not contain + , � 8 can be converted
to a communication-free VAS � .

Conversely, Let � be a communication-free VAS. We construct a sequential 1-
membrane CS � which has one catalyst � , noncatalysts

� � � � �	�
�
��� � � , and starting con-
figuration � � � , where � corresponds to the starting vector of � .
Suppose � � � �	�
���
� � 6
	 � � � 6 � � 6�
 � �(���
��� � � � is a transition in � .

Case 1:
� 6 � � $ and all other

�
� ’s are nonnegative. Then the following rule is in � :

�"� 6 - �"� # �� �
�
� � # ��� �6
	 � � # ��� �6�
 � �
�
� � #
�� .

Case 2: All the
�
� ’s are nonnegative. Then the following rule is in � :

� � - � � � # �� ���
� � # �� .

Clearly, � simulates � . In fact, ����� � � ��� � ��
 � $ � .
Corollary 1. 1. If � is a sequential 1-membrane CS, then ��� � � and � � � � � are effec-

tively computable semilinear sets.
2. The reachability problem (whether a given configuration is reachable) for sequen-

tial 1-membrane CS’s is NP-complete.

Proof. For part 1, let � be the communication-free VAS constructed in the first part of
the proof above. Then ����� �"$ � �
�� is semilinear (since a communication-free VAS
has a semilinear reachability set). Now the first � components of each vector in ����� �
correspond to � �'�	�
�
��� � � , and the remaining � components correspond to 9 �'�(���
�
� 9�� .

Clearly, from the proof above, ��� � � � 2 � � � � �����!� � � ��� �
 � * � � �7� , where 2 � � � �
is the projection of the tuples on the first � coordinates. Since � �
 � * � � is semilinear
and semilinear sets are closed under intersection and projection, it follows that ��� � � is
semilinear.

For �"�#� � � , without loss of generality (by simple relabeling), assume that � � �(���
�
� � �
(� ($) be all the noncatalysts for which there is some rule with � � on the LHS, � % � %� . Clearly, a reachable configuration in ��� � � is halting if coordinates �2�(���
�
� � are zero.
Hence �"� � � � �;� � � � � ��� ��	 �
 � * �

� 	 �
 � � , which is semilinear.
Part 2 follows from the NP-completeness of the reachability problem for communi-

cation free Petri nets (which are equivalent to commutative context-free grammars) [9,
3].

3 Sequential 1-Membrane Communicating P Systems

Consider the model of a communicating P system (CPS) with only one membrane [18].
The rules are of the form:

1. � - �*/
2. �*+%- � / + 1
3. �*+%- �*/
+21'3	4)576=8

where � � + � 3 are objects, � � 5 (which indicate the directions of movements of � and +)
can only be ��� ��� or ����� . The third rule brings in an object 3 from the environment
to the membrane (note that there is only one membrane). There is a fixed finite set of
rules in the membrane. At the beginning, there is a fixed configuration of objects in the
membrane.

Assume that the computation is sequential; i.e., at each step there is only one
application of a rule (to one instance). So, e.g., if nondeterministically a rule like
�*+ - �,�'8 � 82+ 5�� �)3	4)576%8 is chosen, then there must be at least one � and one + in the
membrane. After the step, � remains in the membrane, + is thrown out of the mem-
brane, and 3 comes into the membrane. There may be several � ’s and + ’s, but only one
application of the rule is applied. Thus, there is no parallelism involved. The computa-
tion halts when there is no applicable rule. We are interested in the multiplicities of the
objects when the system halts.

One can show that a 1-membrane CPS can be simulated by a vector addition system
(VAS) (this is a special case of a theorem in the next section). Hence, the decidability
of reachability in VAS implies the decidability of reachability for CPS. The converse is
not true as we show next.

