
The Power of Maximal Parallelism in P Systems
�

Oscar H. Ibarra
�����

, Hsu-Chun Yen
�
, and Zhe Dang

�
�
Department of Computer Science

University of California
Santa Barbara, CA 93106, USA

�
Department of Electrical Engineering

National Taiwan University
Taipei, Taiwan 106, R.O.C.

	
School of Electrical Engineering and Computer Science

Washington State University
Pullman, WA 99164, USA

Abstract. We consider the following definition (different from the standard definition in the literature) of
“maximal parallelism” in the application of evolution rules in a P system
 : Let �
����� ��������� ����� be the set
of (distinct) rules in the system.
 operates in maximal parallel mode if at each step of the computation,
a maximal subset of � is applied, and at most one instance of any rule is used at every step (thus at most�

rules are applicable at any step). We refer to this system as a maximally parallel system. We look at the
computing power of P systems under three semantics of parallelism. For a positive integer ��� � , define:

� -Max-Parallel: At each step, nondeterministically select a maximal subset of at most � rules in � to
apply (this implies that no larger subset is applicable).

��� -Parallel: At each step, nondeterministically select any subset of at most � rules in � to apply.

� -Parallel: At each step, nondeterministically select any subset of exactly � rules in � to apply.

In all three cases, if any rule in the subset selected is not applicable, then the whole subset is not applicable.
When ��� � , the three semantics reduce to the Sequential mode.

We focus on two popular models of P systems: multi-membrane catalytic systems and communicating P
systems. We show that for these systems, � -Max-Parallel mode is strictly more powerful than any of the
following three modes: Sequential, ��� -Parallel, or � -Parallel. For example, it follows from the result in
[10] that a maximally parallel communicating P system is universal for �!�#" . However, under the three
limited modes of parallelism, the system is equivalent to a vector addition system, which is known to only
define a recursive set. These generalize and refine the results for the case of 1-membrane systems recently
reported in [4]. Some of the present results are rather surprising. For example, we show that a Sequential
� -membrane communicating P system can only generate a semilinear set, whereas with

�
membranes, it is

equivalent to a vector addition system for any
�%$ " (thus the hierarchy collapses at " membranes - a rare

collapsing result for nonuniversal P systems). Another unexpected result is the following: the reachability
problem for Sequential multi-membrane catalytic systems with prioritized rules is NP-complete. This con-
trasts the known result [9] that a 1-membrane catalytic system with only 3 catalysts and (non-prioritized)
catalytic rules operating under & -Max-Parallel mode can simulate any 2-counter machine ' . We also give
another proof (using vector addition systems) of this later result, but unlike in [9], our catalytic system
needs only a fixed number of noncatalysts, independent of ' .

A simple cooperative system (SCO) is a P system where the only rules allowed are of the form (*),+ or
of the form (-(.)/+ , where (is a symbol and + is a (possibly null) string of symbols not containing (. We
show that a 0 -Max-Parallel 1-membrane SCO is universal.

1
The research of Oscar H. Ibarra was supported in part by NSF Grants IIS-0101134 and CCR02-08595.121
Corresponding author (ibarra@cs.ucsb.edu).

1 Introduction

There has been a flurry of research activities in the area of membrane computing (a branch of molecular
computing) initiated five years ago by Gheorghe Paun [17]. Membrane computing identifies an unconventional
computing model, namely a P system, from natural phenomena of cell evolutions and chemical reactions.
Due to the built-in nature of maximal parallelism inherent in the model, P systems have a great potential
for implementing massively concurrent systems in an efficient way that would allow us to solve currently
intractable problems (in much the same way as the promise of quantum and DNA computing) once future
bio-technology (or silicon-technology) gives way to a practical bio-realization (or chip-realization).

The Institute for Scientific Information (ISI) has recently selected membrane computing as a fast “Emerg-
ing Research Front” in Computer Science (see http://esi-topics.com/erf/october2003.html). A P system is a
computing model, which abstracts from the way the living cells process chemical compounds in their compart-
mental structure. Thus, regions defined by a membrane structure contain objects that evolve according to given
rules. The objects can be described by symbols or by strings of symbols, in such a way that multisets of objects
are placed in regions of the membrane structure. The membranes themselves are organized as a Venn diagram
or a tree structure where one membrane may contain other membranes. By using the rules in a nondetermin-
istic, maximally parallel manner, transitions between the system configurations can be obtained. A sequence
of transitions shows how the system is evolving. Various ways of controlling the transfer of objects from a
region to another and applying the rules, as well as possibilities to dissolve, divide or create membranes have
been studied. P systems were introduced with the goal to abstract a new computing model from the structure
and the functioning of the living cell (as a branch of the general effort of Natural Computing – to explore
new models, ideas, paradigms from the way nature computes). Membrane computing has been quite success-
ful: many models have been introduced, most of them Turing complete and/or able to solve computationally
intractable problems (NP-complete, PSPACE-complete) in a feasible time (polynomial), by trading space for
time. (See the P system website at http://psystems.disco.unimb/it for a large collection of papers in the area,
and in particular the monograph [18].)

As already mentioned above, in the standard semantics of P systems [17–19], each evolution step of a
system � is a result of applying all the rules in � in a maximally parallel manner. More precisely, starting from
the initial configuration, � , the system goes through a sequence of configurations, where each configuration is
derived from the directly preceding configuration in one step by the application of a multi-set of rules, which
are chosen nondeterministically. For example, a catalytic rule �������	� in membrane
 is applicable if there
is a catalyst � and an object (symbol) � in the preceding configuration in membrane
 . The result of applying
this rule is the evolution of � from � . If there is another occurrence of � and another occurrence of � , then
the same rule or another rule with ��� on the left hand side can be applied. Thus, in general, the number of
times a particular rule is applied at anyone step can be unbounded. We require that the application of the rules
is maximal: all objects, from all membranes, which can be the subject of local evolution rules have to evolve
simultaneously. Configuration � is reachable (from the starting configuration) if it appears in some execution
sequence; � is halting if no rule is applicable on � .

In this paper, we study a different definition of maximal parallelism. Let � be a P system and ��
��� ����������� ����� be the set of (distinct) rules in all the membranes. (Note that
���

uniquely specifies the membrane
the rule belongs to.) We say that � operates in maximal parallel mode if at each step of the computation, a
maximal subset of � is applied, and at most one instance of any rule is used at every step (thus at most � rules
are applicable at any step). For example, if

� �
is a catalytic rule ����� �	� in membrane
 and the current

configuration has two � ’s and three � ’s in membrane
 , then only one � can evolve into � . Of course, if there
is another rule

�"!
, ���#�$�	�&% , in membrane
 , then the other � also evolves into �'% . Throughout the paper, we

will use this definition of maximal parallelism. Here, we look at the computing power of P systems under three
semantics of parallelism. For a positive integer (*)+� , define:

(-Max-Parallel: At each step, nondeterministically select a maximal subset of at most (rules in � to
apply (this implies that no larger subset is applicable).
),(-Parallel: At each step, nondeterministically select any subset of at most (rules in � to apply.
(-Parallel: At each step, nondeterministically select any subset of exactly (rules in � to apply.

2

In all three cases, if any rule in the subset selected is not applicable, then the whole subset is not applicable.
When (
 � , the three semantics reduce to the Sequential mode.

In the next four sections, we investigate the computing power of two popular models of P systems with
respect to the above semantics of parallelism – the catalytic P systems and the communicating P systems.

We should mention some related work on P systems operating in sequential and limited parallel modes.
Sequential variants of P systems have been studied, in a different framework, in [8]. There, generalized P
systems (GP-systems) were considered and were shown to be able to simulate graph controlled grammars. Our
notion of limited parallelism seems to correspond to “cooperation modes” in cooperating distributed grammar
systems, investigated in [3].

Some of the proofs can be found in the Appendix, which may be read by the PC members at their
discretion.

2 Multi-Membrane Catalytic Systems

2.1 Maximally Parallel CS

First we recall the definition of a catalytic system (CS). The membranes (regions) are organized in a hierarchical
(tree) structure and are labeled 1, 2, .., � for some � , with the outermost membrane (the skin membrane)
labeled

�
. At the start of the computation, there is a distribution of catalysts and noncatalysts in the membranes

(the distribution represents the initial configuration of the system). Each membrane may contain a finite set
of catalytic rules of the form ��� � �	� , where � is a catalyst, � is a noncatalyst, and � is a (possibly null)
string of noncatalysts. When this rule is applied, the catalyst remains in the membrane the rule is in, symbol �
is deleted from the membrane, and the symbols comprising � (if nonnull) are transported to other membranes
in the following manner. Each symbol � in � has a designation or target, i.e., it is written ��� , where � can be�	� � �

,
��	
 , or � (! . The designation
�	� � �

means that the object � remains in the membrane containing it (we
usually omit this target, when it is understood). The designation
���
 means that the object is transported to the
membrane directly enclosing the membrane that contains the object; however, we do not allow any object to be
transported out of the skin membrane. The designation � (! means that the object is moved into a membrane,
labeled � , that is directly enclosed by the membrane that contains the object.

It is important to note that our definition of catalytic system is different from what is usually called catalytic
system in the literature. Here, we do not allow rules without catalysts, i.e., rules of the form � � � . Thus our
systems use only purely catalytic rules.

Suppose that � is a CS with � membranes. Let
� � � � ������� ��� � be the set of noncatalyst symbols (objects) that

can occur in the configurations of � . Let �
�� � � � ������� ����� be the initial configuration, where � � represents
the catalysts and noncatlysts in membrane � . (Note that � � can be null.) Each reachable configuration of �
is an (�� -tuple � � ����������� � � � , where � � is an (-tuple representing the multiplicities of the symbols � ����������� � �
in membrane � . Note that we do not include the catalysts in considering the configuration as they are not
changed (i.e., they remain in the membranes containing them, and their numbers remain the same during the
computation). Hence the set of all reachable configurations of � , denoted by ������� is a subset of � ��� . The set
of all halting reachable configurations is denoted by �! "����� .