Consider a 1-membrane CPS � . Let � � ��� � �(�	�(�	� � � � be all the symbols in � . A
configuration 	 is a multiset over � ; we use

� � �� �	�(� � �
�� (1)

to denote the configuration where the multiplicity for each � � is � � . The summation

� � � is called the weight of the configuration. Let � $ � . We use 	
� ���
 to denote

the set of configurations � where the multiplicity of each symbol � � is equal to � � (resp.
is greater than � �) when � � .� � (resp. � � � �). That is, 	 � � �
 defines the following set

�'��� �� �	�(� ���
��
 for each $&% �'% � � if � � � � then � �

� � � else � � � � � � �

When the weight of 	 is � , the set 	 � � �
 is called an upper-closed set with basic
weight � .

Suppose that � starts from a fixed configuration 	 � whose weight is � � . We use �
to denote all the sets � such that � is an upper-closed set with basic weight at most � � .
The following theorem gives a characterization of the set � of reachable configurations
of � , under the sequential semantics of � .

Theorem 3. � is a union of some elements in � .

Proof. Notice that, since the initial configuration 	 � is fixed, so is � � . Therefore, there
are only finitely many distinct upper-closed sets with basic weight at most � � . There-
fore, � is also finite.

Before we proceed further, a claim is needed. Let � ��� ; i.e., � is an upper-closed
set with basic weight at most � � . Let � be a rule in � . We use �,� � � (resp. �
 � � �) to
denote the set of all possible resulting configurations by applying � , under the sequential
semantics, once (resp. at least once) on some configuration in � . We use ��� � � � to denote
the union of � and �
 � � � . We claim that

(Claim 1) ��� � � � is a union of some elements in � .

Let � be 	 � ���
 for some � and 	 (with weight % � �). We prove the claim by consid-
ering each possible form of rule � . Without loss of generality, we only show the claim
for � taking the following form: �,+ - ���'8 � 8	+ 5 � �)3	4)576%8 where � � + � 3 are all distinct. All
the other forms are either similar or simpler.

Case 1 � .� 	 and � .� � , or, +/.� 	 and +/.� � . In this case, � is not firable on any
configuration in � . Hence, �	�0� � � � � . The claim holds.

Case 2 � � 	 or � � � , and, +-� 	 but +9.� � . In this case, �,� � � �)8 � ���
 where 	 8 is
the result of replacing one + with 3 in multiset 	 . Observe that �,� � � is in � since the
weight of 	 8 is also bounded by that of 	 . Following this line, one can show that
�
� � � � is the finite union of all these 	 8 � � �
 in � where 	 8 is the result of replacing
0 or more instances of + ’s with the same number of 3 ’s. The claim holds.

Case 3 � � 	 or � � � , and, +�� 	 and +�� � . In this case, each configuration in �
has at least two instances of + ’s. The set ���0� � � of configurations after firing � for
at least once from a configuration in � is the union of all the sets in the following
form:

– 	 8 � ���
 where 	 8 is the result of replacing 0 or more + ’s in 	 with the same
number of 3 ’s;

– 	 8 � ��� ��3'� �
 where 	 8 is the result of first dropping a + from 	 and then
replacing 0 or more + ’s with the same number of 3 ’s.

In this way, the weight of each)8 is still bounded by that of 	 . Hence the claim
holds.

Case 4 � � 	 or � � � , and, + � � but + .� 	 . In this case, ���0� � � is the union of � , and
the following two sets:

– 	 ��� � � ��3'� � � �<+�� �
 ,
– 	 � � � �'3'� �
 .

Clearly, the claim holds.

This completes the proof of the claim.
Closely looking at the proof reveals that the set of elements in (Claim 1) can actually

be computed from the given � and � ; we use
� � � ��� � $ � to denote the set which

obviously satisfies that the union of all the elements in
� � � � � � equals � �0� � � . Based

upon this, one can define an iterative procedure to compute � as follows, noticing that
� 	 � � itself is an element in � .

Let ��� � *2*��	��828 ;
Repeat

��
�� �
� ;
For each rule 0 in � and each 5 (��

��� ������� 9:0�$'5;< ;
Until � equals �
 ;
The desired � is then the union of all the elements in � .

The procedure always terminates since
� $ � is a finite set and is nondecreasing after

each Repeat loop. Clearly, according to the sequential semantics of � , the obtained
� from the procedure is exactly the set of all reachable configurations of � from 	 � .

A configuration is halting if it is reachable from the initial configuration in � and
none of the rules in � is firable. It is straightforward to show,

Corollary 2. The set of halting configurations of � is the union of some elements from
� .

Notice that elements in � are all upper-closed sets. Indeed, every such set is semi-
linear. But the converse is not true. For instance, sets like ��� � + #
 � � � � can not be the
union of some elements in � . Therefore, they can not be the halting configuration set
of � .

Conversely, for each upper-closed set � , one can construct a � (on a larger alphabet
than �) whose halting configuration set, after projection on � , is exactly � . To see this,
let � � 	
� ���
 for some 	 and � . Let 	 � to be the multiset after adding into 	 one
instance for each symbol in � . Now, we use � � �	�	�(� � ��� to denote all the instances in
multiset 	 � . Of course, if 3 � * , then we are done since � can be constructed without
any rules in it and starts from 	 � . When 3 ($, for each � # , we associate two new
symbols 5 # and � # . � , defined in below, works on alphabet � � � 5 # � � #
 $9% � % 3
� .
Initially, � starts from configuration � that contains one instance of 5 # and one instance
of � # for each $&% � %+3 , only. The rules in � are as follows:

for each $&% � % 3 , there is a rule 5 # � # - 5 # 5 � � � #5 � � � # 4)5 6%8 �
for each � � � , there is a rule 5 � � � - 5 ���8 � 8 � ��'8 � 8 �,4)5 6%8 �

It can be shown that � has the desired property. We are not able to show that when
we are given two upper-closed sets � and � 8 , there is a � starting from one initial
configuration whose halting configurations are exactly � � � 8 . But, if we allow a CPS
to start with a finite set of initial configurations, one can easily establish the following
theorem, using the above results:

Theorem 4. (1). The halting configuration set of a sequential 1-membrane CPS �
starting from a finite set of initial configurations is a finite union of upper-closed sets.
(2). Any finite union of upper-closed sets is the halting configuration set of some 1-
membrane CPS � starting from a finite set of initial configurations.

From Theorem 3 and the fact mentioned earlier that �'� � + #
 �=� � � can not be the
union of upper-closed sets, we have

Corollary 3. Sequential 1-membrane CPS’s can only generate a proper subclass of the
semilinear sets.

Moreover, since every sequential 1-membrane CPS can be simulated by a vector
addition system (or, equivalently, by a Petri net), and vector addition systems are able to
define semilinear sets, it follows that sequential 1-membrane CPS’s are strictly weaker
than vector addition systems.

4 Sequential 1-Membrane Extended CPS

We have seen in the previous section that 1-membrane CPS’s operating sequentially
define only semilinear sets. Interestingly, if we generalize the rules of a 1-membrane
CPS slightly the extended system becomes equivalent to a VASS. Define an extended
CPS (ECPS) by allowing rules of the form:

1. � - �*/
2. �*+%- � / + 1
3. �*+%- �*/
+21'3	4)576=8
4. �*+%- � / + 1 3 4)576=8 9 4)576=8

(i.e., by adding rules of type 4).
Let � be an � -dimensional VAS. Clearly, by adding new states, we may assume that all
transitions in � have the form:

2 � - � 2 # � ! $'� � �2 � - � 2 # ��� $'� � �
The above is a short-hand notation. The ! $<� is addition of 1 to the � -th coordinate, and
� $�� is subtraction of 1 from the � -th coordinate. All other coordinates are unchanged.
Note at each step, the state uniquely determines whether it is a ‘+1 transition’ or a ‘-1
transition’.