2.2 Sequential CS

In a sequential multi-membrane CS, each step of the computation consists of an application of a single nonde-
terministically chosen rule, i.e., the membrane and rule within the membrane to apply are chosen nondetermin-
istically. We show below that sequential multi-membrane CS’s define exactly the semilinear sets.

We need the definition of a vector addition system. An (-dimensional vector addition system (VAS) is a
pair �
$#%� �'&)(, where �+*,� � is called the start point (or start vector) and & is a finite set of vectors in - � ,
where - is the set of all integers (positive, negative, zero). The reachability set of the VAS #.� �/&)(is the set
��� �0�
 � ��1 for some � , �
2�43 � � 3 ����� 3 � ! � where, for all

�)5�)6� , each � � * & and ��3 � � 3 ����� 3 � ��798 � .
The halting reachability set �� 	� �0�
 � �:1���* ��� �0� � ��3*�<;758 for every � in & � . For convenience, we write

3

��� � � ������� � �� ��% (� � ��% * � � , � 7 8) if 	�� � �) �)5� � � � * & , � 3 � � 3 ����� 3 � � 7 8 and � %
 � 3 � � 3 ����� 3 � ! .
We also use ��
� � % to denote the existence of a � * &
 such that ��
� ��% .

An (-dimensional vector addition system with states (VASS) is a VAS #%� �'&)(together with a finite set � of
transitions of the form � � �
 � � � , where
 and � are states and � is in & . The meaning is that such a transition
can be applied at point � in state � and yields the point �03 � in state
 , provided that �03 � 798 . The VASS is
specified by �
 #.� � � � ��� (, where ��� is the starting state.

The reachability problem for a VASS (respectively, VAS) � is to determine, given a vector � , whether �
is in ��� �0� . The equivalence problem is to determine given two VASS (respectively, VAS) � and � % , whether
��� �0�	
 ��� � % � . Similarly, one can define the reachability problem and equivalence problem for halting con-
figurations.

The following summarizes the known results concerning VAS and VASS [21, 12, 1, 13, 16]:

Theorem 1. 1. Let � be an (-dimensional VASS. We can effectively construct an � (3�� � -dimensional VAS
� % that simulates � .

2. If � is a 2-dimensional VASS � , then ��� �0� is an effectively computable semilinear set.
3. There is a 3-dimensional VASS � such that ��� �0� is not semilinear.
4. If � is a 5-dimensional VAS � , then ��� �0� is an effectively computable semilinear set.
5. There is a 6-dimensional VAS � such that ��� �0� is not semilinear.
6. The reachability problem for VASS (and hence also for VAS) is decidable.
7. The equivalence problem for VAS (and hence also for VASS) is undecidable.

Clearly, it follows from part 6 of the theorem above that the halting reachability problem for VASS (respec-
tively, VAS) is decidable.

A communication-free VAS is a VAS where in every transition, at most one component is negative, and if
negative, its value is -1. Communication-free VAS’s are equivalent to communication-free Petri nets, which are
also equivalent to commutative context-free grammars [5, 14]. It is known that they have effectively computable
semilinear reachability sets [5].

Our first result shows that a sequential CS is weaker than a maximally parallel CS.

Theorem 2. Every sequential multi-membrane CS � can be simulated by a communication-free VAS � , and
vice versa.

Proof. Let � be an � -membrane CS with noncatalysts � � ��������� � � . Suppose that the start configuration of �

� � � ��������� ��� � has � catalysts � � ��������� � � . We may assume, without loss of generality by adding new catalysts
and rules if necessary, that each � � occurs at most once in � � (�) �) �). Number all the rules in � by

� � ��������� .
Note that the rule number uniquely determines the membrane where the rule is applicable.

We first transform � to a new system ��% by modifying the rules and the initial configuration � . ��% will
now have catalysts � � � ������� � � ��� � ������������� and noncatalysts � � ��������� ��� ��� � ������������� . The component �! of the ini-
tial configuration in membrane
 will now be �" plus each � for which rule number

�
is in membrane
 . The

rules of � % are defined as follows:

Case 1: Suppose that � ! � � � � ! � is a rule in membrane
 of � , and � � does not appear in � with designation
(target)

�"� � �
. Then this rule is in membrane
 of � % .

Case 2: Suppose that � ! � � � � ! �$# � � is rule number
�

and
 7 � . Suppose that this rule is in membrane
 , with
the target of each � � in �%# � being

�"� � �
, and � does not contain any � � with target

�	� � �
. Then the following rules

are in membrane
 of � % :
� ! � � � � ! � # &"� and � & � & � � & � � .

In the above rules, the target for � � and each � & in the right-hand side of the rules is
�"� � �

.
Clearly, � % simulates � , and � % has the property that in each rule ' �	�(' � (where ' is a catalyst, � is a

noncatalyst, and � a string of noncatalysts), � does not contain a � with target
�"� � �

. It is now obvious that each

4

rule ' � � ' � in � % can be transformed to a VAS transition rule of � (�3 � components, where the component
of the transition corresponding to noncatalyst � is -1, and the other components (corresponding to the target
designations in �) are nonnegative. Thus, the VAS is communication free.

Conversely, let � be a communication-free VAS. We construct a sequential 1-membrane CS � which has
one catalyst � , noncatalysts

� � � � ��������� � � , and starting configuration � � � , where � corresponds to the starting
vector of � . Suppose that � � � � ������� ����� � � � � � � ��� � ��������� � � � is a transition in � .

Case 1: ���
�� � and all other � � ’s are nonnegative. Then the following rule is in � :
��� � � ���

! �� ����� �
!	��
 ���� � �
!	�
� ���� � ����� �

!���
.

Case 2: All the � � ’s are nonnegative. Then the following rule is in � :
� � � � � �

! �� ����� �
!���

.

Clearly, � simulates � . In fact, ��� �0�
 � ������� � � � .
For the proof of the next result, see the Appendix.

Corollary 1. 1. If � is a sequential multi-membrane CS, then ��� ��� and �: 	� ��� are effectively computable
semilinear sets.

2. The reachability problem (whether a given configuration is reachable) for sequential multi-membrane CS’s
is NP-complete.

Since a communication-free VAS can be simulated by a sequential 1-membrane CS (from part 2 of the
proof of Theorem 2), we have:

Corollary 2. The following are equivalent: communication-free VAS, sequential multi-membrane CS, sequen-
tial 1-membrane CS.

2.3 CS Under Limited Parallelism

Here we look at the computing power of the multi-membrane CS under three semantics of parallelism. For a
positive integer (, define:

1. (-Max-Parallel: At each step, nondeterministically select a maximal set of at most (rules to apply.

2.)�(-Parallel: At each step, nondeterministically select any set of at most (rules to apply.

3. (-Parallel: At each step, nondeterministically select a set of exactly (rules to apply.

In all three cases above, if any rule in the set selected is not applicable, then the whole set is not applicable.
Note that when (
 � , the three semantics reduce to the Sequential mode.

Theorem 3. For (,
 � , a 1-membrane CS operating under the (-Max-Parallel mode can define any recur-
sively enumerable set. For any (, a multi-membrane CS operating under) (-Parallel mode or (-Parallel
mode can be simulated by a VASS.

Proof. The first part follows from a recent result in [9], where it was shown that a 1-membrane CS with three
catalysts (even when each catalyst appears exactly once in the initial configuration) are already sufficient for
universality. It remains an interesting open question as to whether the three catalysts can be reduced to two.
One catalyst is not enough as was shown in [15].

For the case of) (-Parallel mode, given a multi-membrane CS � , we construct a VASS � to simulate �
as follows. � has a unique state � such that � is always in this state at the beginning of every simulation of
a parallel step of � . Using several new states, � nondeterministically picks �) (rules of the form ��� � �
�	� � (� itself is also nondeterministically chosen) and apply each rule sequentially by subtracting 1 from the
coordinate corresponding to � � in an n-tuple transition rule. � then sequentially updates the coordinates as
given in the right-hand sides of the rule ��� � � �	� � (� needs additional new states to do this) and enters state
� . Clearly, a tuple is reachable in � if and only if it is reachable in � in state � . We omit the details. The case
of (-Parallel mode follows directly in that � chooses � to be exactly (.

5

2.4 3-Max-Parallel 1-Membrane CS

As noted above, it is known that a � -Max-Parallel 1-membrane CS is universal [9] in that it can simulate any
2-counter machine � . Here we provide another proof of this result in terms of communication-free VAS. Later
we improve this result by showing that, in fact, the 1-membrane CS need no more than � noncatalysts for some
fixed � , independent of � .

Consider an (-dimensional communication-free VAS �
 #.� �'&)(with its set of addition vectors &
partitioned into three disjoint groups & � , & � and & � , i.e., &
 & ��� & ��� & � and & ��� & !
�� for all�) � � �) � � � ;
2� . (For convenience, we write �
 #.� � � & � �'&����'&�� � (to denote such a VAS.) For � * & ,
let � � be a vector such that � � �%� �
 �:�.� � if �:�%� �) 8 ; otherwise � � �%� �
 8 . A vector � *5� � is said to
follow ��%!*<� � under the � -Max-Parallel mode if there exist � � *6� & � � � 8 � � � �) �) � , such that

(1) � 3 � � � � � 3 � � � � � 3 � � � � � 7 8 ,
(2) if � �
 8 , then there is no other �	%� * & � such that (1) holds if � � is replaced by � %� , and
(3) ��%
 � 3 � � 3 � � 3 � � .
In this case, we write �

�
	 ��� 	 ��� 	�
��� � % . Intuitively, the semantics of � -Max-Parallelism requires that at each
step, nondeterministically a maximal set of at most � addition vectors be applied simultaneously to yield the
next vector; however, from each group & � � �) �) � , at most one addition vector can be chosen.