For constructing the ECPS � equivalent to � , we associate symbol 2 � for every state
of the VASS, � � for every coordinate (i.e., position) � in the transition. We also define
a new special symbol 3 . So the ECPS has symbols 2 � �(���
� 2 � (� is the number of states),
� �<�	�
���
� �*� (� is dimension of the VASS), and 3 .
Then a transition of the form 2 � - � 2 # � ! $�� � in � is simulated by the following rule in
� :

2 � 3 - 2 � � 5 � ��� 3	�'8 � 8 2 # � 4)5 6%8�� � � � 4)576%8��
A transition of the form 2 � - � 2 # ��� $'� � in � is simulated by the following rule in � :2 � � � - 2 � � 5 � ��� � � � 5�� ��� 2 # � 4)576=8��
If the VASS � has starting point � 2 � � � � , where ��� ��� � �(���
��� � ��� and 2 � is the start state,
then ECPS � starts with the word 2 � � � �� �
�
� � �
�� 3 . Clearly, � simulates � .

Conversely, suppose we are given an ECPS � over symbols � � �	�
���
� � � with initial
configuration � and rules � �<�	�
���
� � � . The VASS � has states � � � � � � � 8 � �(���
� � � � � 8� and
starting point � � � � � � � , where � � is the � -dimensional vector in � � representing the
multiplicities of the symbols in the initial configuration � . The transitions of � are
defined as follows:

1. � � - �!� � � � � � � � for every $ % �9%�� is a transition, where � � � � represents the
zero vector.

2. If � � is a rule of the form ����-��,��/ , then the following are transitions:
� � - ��� 8� � � $�� �� 8� - ���6# � 9*��/ � for every $ % � %7� , where 9,��/ � * � if � � � ����� � and 9*��/ �! $�� if � � � ��� � � � .
(As before, � $'� � * � ! $'� mean subtract 1, add 0, add 1 to � , respectively; all other
coordinates are unchanged.)

3. If � � is a rule of the form ��� � � - �,��/ � � 1 , then the following are transitions:
� � - ��� 8� � � $�� ��� $ � �� 8� - ��� # � 9 ��/ � 9 � 1 � for every $ % � % � , where 9 ��/ and 9 � 1 are as defined above.
(Note that if � � � , then �!� 8� ��� $ � ��� $ � � means �!� 8� � ��� �0� , i.e., subtract 2 from
coordinate � .)

4. If � � is a rule of the form � � � � - � ��/ � � 1 � � � 4)5 6%8�� , then the following are transi-
tions:
� � - ��� 8� � � $ � ��� $ � �� 8� - ��� # � 9 ��/ � 9 � 1 � ! $ � � for every $ % � % � , where 9 ��/ and 9 � 1 are as defined
above.

5. If � � is a rule of the form � � � � - � ��/ � � 1 � � � 4)576%8�� � � � 4)576=8�� , then the following are
transitions:
� � - ��� 8� � � $�� ��� $ � �� 8� - ���6# � 9*�(/ � 9 � 1 � ! $ � � ! $ � � for every $/% � % � , where 9,��/ and 9 � 1 are as
defined above.

It follows from the construction above that � simulates � . Thus, we have:

Theorem 5. Sequential 1-membrane ECPS and VASS are equivalent.

We can generalize rules of an ECPS further as follows:

1. � � � ���
� � �	� - � � � / � �
��� � � � / �
2. � � � ���
� � �	� - � ��� / � �
��� � � � / � 30# ��

� ��� �
��� 30#��

� ���

where � � � (1, and ��6 � ��� � ��� ������� � for $&% � % � , and the � ’s and 3 ’s are symbols.
Call this system ECPS+. Generalizing the constructions in the proof of Theorem 5, we
can show ECPS+ is still equivalent to a VASS. Thus, we have:

Corollary 4. The following systems are equivalent: Sequential 1-membrane ECPS, se-
quential 1-membrane ECPS+, and VASS.

5 Sequential 1-Membrane Symport/Antiport Systems

Theorem 5 can easily be shown for sequential 1-membrane symport/antiport systems
(SA) [11, 14]. These systems have rules of the form:

��� �����	��� 5 � � � � (antiport rules)
��� �����	� � or ��� � � � � (symport rules)

where � � 5 are strings of symbols. The radius of an antiport rule is �
 �
 �
 5
 � . For a
symport rule, the radius is
 �
 .
Theorem 6. 1. Every VASS can be simulated by a sequential 1-membrane SA all of

whose rules are antiport with radius (1,2) or (2,1).
2. Every sequential 1-membrane SA can be simulated by a VASS.

Proof. Let � be a VASS. We construct the sequential 1-membrane SA � simulating �
as follows. Referring to the first part of the proof of Theorem 5, a transition of the form2 � - � 2 # � ! $'� � in � is simulated by the following antiport rule: � 2 � ��������� 2 #(�*� � � � � . A
transition of the form 2 � - � 2 # � � $�� � in � is simulated by the following antiport rule:
� 2 � �,� �����	��� 2 # � � � � . If the VASS � has starting point � 2 � � � � , where ��� �&� �'�	�
�
��� � � � and2 � is the start state, then � starts with the word 2 � �*� �� ���
� � � �� 3 . Clearly, � simulates � .

The proof of the second part follows the construction in part 2 of the proof of The-
orem 5.

The next two results show that Part 1 of Theorem 6 is best possible.

Theorem 7. Sequential 1-membrane SA’s whose rules have radius 1, (1,1) or (2,1) (i.e.,
the rules can only be of the form: �!� ������� � � �!� � � � � � ��� ��������� + � � � � � �!�,+ ��������� 3 � � � �) can
only generate a proper subclass of the semilinear sets.

Proof. Clearly the rules above can be simulated by a CPS with rules of the form:

� - �,5�� � , 	�� - 	�� �,4)5 6%8 , 	 � - 	 �,5�� � + 4)576%8 , �,+=- �,5 � � + 5�� �)3	4)576%8 ,
respectively, where

	 � � are two new symbols. Then, from Corollary3, sequential 1-
membrane CPS’s can only generate a proper subclass of the semilinear sets.

Theorem 8. 1. Every semilinear set can be generated by a sequential 1-membrane
SA whose rules have radius (1,2).

2. Every sequential 1-membrane SA whose rules have radius 1, (1,1), or (1,2) gener-
ates only a semilinear set.

Proof. The first part follows from the observation that every semilinear set can be de-
fined by a VASS with transitions of the form 2 � - � 2 # � ! $'� � , which translate into rules
� 2 � ��������� 2 #	�*� � � � � of radius (1,2).

For the second part, it is clear that rules of the form ��� ������� � � ��� � � � � � ��� �����	��� + � � � � �
��� �������2� +23 � � � � can be simulated by catalytic rules �"� - � � � 	 - � 	 � � �"� -
� + � �"��- � +23 , respectively, where � is the (only) catalyst, and

	
is a new noncatalyst.

Then, from Corollary 1, this catalytic system generates a semilinear set.

From the preceding two theorems, we have:

Corollary 5. A sequential 1-membrane SA whose rules have radius (1,2) is more pow-
erful than sequential 1-membrane SA whose rules have radius 1, (1,1), or (2,1).

Part 2 of Theorem 8 can be generalized to the case when the sequential 1-membrane
SA’s have symport rules of radius � $.
Corollary 6. Every sequential 1-membrane SA whose rules are either symport rules
(with any radius) or antiport rules with radius (1,1) or (1,2) generates only a semilinear
set.

Proof. Similar to the proof of Part 2 of Theorem 8, antiport rules �!� �����	��� + � � � � and
��� �������2� +23 � � � � can be simulated by catalytic rules �"� - � + and �"� - � +23 , re-
spectively, A symport rule in the form of ��� � � � � can be simulated by catalytic rule
� 	 - � 	 � where

	
is a new noncatalyst. A symport rule in the form of ��� ������� �

can be simulated by degenerating rule � -�� . We use � to denote the obtained system,
� � (resp. � �) to denote the result of dropping degenerating rules (catalytic rules) from
� , and � � � � � � � to denote the sequential composition of � � and � � . Observe that both
� and � � � � � � � generate the same reachability set. � � is a CS and hence generates a
semilinear set � (Corollary 1). We use 1 � � � � � to denote the fact that � can reach � in
� � . From the definition of degenerating rules, one can verify that 1 defines a semilinear
set. The result follows, since � generates the set � ����� � � 1 � � � � ��� ��� � � � which is
semilinear.