Acting as either acceptors or generators, we show communication-free VAS’s under the � -Max-Parallel
mode to be computationally equivalent to 2-counter machines. First recall that a transition of a 2-counter
machine is of one of the following three forms:

–
 ������� ����� � ��
 ! (� =1 or 2): in state
 � , decrement counter ��� by one, and then go to state
 ! , provided that
����� 8 ,

–
 � � � � ��� � � ��
 ! : in state
 � , increment counter � � by one, and then go to state
 ! ,
–
 � � � � ��
 ! : in state
 � , go to state
 ! if counter ��� is empty.

The following result shows the equivalence of 2-counter machines and communication-free VAS operating
under the � -Max-Parallel mode. See the Appendix for the details of the proof.

Theorem 4. Let � be a 2-counter machine with two counters � � and � � . There exist an (-dimensional VAS
�
 #.� � � & ���/&!� �'&�� � (under the � -Max-Parallel mode and a designated coordinate � such that � accepts
on initial counter values � �
 � and � �
 8 iff

1. (generator:) � * � ����� ��1�� *�� � �0� � ;
2. (acceptor:) from start vector � with � ��� �
 � , � � �0� ;
 � , i.e., � has a halting computation.

Clearly, from the construction in the proof of Theorem 4, we can assign for each
�) �) � , a catalyst � �

for the set of addition vectors & � , define a distinct noncatalyst symbol for each position in the addition vector,
and convert each vector in & � to a rule of the form � � � � � � � , where � is a noncatalyst and � is a (possibly
null) string of noncatalysts. Hence, the following corollary:

Corollary 3. Let � be a 2-counter machine with two counters. There exists a 1-membrane 3-Max-Parallel CS
� with catalysts � � � � � � � � and (noncatalysts with a designated noncatalyst symbol �"! such that � accepts
on initial counter values � and

8
, respectively, iff

1. (generator:) � * � �$#&% � � ��1 � *�� � � � � ;
2. (acceptor) if � starts with initial configuration � � ! � � � , for some � not containing � ! , then �� "����� ;
 � .

We note that in the corollary above, the CS operates in 3-Max-Parallel mode. Now the catalyst � � (resp.
� �) is needed to make sure that at most one addition vector in & � (resp. & �) is simulated by the CS at each
step. However, catalyst � � is not really needed in that we can convert each addition vector in & � to a rule
of the form ��� � , i.e., a noncooperative rule (without a catalyst). Thus, the system can be constructed to

6

have only two catalysts with catalytic rules and noncooperative rules. This was also shown in [9]. However,
the degree of maximal parallelism in the system is no longer 3 (because now more than one noncooperative
rule may be applicable at each step). In fact, a careful examination of the proof of Theorem 4 reveals that at
any point, no more than 3 noncooperative rules are applicable. This in turn implies that the degree of maximal
parallelism now becomes 5 (two catalysts plus 3 noncooperative rules). Note also that (, the dimension of the
communication-free VAS, which translates to the number of noncatalysts for the system, is also a function of
the number of states, hence is unbounded.

We can improve the above results. We need the following lemma whose proof is in the Appendix.

Lemma 1. There exists a 2-counter machine � with counters � � and � � that is universal in the following
sense. When � is given a description of an arbitrary 2-counter machine � as a positive integer in � � and an
input � in � � , � accepts iff � with input � on its first counter and

8
on its other counter accepts.

Let � be the number of states of � in the above lemma. Looking at the construction in the proof of Theorem
4, we see that (, the dimension of the communication-free VAS is bounded by a function of � . Then the
following corollary follows (one need only modify the first part of the proof of Theorem 4, since now, we use
the universal 2-counter machine � , where initially, � �
 � , and � �
 positive integer description of the
2-counter machine �).

Corollary 4. There exists a fixed positive integer (such that if ���$� is any recursively enumerable set of
nonnegative integers, then:

1. � can be generated (accepted) by a 1-membrane � -Max-Parallel CS with 3 catalysts and (noncatalysts.
2. � can be generated (accepted) by a 1-membrane � -Max-Parallel P system with 2 catalysts and (noncat-

alysts with catalytic and noncooperative rules.

2.5 9-Max-Parallel 1-Membrane CS with One Catalyst

We now look at a model of a 1-membrane CS with only one catalyst � with initial configuration �
�
� for some

string � of noncatalysts (thus, there are � copies of �). The rules allowed are of the form ��� � �	� or of the
form ���&� � �	� , i.e., � catalizes two copies of an object. Clearly the system operates in maximally parallel
mode, but uses no more than � rules in any step. We call this system 1GCS. This system is equivalent to a
restricted form of cooperative P system [17, 18]. A simple cooperative system (SCO) is a P system where the
rules allowed are of the form � � � or of the form �&�#� � . Moreover, there is some fixed integer � such that
the system operates in maximally parallel mode, but uses no more that � rule instances in any step. We can
show the following (see Appendix):

Theorem 5. 1GCS (hence, also SCO) operating under the � -Max-Parallel mode is universal.

2.6 Sequential Multi-Membrane CS with Prioritized Rules

In this section, we briefly consider the model of a sequential multi-membrane CS where the rules are prioritized.
Specifically, there is a priority relation on the rules: A catalytic rule � % of lower priority than � cannot be
applied if � is applicable. We refer to this system as prioritized CS. We know that the reachability set of
a sequential multi-membrane CS is semilinear and, hence, its reachability problem is NP-complete. In [15],
the status of the reachability problem for systems with prioritized rules was left open. Here we show that the
reachability problem is also NP-complete.

Taking advantage of the equivalence between sequential multi-membrane CS and communication-free
VAS, we first show the reachability problem for prioritized VAS (which will be defined in detail below) to
be NP-complete, which immediately yields the mentioned complexity result for prioritized sequential multi-
membrane CS.

Given a communication-free VAS �
 #%� �'&)(, a priority relation � over & is an irreflexive, asymmetric,
and transitive relation such that � � takes precedence over � � if (� � , � �) *�� , meaning that � � cannot be applied

7

if � � is applicable. Due to the nature of communication-freeness, we further assume � to satisfy a property
that if � and �&% subtract from the same coordinate, neither � � � � % � nor � �&% � � � is in � ; otherwise, one of the
two could never be applied. Let �� denote

� � � � � % � 1 � � � ��% � ;* � and � �&% � � � ;* � � . In this paper, �� is assumed
to be an equivalence relation, which partitions & into a number of equivalence classes

� � � ������� � � , for some
� (�) 1 & 1). Intuitively, each

� � � �))�) � � represents a set of vectors having the same priority. For every
� * � � and � % * � ! (� ;
 �), either � � � � % ��* � or � � % � � ��* � (but not both); we write

� ��� � !
(resp.,

� ! � � �
)

if � � � ��% �+* � (resp., � �&% � ���+* �). Without loss of generality, we assume that
� � � ������� � � be enumerated in

increasing priority throughout the rest of this paper. Given a �6* & and a � , we let � � � � � � ����
 � if �6* � �
(i.e., � � � � � � � � is the index of the equivalence class containing �).

Given a vector ��*,� � , an addition vector � can be applied at � under priority relation � if � 3 � 7 8 and no
other ��% * & such that � 3 �&% 798 and � � � � � � ��� � � � � � � � ��% � , i.e., no vector of higher priority is applicable at
� . We write � ���� � % , where ��%
 ��3 � . Let
��� be the reflexive and transitive closure of ��� . The reachability
set of � under � is ��� (�) =

� � 1 �
��� � � . The proof of the following lemma is in the Appendix.

Lemma 2. Given a communication-free VAS �
 #.� �'&)(and a priority relation � , if �
� � % (� * &
) and

for every � applicable at �&% , � * � � (i.e., � is in the lowest priority class induced by ��), then �

	
� � � % , for some

permutation � % of � .

For related results concerning other types of prioritized concurrent models, the reader is referred to [2, 23].
We also need the following known result [11, 22] saying that checking reachability for communication-free
VAS can be equated with solving the integer linear programming problem.

Lemma 3. Given a communication-free VAS �
$#%� �/&)(, there exists a system of linear inequalities
 � � � � % �
of polynomial size such that � % * ��� �0� iff
 � � � � % � has an integer solution. Furthermore,
 � � � � % � remains
linear even if � and � % are replaced by variables.

Based upon the above lemmas, we have the following result. Again, the proof is in the Appendix.

Theorem 6. The reachability problem for prioritized communication-free VAS’s is NP-complete.

According to Theorem 2, every sequential multi-membrane CS S can be simulated by a communication-
free VAS G, and vice-versa. Consider a priority relation for multi-membrane CS such that the prioritizing is
only between rules in the same membrane, and if ��� � � and � %�� � ��% are rules in the same membrane, then
neither the first rule takes precedence over the second rule nor the second rule takes precedence over the first
rule. Examining the proof of Theorem 2 shows that every sequential multi-membrane CS S with prioritized
rules can be simulated by a communication-free VAS G with prioritized rules, and vice-versa. Therefore, we
immediately have:

Corollary 5. The reachability problem for sequential multi-membrane CS with prioritized rules is NP-complete.

3 Sequential 1-Membrane Communicating P Systems

Consider the model of a communicating P system (CPS) with only one membrane, called the skin membrane
[20]. The rules are of the form:

1. � � � �
2. � � � � � ���
3. � � � � � ���
����� ���

where � � � � � are objects, � � � (which indicate the directions of movements of � and �) can only be
�"� � �

(i.e., the
object remains in the membrane) or
���
 (i.e., the object is expelled into the environment). The third rule brings
in an object � from the environment into the skin membrane. In the sequel, we omit the designation

�"� � �
, so

8

that objects that remain in the membrane will not have this subscript. There is a fixed finite set of rules in the
membrane. At the beginning, there is a fixed configuration of objects in the membrane.