On the other hand, we do not know whether a sequential 1-membrane SA’s whose
rules are either symport rules (with any radius) or antiport rules with radius (1,1) or
(2,1) can only generate a semilinear set. That is, we would like to find a maximal �
(if any) such that a sequential 1-membrane SA’s whose rules have radius � , (1,1) or
(2,1) can only generate a semilinear set. From Theorem 7, it is the case when �.� $.
However, the question is left open even for � � � .

6 Conclusion

We showed in this paper that P systems that compute in a sequential mode are strictly
weaker than systems that operate in “maximal parallelism” for three classes of sys-
tems: 1-membrane catalytic systems, 1-membrane communicating P systems, and 1-
membrane symport/antiport systems.

References

1. H. G. Baker. Rabin’s proof of the undecidability of the reachability set inclusion problem
for vector addition systems. In C.S.C. Memo 79, Project MAC, MIT, 1973.

2. E. Csuhaj-Varju, O. Ibarra, and G. Vaszil. On the computational complexity of P automata.
In Proc. DNA 10, Lecture Notes in Computer Science. Springer-Verlag, 2004 (to appear).

3. J. Esparza. Petri nets, commutative context-free grammars, and basic parallel processes. In
Proc. Fundamentals of Computer Theory, volume 965 of Lecture Notes in Computer Science,
pages 221–232. Springer-Verlag, 1995.

4. R. Freund. Sequential P-systems. Available at http://psystems.disco.unimib.it, 2000.
5. R. Freund, L. Kari, M. Oswald, and P. Sosik. Computationally universal P systems without

priorities: two catalysts are sufficient. Available at http://psystems.disco.unimib.it, 2003.
6. R. Freund and A. Paun. Membrane systems with symport/antiport rules: universality results.

In Proc. WMC-CdeA2002, volume 2597 of Lecture Notes in Computer Science, pages 270–
287. Springer, 2003.

7. M. H. Hack. The equality problem for vector addition systems is undecidable. In C.S.C.
Memo 121, Project MAC, MIT, 1975.

8. J. Hopcroft and J.-J. Pansiot. On the reachability problem for 5-dimensional vector addition
systems. Theoretical Computer Science, 8(2):135–159, 1979.

9. D.T. Huynh. Commutative grammars: The complexity of uniform word problems. Informa-
tion and Control, 57:21–39, 1983.

10. O. Ibarra, Z. Dang, and O. Egecioglu. Catalytic P systems, semilinear sets, and vector addi-
tion systems. Theoretical Computer Science, 11(1):167–181, 2004.

11. C. Martin-Vide, A. Paun, and Gh. Paun. On the power of P systems with symport rules.
Journal of Universal Computer Science, 8(2):317–331, 2002.

12. E. Mayr. Persistence of vector replacement systems is decidable. Acta Informatica, 15:309–
318, 1981.

13. M. Minsky. Recursive unsolvability of Post’s problem of Tag and other topics in the theory
of Turing machines. Ann. of Math., 74:437–455, 1961.

14. A. Paun and Gh. Paun. The power of communication: P systems with symport/antiport. New
Generation Computing, 20(3):295–306, 2002.

15. Gh. Paun. Computing with membranes. Journal of Computer and System Sciences,
61(1):108–143, 2000.

16. Gh. Paun. Membrane Computing: An Introduction. Springer-Verlag, 2002.
17. Gh. Paun and G. Rozenberg. A guide to membrane computing. Theoretical Computer

Science, 287(1):73–100, 2002.
18. P. Sosik. P systems versus register machines: two universality proofs. In Pre-Proc. Workshop

on Membrane Computing (WMC-CdeA2002), Curtea de Arges, Romania, pages 371–382,
2002.

19. P. Sosik and R. Freund. P systems without priorities are computationally universal. In
Proc. WMC-CdeA2002, volume 2597 of Lecture Notes in Computer Science, pages 400–
409. Springer-Verlag, 2003.

20. J. van Leeuwen. A partial solution to the reachability problem for vector addition systems.
In Proc. STOC’74, pages 303–309.