Assume that the computation is sequential; i.e., at each step there is only one application of a rule (to one
instance). So, e.g., if nondeterministically a rule like ��� � �	 � & � � ��� # � ��� ��� is chosen, then there must be at
least one � and one � in the membrane. After the step, � remains in the membrane, � is thrown out of the
membrane, and � comes into the membrane. There may be several � ’s and � ’s, but only one application of the
rule is applied. Thus, there is no parallelism involved. The computation halts when there is no applicable rule.
We are interested in the multiplicities of the objects when the system halts.

One can show that a 1-membrane CPS can be simulated by a vector addition system (VAS) (this is a special
case of a theorem in the next section). However, the converse is not true – it was shown in [4] that a sequential
1-membrane CPS can only define a semilinear set.

4 Sequential 1-Membrane Extended CPS (ECPS)

We have seen in the previous section that 1-membrane CPS’s operating sequentially define only semilinear
sets. In contrast, we shall see in the next section that sequential 2-membrane CPS’s are equivalent to VASS.

There is an interesting generalization of a 1-membrane CPS, we call extended CPS (or ECPS) – we add
a fourth type of rule of the form: � � � � � ��� � ��� ��� � ��� ��� . That is, two symbols can be imported from the
environment. We shall see below that ECPS’s are equivalent to VASS’s.

Let � be an (-dimensional VASS. Clearly, by adding new states, we may assume that all transitions in �
have the form:

� � � � � ! � 3 � � �
� � � � � ! � � � � �

The above is a short-hand notation. The 3 � is addition of 1 to the
�

-th coordinate, and � � is subtraction of 1
from the

�
-th coordinate. All other coordinates are unchanged. Note at each step, the state uniquely determines

whether it is a ‘+1 transition’ or a ‘-1 transition’.

For constructing the ECPS � equivalent to � , we associate symbol � � for every state of the VASS, � for every
coordinate (i.e., position)

�
in the transition. We also define a new special symbol � . So the ECPS has symbols

� � ������� � � (� is the number of states), � � ��������� ��� ((is dimension of the VASS), and � .

Then a transition of the form � � � � � ! � 3 � � in � is simulated by the following rule in � :
� � � � � � � ��� # � � � & � �

! � ��� ��� � � � ��� ��� �
A transition of the form � � � � � ! � � � � in � is simulated by the following rule in � :

� � � � � � � ��� # � � � ��� # � �
! � ��� ��� �

If the VASS � has starting point # � � � � (, where �
 �%� � ��������� � � � and � � is the start state, then ECPS � starts
with the word � � �

� �� ����� �
�
�� � . Clearly, � simulates � .

Conversely, suppose we are given an ECPS � over symbols � � ��������� ��� with initial configuration � and
rules � � � ������� � � . The VASS � has states � � � � � � ��% � ������� � � � ��%� and starting point # � � � � � (, where � � is the
(-dimensional vector in � � representing the multiplicities of the symbols in the initial configuration � . The
transitions of � are defined as follows:

1. � � � � � � � � � �
 � for every
�) �) � is a transition, where � � �
 represents the zero vector.

2. If � � is a rule of the form � � � � , then the following are transitions:
� � � � ��%� � � � �
� %� � � � ! ��� � � for every

�) �#)+� , where � ��
 8 if �
$�.
���
 � and � ��
 3 � if �
 � �"� � � � .
(As before, � � � 8 � 3 � mean subtract 1, add 0, add 1 to

�
, respectively; all other coordinates are un-

changed.)

9

3. If � � is a rule of the form � � & � � �� � & � , then the following are transitions:
� � � � ��%� � � � � � � & �
� %� � � � ! ��� � ��� & � � for every

�)6�)+� , where � �� and � & � are as defined above.
(Note that if

�
 � , then � � %� � � � � � � & � means � � %� � � � � , i.e., subtract 2 from coordinate
�

.)
4. If � � is a rule of the form � � & � � ���� & � � � � ��� ��� � , then the following are transitions:
� � � � ��%� � � � � � � & �
�	%� � � � ! ��� � ��� & � � 3 � � � for every

�) �#)+� , where � � and � & � are as defined above.
5. If � � is a rule of the form � � & � � ���� & � � � � ��� ��� � � # � ��� � � � , then the following are transitions:
� � � � ��%� � � � � � � & �
�	%� � � � ! ��� � ��� & � � 3 � ��� 3 � # � for every

�) �) � , where � �� and � & � are as defined above.

It follows from the construction above that � simulates � . Thus, we have:

Theorem 7. Sequential 1-membrane ECPS and VASS are equivalent.

We can generalize rules of an ECPS further as follows:

1. � � � ����� � ��� � � � � � � ����� � � � � �
2. � � � ����� � ��� � � � � � � ����� � � � � � � ! ����� ��� ����� � ! % ��� ���

where
� � � 7 1, and ��� * � �	� � � �
��	
 � for

�) �) � , and the � ’s and � ’s are symbols. Call this system
ECPS+. Generalizing the constructions in the proof of Theorem 7, we can show ECPS+ is still equivalent to a
VASS. Thus, we have:

Corollary 6. The following systems are equivalent: Sequential 1-membrane ECPS, sequential 1-membrane
ECPS+, and VASS.

Using rules of types of 1 and 2 above, we can define the three versions of parallelism as in Section 2.3, and
we can prove the following result. The first part was shown in [10]. The proof of the second part follows the
strategy described in the proof of Theorem 3.

Theorem 8. For (,
 �
, a 1-membrane CPS (and, hence, also 1-membrane ECPS+) operating under the (-

Max-Parallel mode can define a recursively enumerable set. For any (, a 1-membrane ECPS+ operating under
),(-Parallel mode or (-Parallel mode is equivalent to a VASS.

5 Multi-Membrane CPS and ECPS

In this section, we look at CPS and ECPS with multiple membranes. Now the subscripts � � � in the CPS rules
��� ��� ��� (and � � � � � ���
����� ��� � ��� ��� in ECPS) can be

�	� � �
,
���
 , or � (! .

As before,
�	� � �

means that the object remains in the membrane containing it,
���
 means that the object is
transported to the membrane directly enclosing the membrane that contains the object (or to the environment if
the object is in the skin membrane), and �
�� � can only occur within the outermost region (i.e., skin membrane).
The designation � (! means that the object is moved into a membrane, labeled � , that is directly enclosed by the
membrane that contains the object.

5.1 Sequential 2-Membrane CPS

In Section 3, we saw that a sequential 1-membrane CPS can only define a semilinear set. We now show that if
the system has two membranes, it can simulate a vector addition system.

Theorem 9. A sequential 2-membrane CPS � can simulate a VASS � .

10

Proof. Let � be an (-dimensional VAS. Again, we may assume that all transitions in � have the form:

� � � � � ! � 3 � � �
� � � � � ! � � � � �

Moreover, by adding states, we can tag each state that corresponds to a ‘+1 transition’ as
 �$� or
� � � (with the

following meaning: a state that is tagged
 �%� (resp.
� � � () means that the VASS has so far performed an even

(resp. odd) number of ‘+1 transitions’.
The CPS � has two membranes: membrane 1 (the skin membrane) contains membrane 2. Initially, mem-

brane 2 contains the object (symbol) � . Membrane 1 has initially � � �
� �� ����� �
�
�� � .

As in the construction in the proof of Theorem 7, a transition of the form � � � � � ! � � � � in � is simulated by
the following rule in membrane 1 of � :

� � � � � � � ��� # � � � ��� # � �
! � ��� ��� �

A transition of the form � � � � � ! � 3 � � in � is simulated by the following rules in � . The rules are partitioned
into two cases.

Case: � � is tagged
 �$� .

Rules in membrane 1:

� � � � � � � ��� # � � � & � � ! � ��� ��� �
� ! � � � ! � � � � � � � � � � � � � ��� ��� �
� ! � � � ! � ��� # � � � � & � � �

! � ��� ��� �
Rule in membrane 2:

� ! � � � ! � ��� # � � � ��� # �
In the rules above, � ! is also tagged
 �%� .

Case 2: � � is tagged
� � � (.

Then we include a similar set of rules for membranes 1 and 2 as above, except that the roles of symbols � and
� are switched, i.e., we replace the occurrences of � (resp. �) by � (resp. �) in the rules, and � ! is tagged

� � � (.
It is easily verified that � simulates � .

5.2 Sequential Multi-Membrane ECPS

In Theorem 7, we saw that a sequential 1-membrane ECPS can be simulated by a VASS. The construction can
be extended to multi-membrane ECPS. Recall that we now allow rules of the form: � � � �"� � � � ��� � � � ��� � .

Suppose that � has � membranes. Let
� � ����������� � � � be the set of symbols (objects) that can occur in the

configurations of � . Then each reachable configuration of � is an � (-tuple � � ����������� � � � , where � is an (-
tuple representing the multiplicities of the symbols � ����������� � � in membrane
 . Then the set of all reachable
configurations of � is a subset of � ��� . Let � � ��������� � � be the rules in � . Note that � � not only gives the
rule but also the membrane where it appears. The construction of the VASS � simulating � is similar to the
construction described in the second part of the proof of Theorem 7. In fact the construction also works for
ECPS+. Since a sequential 2-membrane CPS can simulate a VASS, we have:

Theorem 10. The following are equivalent: VASS, sequential 2-membrane CPS, sequential 1-membrane ECPS,
sequential multi-membrane ECPS, and sequential multi-membrane ECPS+.

Finally, we observe that Theorem 8 extends to multi-membrane CPS:

11

Theorem 11. For any (, a multi-membrane ECPS+ operating under) (-Parallel mode or (-Parallel mode
is equivalent to a VASS.

6 Conclusion

We showed in this paper that P systems that compute in sequential or limited parallel mode are strictly weaker
than systems that operate with maximal parallelism for two classes of systems: multi-membrane catalytic sys-
tems and multi-membrane communicating P systems. Our proof techniques can be used to show that many of
the P systems that have been studied in the literature (including ones with membrane dissolving rules) operating
under sequential or limited parallelism with unprioritized rules can be simulated by vector addition systems.

References

1. H. G. Baker. Rabin’s proof of the undecidability of the reachability set inclusion problem for vector addition systems.
In C.S.C. Memo 79, Project MAC, MIT, 1973.

2. F. Bause. On the analysis of Petri net with static priorities. Acta Informatica, 33, 1996.
3. E. Csuhaj-Varju, J. Dassow, J. Kelemen, and Gh. Paun. Grammar Systems: A Grammatical Approach to Distribution

and Cooperation. Gordon and Breach Science Publishers, Inc., 1994.
4. Z. Dang and O. H. Ibarra. On P systems operating in sequential and limited parallel modes. In Pre-Proc. 6th Workshop

on Descriptional Complexity of Formal Systems, 2004.
5. J. Esparza. Petri nets, commutative context-free grammars, and basic parallel processes. In Proc. Fundamentals of

Computer Theory, volume 965 of Lecture Notes in Computer Science, pages 221–232. Springer, 1995.
6. P. C. Fischer. Turing machines with restricted memory access. Information and Control, 9:364–379, 1966.
7. P. C. Fischer, A. R. Meyer, and A. L. Rosenberg. Counter machines and counter languages. Mathematical Systems

Theory, 2:265–283, 1968.
8. R. Freund. Sequential P-systems. Available at http://psystems.disco.unimib.it, 2000.
9. R. Freund, L. Kari, M. Oswald, and P. Sosik. Computationally universal P systems without priorities: two catalysts are

sufficient. Available at http://psystems.disco.unimib.it, 2003.
10. R. Freund and A. Paun. Membrane systems with symport/antiport rules: universality results. In Proc. WMC-CdeA2002,

volume 2597 of Lecture Notes in Computer Science, pages 270–287. Springer, 2003.
11. L. Fribourg and H. Olsén. Proving safety properties of infinite state systems by compilation into Presburger Arithmetric.

In CONCUR 1997, volume 1243 of Lecture Notes in Computer Science, pages 213–227. Springer-Verlag, 1997.
12. M. H. Hack. The equality problem for vector addition systems is undecidable. In C.S.C. Memo 121, Project MAC,

MIT, 1975.
13. J. Hopcroft and J.-J. Pansiot. On the reachability problem for 5-dimensional vector addition systems. Theoretical

Computer Science, 8(2):135–159, 1979.
14. D.T. Huynh. Commutative grammars: The complexity of uniform word problems. Information and Control, 57:21–39,

1983.
15. O. Ibarra, Z. Dang, and O. Egecioglu. Catalytic P systems, semilinear sets, and vector addition systems. Theoretical

Computer Science, 11(1):167–181, 2004.
16. E. Mayr. Persistence of vector replacement systems is decidable. Acta Informat., 15:309–318, 1981.
17. Gh. Paun. Computing with membranes. Journal of Computer and System Sciences, 61(1):108–143, 2000.
18. Gh. Paun. Membrane Computing: An Introduction. Springer-Verlag, 2002.
19. Gh. Paun and G. Rozenberg. A guide to membrane computing. Theoretical Computer Science, 287(1):73–100, 2002.
20. P. Sosik. P systems versus register machines: two universality proofs. In Pre-Proceedings of Workshop on Membrane

Computing (WMC-CdeA2002), Curtea de Arges, Romania, pages 371–382, 2002.
21. J. van Leeuwen. A partial solution to the reachability problem for vector addition systems. In Proceedings of STOC’74,

pages 303–309.
22. H. Yen. On reachability equivalence for BPP-nets. Theoretical Computer Science, 179, 1997.
23. H. Yen. Priority conflict-free Petri nets. Acta Informatica, 35(8), 1998.

12

APPENDIX

Proof of Corollary 1

Proof. For part 1, let � be the communication-free VAS constructed in the first part of the proof of Theorem
2. Then ��� �0� � � ��� � � is semilinear (since a communication-free VAS has a semilinear reachability set).
Now the first � (components of each vector in ��� �0� correspond to the multiplicities of � ��� ������� � � for each
of the � membranes, and the remaining � components correspond to � ������������� � . Clearly, from the proof of the
theorem, ��� ���
 � �
 ����� � � � �0� � �.� ��� � � 8 � � � � , where � �
 ����� is the projection of the tuples on the first � (
coordinates. Since � ��� � � 8 � � is semilinear and semilinear sets are closed under intersection and projection,
it follows that ��� ��� is semilinear.

Now consider � ����� . A noncatalyst � is useful for membrane
 if there is a rule in membrane
 with � � on
the left hand side for some catalyst � . Without loss of generality (by simple relabeling), assume that the last

positions in the �%� (�3 � � -tuples of transition rules correspond to useful symbols. Note that the same symbol �
can not be useful for more than one membrane because in the configurations, we distinguish a symbol occurring
in membrane
 from the same symbol occurring in another membrane � . Clearly, a reachable configuration in
��� � � is halting if coordinates �.� (�
�3 � � ��������� � ((corresponding to the useful symbols) are zero. Hence
�� "�����
 � ����� � �.� ��� � # � � 8 � # � , which is semilinear.

Part 2 follows from the NP-completeness of the reachability problem for communication-free Petri nets
(which are equivalent to commutative context-free grammars) [14, 5].

Proof of Theorem 4

Proof. Let the set of states of � be
�
 �����������
 ��� , where
 � the initial state and
 � the final state. W.l.o.g., we

assume that whenever � enters an accepting state, both counters are empty. Furthermore, � runs forever if
it does not accept. In what follows, we show how to construct an (-dimensional communication-free VAS
�
 #.� � � & � �/& � �'& � � (meeting Statement (1) of the theorem. To better explain how VAS � functions, we
divide the (coordinates into the following:

– � : the designated coordinate,
– � � and � � : keep track of the values of the two counters � � and � � , respectively,
– � and � % : serve for the purpose of generating an arbitrary number in � � and � for the simulation to start,
– �"% � and �"%� : serve as temporary holders for decrementing � � and � � , respectively, or testing � � and � � for

zero, respectively,
– � ��� ������� � � : simulate the � states of � in such a way that at any instant, only one of � ��� ������� � � is non-zero

(indicating the current state of �). Furthermore, if from state � � the next transition to simulate is of type
‘increment’, then � � = 2; otherwise, � � = 1. (More will be said later about how this is done.)

– � � � � ! � � � � �) �) � (�
 � or
�
): serve for simulating transition
 � � � � ��� � � ��
 ! ,

–
 � � � � ! � � � and
 � � � � ! � � � (�
 � or
�
): serve for simulating transition
 ��� � � ��
 ! ,

– � and � % : record the occurrence of an illegitimate simulation step during the course of the simulation.

The start vector � of � is � � � �
 � , while the remaining coordinates are zero. By using the set of addition
vectors given in Table 1, an arbitrary value � can be generated in both � � and � through the sequence listed
in Table 2. Note that in Table 2, only the values of coordinates � � � % � � � � � � � � � � are shown; the rest are zero
throughout.

The coordinate � plays the role of enforcing nontermination of � whenever � =1. To this end, the addition
vectors listed in Table 3 are used.

Regarding � � , � � , � % � and � %� , the addition vectors listed in Table 4 are involved. It is worth mentioning that
during the course of Steps 2 - 2m+1 in Table 2,

� � and
� � (or

� �) are both enabled, and the two are of the same
type & � . If

� � (feasible when � � � 8) is ever applied at some point in time, then a type & � vector � � (or � �)
is forced to take place due to the max-parallelism rule – yielding �
 � .

13

addition vector � � � � � 	 � ��� � � � � � �
� � * -1 1 1 1� � * 1 -1� 	 * -1 1
	 � * -1 1
	 � * -1 1

Table 1. Addition vectors associated with the initial phase of the simulation. A ‘*’ in columns � � � � � � � 	 indicates the
type to which the addition vector belongs. In each of columns � , �
� , � � , � , � � and � , a blank denotes a zero.

step addition vectors � � � � � � � � �
used

0 1 0 0 0 0 0
1 (

� � ,0,0) � 0 1 1 1 0 0
2 (

� � ,0,0) � 1 0 1 1 0 0
3 (

� � ,0,0) � 0 1 2 2 0 0
4 (

� � ,0,0) � 1 0 2 2 0 0
...

2m-1 (
� � ,0,0) � 0 1 m m 0 0

2m (
� � ,0,0) � 1 0 m m 0 0

2m+1 (
� 	 ,0,0) � 0 0 m m 1 0

Table 2. A sequence generating an arbitrary number � in coordinates � � and � .

addition vector � � � � � 	 � �
�
� * -1 1
� � * 1 -1

Table 3. Forcing
 to be nonterminating when � � � .

addition vector � � � � � 	 � � ��� � ��� ��� � �
� � * -1 1
� � * -1 1
� � � * -1
� �� * -1� � * -1 1� � * -1 1

Table 4. Addition vectors associated with the two counters.

14

addition vector � � � � � 	 ��� � �� ��� ���	� � � � � ��� ���	� � � 	 � ��� ���	� � ��
 � ��� ���	� � �
� � ��� ���	� � ��� �
� � * -1 1 1� � * -1 1� 	 * -1 1�
 * -1 1� � * -1��� * -1 1 (@)� � * -1 1� � * -1 1� 	 * -1 1�
 * -1 1� � * -1 1

Table 5. Addition vectors associated with the simulation of � ��� ��� � � ��� �) � � . (@): Note that if from � � an ‘add one to a
counter’ is the next transition, then the ‘1’ in the � � ’s column is replaced by ‘2’.

We are now in a position to see how the three types of transitions of � can be faithfully simulated in G.

First consider
 � � � � ��� � � ��
 ! . Addition vectors shown in Table 5 serve for the purpose of simulating the such
a transition. Note that Table 5 is for �
 �

; �
 � is symmetric.

To see how
 � � � � ��� � � ��
 ! can be simulated faithfully, we focus on the following 12 coordinates that are
involved in the simulation, i.e.,

� � � � � � �"% � � �"%� , � � , � � � � � ! � � � , � � � � � ! � � � , � � � � � ! � � � , �
� � � � ! � � � , ��� � � � ! � � � , � ! , �
Suppose that the simulation begins with vector � ����� � � � � 8 � 8 � � � 8 � 8 � 8 � 8 � 8 � 8 � 8 ����� � denoting a configuration of
� in which the values of counters � � and � � are � and � , respectively, and the current state is
 � . First consider
the case when � � 8 and ��� 8 . In this vector, only

� � , � � , � � and � � are enabled. Since
� � and � � belong to

the same group & � , only one of them is feasible. Hence, there are two feasible steps:

� ����� � � � � 8 � 8 � � � 8 � 8 � 8 � 8 � 8 � 8 � 8 ����� �
� &�� � &�� � � � �� � ����� � � � � � � � � � � � � 8 � 8 � 8 � 8 � 8 � 8 � 8 � � ����� � or

� ����� � � � � 8 � 8 � � � 8 � 8 � 8 � 8 � 8 � 8 � 8 ����� �
�
	 � � & � � � �� � ����� � � � � � � 8 � � � 8 � � � � � 8 � 8 � 8 � 8 � 8 ����� �

Clearly the former gives rise to a vector in which � =1, rendering the simulation nonterminating. From � ����� � � � �� � 8 � � � 8 � � � � � 8 � 8 � 8 � 8 � 8 ����� � , it is easy to see that the sequence of steps listed in Table 6 is legitimate.

step addition vectors � � � � � � � � � � � � � �� ��� ���	� � � � � ��� � ��� � � 	 � ��� � �	� � �
 � ��� ���	� � � � � ��� � ��� � � � �
used

0 a b 0 0 1 0 0 0 0 0 0 0
1 ! � � � � � �#"%$ � a b-1 0 1 0 1 1 0 0 0 0 0
2 ! � � � � �� �#"%$ � a b-1 0 0 0 0 1 1 0 0 0 0
3 ! �
 � � 	 �&"'$ � a b-1 0 0 0 0 0 0 1 1 0 0
4 ! � � � ��� �&"'$ � a b-1 0 0 0 0 0 0 0 0 1 0

Table 6. A successful simulation of � � � � � � � � �
�

) � � .

A careful examination of Table 4 reveals that along the sequence in Table 6,
� � or
� � might be enabled

in each of the intermediate vectors during Steps 2-4. However, executing
� � or
� � in Steps 2-4 forces one of(� � � � ��������� � � to take place under the � -Max-Parallelism mode, which in turn yields �
 � . In view of the

above, the sequence listed above is the only way that the computation of � has a potential to terminate, and

15

such a computation corresponds to a faithful simulation of
 ��� � � ��� � � ��
 ! . The case when �#
 8 and � � 8 is
similar. Now consider the case when � �
 8 (i.e., � =0) to begin with. Then again � � must be involved in the
first step (otherwise, � � will result in �
 �) which inhibits

� � from being executed. So we have the sequence
in Table 7.

step addition vectors � � � � � � � � � � � � � �� ��� ���	� � � � � ��� ���	� � � 	 � ��� � �	� � �
 � ��� � �	� � � � � ��� ���	� � � � �
used

0 a 0 0 0 1 0 0 0 0 0 0 0
1 ! � � � " �&"'$ � a 0 0 0 0 1 1 0 0 0 0 0
2 ! � � � � 	 � "'$ � a 0 0 0 0 0 0 1 1 0 0 0
3 ! �
 � " � �
 $�� � � 1
3’ ! � � � " � � 	 $�� � � 1
3” ! � ���#" � �
 $ � 1

Table 7. A fail simulation of � � � � � � � � �
�

) � � .

In � ����� � � 8 � 8 � 8 � 8 � 8 � 8 � � � � � 8 � 8 � 8 ����� � , both � � and � � are enabled, yet only one of them can be executed
due to the fact that both are of type & � . Hence, one of � � and � � is forced to take place, resulting in �
 � .
From the discussion above, ��
 � will always happen during the course of the simulation. This in turn implies

that simulating
 ��� � � ��� � � ��
 ! while � �
 8 always results in � being nonterminating.

The crux of the simulation of
 � � � � ��� � � ��
 ! lies in that if � � 8 , then
� � , together with � � , has to be

applied in the first step. With � %�
 � (as a result of applying
� �), � %� can then be applied to ‘delay’ the execution

of � � , since both are of type & � . Notice that �
� � � � ! � � � is a coordinate at which no type & � vector, i.e., adding

one to � , is defined. Hence, its outgoing vector can be delayed as long as it is needed. On the other hand, if
�
 8 initially, then � � and � � must be applied at the same time in the second step, which eventually results in
��
 � as our earlier discussion concludes.

Now we turn our attention to simulating
 � � � � ��
 ! . To this end, Table 8 lists the vectors used for the case
�
 �

. (�
 � is similar.)

addition vector � � � � � 	 ��� � �� ��� ���	� � � � � ��� � ��� � � � �
+ � * -1 1 1
+ � * -1 1(@)
+ 	 * -1
� � * -1 1
� � * -1 1
� 	 * -1 1

Table 8. Addition vectors associated with � � � � ���) � � . (@): Note that if from � � an ‘add one to a counter’ is the next
transition, then the ‘1’ in the � � ’s column is replaced by ‘2’.

In what follows, we focus on the following 9 coordinates that are relevant to the simulation of
 � � � � ��
 ! :
� � � � � � ��% � � ��%� � � � �
 � � � � ! � � � �
 � � � � ! � � � � � ! � � . Suppose that the simulation begins in vector � ����� � � � � 8 � 8 � � � 8 � 8 � 8 � 8 ����� � .
First consider the case when �
 8 and � � 8 . In this case, Table 9 records a success in simulating
 ��� � � ��

 ! since � ! (the coordinate corresponding to state
 !) becomes 1. Notice that � � � � � � � � must be applied
in such a sequence; otherwise, one of � � � � � � � � will be executed, resulting in �
 �

in the end. Now
suppose in the start vector, � � ;
 8

(i.e., � � 8
). Operating in the 3-Max-Parallel mode forces the step

16

� ����� � � � � 8 � 8 � � � 8 � 8 � 8 � 8 ����� �
�
�
� � & � � � �� � ����� � � � � � � 8 � � � 8 � � � � � 8 � 8 ����� � . Now in � ����� � � ��� � � 8 � � � 8 � � � � � 8 � 8 ����� � , one

of
(� and � � has to be taken since

� %� and � � are of type & � . This makes �
 � .

step addition vectors � � � � � � � � � � ��� � �� ��� � ��� � � � � ��� ���	� � � � �
0 a 0 0 0 1 0 0 0 0
1 ! + � �#" � "'$ � a 0 0 0 0 1 1 0 0
2 ! + 	 � + � � "%$ � a 0 0 0 0 0 0 1 0

Table 9. A successful simulation of � � � � � �) � � .

Now we show how
 � � � � ��� � � ��
 ! is simulated. Table 10 shows the addition vectors involved for the case
�
 �

. (�
 � is similar.) Since in our design we always have � �
 �
prior the simulation of this transition,

one must apply both � � and � � simultaneously; otherwise,
� � is forced to be taken which renders �*
 � . The

applications of � � and � � not only increment � � by one, but also inhibit
� � and
� � from been executed.

addition vector � � � � � 	 � � � � � � �
� � * -1 1 1 (@)
� � * -1
� � * -1 1

Table 10. Addition vectors associated with � � � � � � � ���
�

) � � . (@): Note that if from � � an ‘add one to a counter’ is the next
transition, then the ‘1’ in the � � ’s column is replaced by ‘2’.

Finally, an addition vector decrementing � � (the coordinate corresponding to the accepting state of M) is
included in & to force halting of � as soon as � reaches an accepting state. Upon halting, the value of �
(i.e., the designated coordinate) is � . Clearly, � does not halt if � never accepts, or during the course of
the simulation, an illegitimate simulation step is carried out. This completes the proof of Statement (1) of the
theorem. The proof of (2) can be carried out along a similar line as that of (1), and hence, is left to the reader.

Proof of Lemma 1

Proof. We sketch the construction of � . Let � � � be a recursively enumerable set of nonnegative integers
accepted by a deterministic TM � with a one-way unary read-only input (with endmarkers) and one (two-way)
read-write worktape, i.e., � when given (on its input tape (in unary with endmarkers), computes and accepts
if (is in � .

It is well known that we can construct a universal deterministic TM � � with two read-only input tapes and
one read-write tape that operates as follows. � � , when given (and a description ��� over the binary alphabet� � � � � of a deterministic TM � on its two input tapes, will simulate the computation of � on (and accepts
iff � on input (accepts.

First, we convert � � to an equivalent universal deterministic TM � � , where the description of � � is given
as a unary string � � ��� ���%� � �
 �	� ��� � ��
 � , where

� �	� �%� � � is � � interpreted as a number in 2-adic notation.
The idea is for � � to read � � ��� ���%� � � on the input and convert it into 2-adic representation � � on the first track
of the worktape. Then � � uses � � to simulate � on (using the second track of the worktape. So now � � has
two read-only unary input tapes (with endmarkers) and a worktape.

Next, we convert the worktape of � � to a finite number of counters. Three counters are sufficient to simulate
the TM worktape, as shown in [6, 7]. The new machine � � will now have two unary inputs and and three
counters.

17

Then we convert � � to a deterministic counter machine � � which will use two counters to simulate the two
unary input tapes (note that the unary input tapes are one-way) and three working counters, all of which are
initially zero.

Thus, � � has 5 counters. Initially, the first counter contains (, the second counter contains � � ��� ���.� � � , and
the other 3 counters are zero.

Finally, we convert � � to a universal 2-counter machine � . Call the two counters of � � � and � � . Initially
� � has value (and � �
 � � � �

�
! ! � � ��
 �� � � � � �� � � � . Here � ��� ������� � � are the first 5 prime numbers, and the values of

the 5 counters of � � will be represented as the exponents of the prime numbers.
� first encode ((the initial value of � �) into counter � � , so that at the end of the process, � �
 8 and

� � contains � � � � �
! ! � � �
 �� � � � � �� � � � . (Thus, the ‘exponent’ of � � will now represent the value of the first counter).

Then � simulates the computation of � � using only the two counters � � and � � and accepts iff � � accepts.
The simulation is straightforward.

Proof of Theorem 5

Proof. (Proof sketch) To demonstrate universality, we show the ability for this type of CS to simulate arbitrary
2-counter machines. Let � be a 2-counter machine with two counters � � and � � , and the set of states of � be�
 ��� �������
 �&� , where
 � the initial state and
 � the final state. A configuration of � is a triple �
 � � � ��� , where
 is
a state and � and � (* �) are the values of counters � � and � � , respectively. W.l.o.g., we assume that whenever
� enters an accepting state, both counters are empty. In the remainder of the proof, we show how to construct
a CS � with initial configuration � � � in such a way that � accepts on initial counter values � �
 � and
� �
 8 iff for some designated noncatalyst � ,
1. (generator:) � * � � # � � � 1 � *�� 	� ��� � ,
2. (acceptor:) initial configuration is � � � and � � � � ;
 � , for some � not containing � .

We first show the generator case. The meanings of the noncatalysts and rules used in the construction will be
elaborated in detail as our discussion progresses. There is a special noncatalyst � in the CS � , which serves
as an ‘error’ indicator. Whenever � appears in some configuration, CS � never halts. This can be guaranteed
by including rule � � � � � in � . Furthermore, � ever appears iff during the course of the simulation, an
illegitimate step is taken. To keep track of the values of the two counters � � and � � and the states of � , we
introduce the following noncatalysts:

– � � , �"% � , � � , ��%� : if � � � corresponds to configuration �
 � � � � � of � during the course of the simulation, then� � � �%��� 3 � � 	 � �%���
 � , � � 	 � �%���) � , � � � �.��� 3 � � 	� �.���
 � ,
� � 	� �%���) � . In words, the number of

occurrences of � � and � % � (resp., � � and � %�) together records the value of counter � � (resp., � �).
– � � and � � : their presence or absence reflects the status of the counters, i.e., whether � � and � � , respectively,

are empty or not. In any reachable configuration � � � ,
�$# � �%�!� � � # � �.���) �

.
– � � , ..., � � : associated with states of � . At any point, one and only one of � � , ..., � � appears in the configu-

ration of � in the course of the simulation.

We also have the following rules associated with counters � � and � � :
–
� � : ��� � � ���"% � � �

–
� %� : ��� % � � ��� �

–
� � : ��� � � ���"%� � �

–
� %� : ���"%� � ��� �

– � � : ��� � � � � � �
– � � : ��� � � � � � �

To give the reader a better feel for how the construction works, we first give the intuitions in the following.
Like VAS (or Petri nets), catalytic systems also lack an explicit ‘zero-test’ capability, i.e., there is no rule whose
application relies on a certain noncatalyst being absent in a configuration. As a result, the ability to simulate
‘test-for-zero’ by taking advantage of the system operating under the max-parallel mode is crucial.

18

Take counter � � for instance. The way we accomplish ‘test counter � � for zero’ is by periodically applying
rules
� � and

� %� alternatively to interchange � � (if it exists) with �"% � . While in each of such alternations, a
noncatalyst � � is created by rule

� � , serving as an indicator telling whether counter � � is zero or not. In
the process of simulating either ‘incrementing’ or ‘decrementing’ counter � � , such an � � (possibly multiple
copies) will always be synchronized with some noncatalysts evolving from the ‘state’ noncatalyst from which
the simulation of the current transition begins. One can think of the simulation of a transition (from state
)
involves two threads evolving from the noncatalyst representing
 . At some point in time, the two threads are
to be synchronized with those � � and � � possibly spun off from � � and � � , respectively. � � and � � will then be
consumed while the action (either an increment or a decrement)on the counter is taken. However, if ‘ � �
 8��
is the underlying transition to simulate, in our design the generated � � (indicating a nonempty � �) has no
chance to be synchronized properly, and then eventually � � contributes to the occurrence of an � making �
nonterminating. With the presence of � � , simulating ‘test � � for zero’ eventually fails.

To illustrate how such a synchronization is carried out, consider the case when a transition of � from state

 � to
 ! is to be simulated and the CS � starts with configuration � �

� � � � � � � � � �"% � � � � � � � � ! � � � � � � � � ��%� � � � � � � � ! � � ,
for some � � � (� � � � � � � � (� � � � * � � (� � (�) � � � � � � �) �

. Depending on the type of � ’s transition, what
follows explains the evolution of the catalytic system with the operations on the counters omitted.

First, two noncatalysts � � and � � are generated through a rule of the form � � � � � � � � � , and subsequently,
� � (�
 � or 2) evolves into new noncatalysts �

�� ��� �� ��� �� ������� � � until the number of � � becomes 2. (Notice that for
different values of � � � (� � � � , the number of steps (i.e.,

�
) for � � to become 2 varies.) Using rules ��� � � � � � � %�

and � � � � � � %� , a configuration containing � � %� � � can be reached, and then a rule of type � � %� � %� � � � ! marks
the end of the simulation of the current transition. By introducing rule � � %� � � � , rules ��� � � � � � � %� and
� � � � � � %� must be applied simultaneously (in order to create two � %� for � � %� � %� � � � ! to be applicable next);
otherwise, � � %� � � � is forced to be taken (guaranteed by max-parallelism) if only one � %� occurs, resulting in
the occurrence of an � .

We now begin showing the rest of the CS � , and how � ’s transitions are simulated.

(Increment counter � � :
 ��� � � ��� � � ��
 !)
It is important to point out that each of the newly introduced noncatalyst should be annotated by � and � (i.e.,
for different � � � , a new set of noncatalysts is used); nevertheless, for the sake of clarity in notation, such indices
are omitted in our subsequent discussion. Suppose that the current configuration of � is � � � . With respect to
the numbers of occurrences of � � , ��% � , � � , � � , �"%� , � � in � , we consider the following cases:� Case I-1: � � � � �%�!��� 8 ��� � � � 	 � �.���
 � ����� �$# � �.���
 � ��� � � � � �%�!��� 8 ��� � � � 	� �%�!�
 � ��� � �$# � �%���
 � � :
In this case, two additional noncatalysts �

�� and �
�� together with the following rules are in � : (Notice that in

those noncatalysts listed below, each superscript indicates the type of the case.)

– Rule �
�� : � � � � � � �� � ��

– Rule �
�� : ��� � � � � � � ��

– Rule �
�� : ��� � � � � � � ��

– Rule �
�
� : � � �� � �� � ��� � � !

– Rule �
�
� : � � �� � �� � �

– Rule
(� : � � �� � � �

– Rule
(� : � � �� � � �

Suppose that we begin in configuration � �

� � � � � � � �"% � � � � � � � � � � � �"%� � � � � � . Operating in the max-parallel
mode yields the following computation:
step rules applied configuration

0 � �

� � � � � � � �"% � � � � � � � � � � � ��%� � � � � �
1
� � , � %� , � � , � %� , � �� , � �� , � �� � � � � � � � �"% � � � � � �� � � � � � � � �"%� � � � � �� � �

2
� � , � %� , � � , � %� , � �� , �

�
� �

�

� ! � � � � ��� � �"% � � � � � � � � � � � �"%� � � � � �
It is easy to observe that if any of �

�� , � �� , � �� and �
�
� is not applied in Steps 1 and 2, then one of � � , � � ,(� , (� , or a rule replacing � � � � (or � � � �) by a noncatalyst in simulating a different transition must take place –

eventually leading to the creation of an � .

19

� Case I-2: � � � � �%�!��� � ��� � � � 	 � �%�!�
 8 ��� � � # � �%�!�
 8 � � � � � � �%�!��� 8 ��� � � � 	� �%�!�
 � ��� � �$# � �.���
 � � :
The following rules are in � :

– Rule �
� � : � � � � � � � � � � � �� � �

– Rule �
�� : ��� � � � � � � �� � �

– Rule �
�� : � � � � � � � � � � � � �

– Rule �
�
� : � � �� � � � �� � � � � � �� � �

– Rule �
�
� : � � � � � � � � � � � � �

– Rule �
�� : � � �� � � � � � �� � �

– Rule �
��
: ��� � � � � � � � � � �

– Rule �
��
: ��� � � � � � � �� � �

– Rule �
�
� : � � � � � � � � � � � � ��� � � !

– Rule �
� � � : � � �� � � � �� � � �$�

– Rules
(

: � � � � � � � � , � � �� � � � � ,
�) �) �

Suppose that we begin in configuration � �

� � � � � � � � � � � � �"%� � � � � � . Operating in the max-parallel mode yields
the following computation:
step rules applied configuration

0 � �

� � � � � � � � � � � � �"%� � � � � �
1

� � , � � , � %� , � � � , � �� , � � � � � � � � � �"% � � � � � � � � � � � � � �"%� � � � � �� � � � �
2
� � , � %� , � � , � %� , � �� , � �� , � � � � � � � � � � % � � � � � � � � � � � � � � � � � %� � � � � � � �� � �

3
� � , � %� , � � , � %� , � �� , �

�� , �
��
�
�� � � � � � � � � � � % � � � � � � � � � � � � � � � � � %� � � � � �� � � � �

4
� � , � %� , � � , � %� , � �� � � � � � �

� ! � � � � � � % � � � � � � � � � � � � %� � � � � �
Again, if any one of �

� � ����� � � � � does not appear in the above sequence, one of those rules in
(

has to be
applied due to max-parallelism. Also notice that if, instead of �

�� � � �� � � �� , one of �
�� and �

�� is applied in steps
1 and 3 (i.e., � � or � � is synchronized with the wrong case of the simulation), then it is reasonably easy to see
that one of � or

(
rules has to be applied.

There are several other cases, which are all similar to the above.

(Decrement counter � � :
 ��� � � ��� � � ��
 !)
Consider� Case D-1: � � � � �%�!��� 8 � �+� � � 	 � �.���
 � � ��� �$# � �.���
 � � �<� � � � �%����� 8 � �<� � � 	� �%�!�
 � � �+� �$# � �.���
 � � :
In this case, three additional noncatalysts

� �� , � �� , � �� together with the following rules are in � :

– Rule
� �� : � � � � � � �� � �� � ��

– Rule
� �� : ��� � � � � � � ��

– Rule
� �� : ��� � � � � � � ��

– Rule
� �
� : ���"% � � � � ��

– Rule
� �
� : � � �� � �� � � � !

– Rule
� �� : � � �� � �� � �

– Rule
� ��

: � � �� � �� � �
– Rule � � : � � �� � � �
– Rule � � : � � �� � � �
– Rule � � : � � �� � � �

Suppose that we begin in configuration � �

� � � � � � � �"% � � � � � � � � � � � �"%� � � � � � . Operating in the max-parallel
mode yields the following computation:
step rules applied configuration

0 � �

� � � � � � � �"% � � � � � � � � � � � �"%� � � � � �
1
� � , � � , � %� , � �� , � �� , � �� , � �

� �
� � � � � � � � ��% � � � � � �� � � � � � � � ��%� � � � � �� � � � � �� � �

2
� � , � %� , � � , � %� , � �

� ,
� �� ,

� �� � �

� ! � � � � � � � �"% � � � � � � � � � � � �"%� � � � � �
It should be noted that if � % � = 0 (i.e., �"% � is absent) to start with, then after step 1, there is only one occurrence

of
� �� in the configuration, which in turn forces � � to be taken next. (Rule

� ��
requires two copies of

� �� .) The

20

absence of ��% � could be the result of either counter � � being empty, or the wrong case of the simulation being
involved. In either case, CS � then becomes nonterminating.

The remaining cases are similar to the above, and hence, are left to the reader. For the case similar to Case I-
2 (i.e., the second case of ‘increment’), the degree of maximal parallelism needed to simulate ‘decrement’ is 9,
one plus the maximum number utilized in I-2. The extra one comes from the fact that to simulate a ‘decrement’,
three threads (captured by

� �� � � �� � � ��) are required as opposed to two threads as was the case in I-2.
Finally, we consider the simulation of a ‘test-for-zero’ transition.

(Test counter � � for zero:
 ��� � � ��
 !)
Consider
� Case Z-1: � � � � �.����� 8 � � � � � 	 � �%�!�
 8 � ��� � # � �.���
 8 � �+� � � � �%�!��� 8 � � � � � 	� �.���
 � � � � �$# � �.���
 � � :
In this case, the following rules are in � :

– Rule �
�� : � � � � ��� �� � � � �� � �

– Rule �
�� : ��� � � � � ��� �� � �

– Rule �
�� : ��� �� � � � �� � � � ��� �� � �

– Rule �
�
� : ��� �� � � � ��� �� � �

– Rule �
�
� : ��� � � � � ��� �� � �

– Rule �
�� : ��� �� � � � ��� �� � �

– Rule �
��
: ��� �� � � � ��� �� � �

– Rule �
��
: ��� �� � � � �� � � � � � !

– Rule �
�

� : ��� �� � � � �
– Rules � : ��� � � � � � � , ��� � � � � � � ,

�) �) �
Suppose that the current configuration is � �

� � � � � � � � � �"%� � � � � � (i.e., counter � � is not zero). Operating in
the max-parallel mode yields the following computation:
step rules applied configuration

0 � �

� � � � � � � � � �"%� � � � � �
1
� � , � � , � %� , � �� , � �� � � �"% � � � ��� �� � � � � � � � � � �"%� � � � �� � �

2
� %� , � � , � %� , � �� , � �� � � � � � � � �� � � � � � � � ��%� � � � � � � �� � �

3
� � , � � , � %� , � �� , �

�� , �
�� � � �"% � � � � � � ��� �� � � � � � � � � � �"%� � � � �� � �

4
� %� , � � , � %� , � �� , �

�
� � �

� ! � � � � � � � � �"%� � � � � �
Clearly in step 4, some rule of the form ��� � � � � � � has to be applied. However, our design ensures that

either an � is generated (i.e., �
 �) directly, or a noncatalyst � belonging to some other simulation stage is

created. Either case leads to an � eventually. While � � ;
 8 , the simulation of
 � � � � ��
 ! fails. Note that using
a sufficient amount of ‘delay’ (i.e., 4 stages in our design), the number of � � s will be at least 2, provided that
the counter is not zero.

Now suppose � �
 8 , then the following describes a successful simulation:
step rules applied configuration

0 � �

� � � � � � � �"%� � � � � �
1
� � , � %� , � �� , � �� � � ��� �� � � � � � � � � � ��%� � � � �� � �

2
� � , � %� , � �� , � �� �

�

�
�� � � � � � � � �"%� � � � � � � �� � �

3
� � , � %� , � �� , �

�� , �
�� � � ��� �� � � � � � � � � � ��%� � � � �� � �

4
� � , � %� , � �� , �

�
� , �
�� � �

� ! � � � � � �"%� � � � � �
Again, the remaining cases of ‘test-for-zero’ are similar to the above, and are left to the reader.
Finally, rules � � � � � � � � ; � � � � � � are used to initialize the initial value of counter � � , where � � corre-

sponds to the initial state, and � is the designated noncatalyst from which the output number is observed. Note
that the number of � ’s (= the initial value of counter � �) remains the same throughout the entire simulation.
The above completes the proof for the generator case. The acceptor case is similar.

21

Proof of Lemma 2

Proof. Along �
��� % , let ��% % be the leftmost vector at which the priority requirement is violated. Let � � be
the addition vector applied at �&% % , and � � be one of the highest priority applicable at � % % . We claim that there
exists a �&%� , � � � � �&%� ��* �� and �&%� is present in the segment from �&% % to ��% ; otherwise, � � would still be applicable
at ��% (due to the communication-freeness nature of �) – violating the assumption of the lemma. Since � %� and
� � do not subtract from the same coordinate, applying �'%� at ��% % followed by � � remains a valid computation.
By repeatedly applying such a rearrangement to the remaining sequence, a computation meeting the priority
requirement can be constructed.

Proof of Theorem 6

Proof. The lower bound follows immediately from the NP-hardness of checking reachability for the basic
model of communication-free VAS, as they are special cases of their prioritized counterparts (with an empty
priority relation).

To show the upper bound, suppose �
� � � is a computation reaching � in a prioritized communication-free
VAS �
 #.� �'&)(with priority relation � . Listing in increasing priority, let the equivalence classes induced
by �� be

� � � ������� � � , for some � �) 1 & 1 � . We let � � ��� ���"� � � , � %� ��� ��� � � %� be vectors and � � ����� ��� � � be addition
vectors along � satisfying the following: (We assume � %�
9� , ��%�
 � , and � � * � � � � �)6� �) � .)

1. � � * & is the vector applied at � � in � , and � � � �� � � %� , 	 �) �) � .
2. 	 �) �) � ,

(a) ��� � � � � � � � � � � ,
(b) 	 � applied in � � %� � �
� � � � , � � � � � � ��� 7 � � , and 	 � applied in (� %�
� � �), �&� � � � � ��� � � � . (In words, � �

is the rightmost occurrence among the lowest priority transitions in �'%� � �
� � � .)
The crux of our subsequent analysis lies in the fact that in � %� � �
� � � � � �) �) � , � � is of the lowest priority in
VAS � � with its set of addition vectors restricted to & �
 & � � � ! � � ������� � ! �
 � � ! � (The start vector of � � is not

important here.) . By Lemma 2, �&%� � �
� � � iff ��%� � �
� � � � in � % . This, in conjunction with Lemma 3, enables
us to set up a system of linear inequalities to capture the reachability of � from � :

We begin by guessing the following:

1. transitions � ��� ��� �"� � � with � � � � � � � � � � ����� � � � � � � � � � � ,
2. 	 �) �) � , a set of coordinates �

�
such that � subtracts from some coordinate in �

�
, for every � with

� � � � � � � � � � � � � � � � � � . (�
�

is the set of coordinates that are zero so that no vector of higher priority than � �
is applicable in � � .
Then the system of linear inequalities is set up as follows:

(A0) � %�
 � ,
(A1) � � � ���
 8 � 	 � *�� � ,
(A2) 	 �) �) � ,
 � #%� %� � � �/& � (� � � � — a system of linear inequalities stated in Lemma 3,
(A3) � � 3 � � 798 and � %�
9� � 3 � � ,
(A4) � % �
 � .

In the above inequalities, � %� � � � � � % � � ��� � � ��� � % � are vector variables representing the values of markings � , � � ,
��%� , ��� � � � , ��%� , respectively, mentioned in our earlier discussion. (A0) is trivial. What (A1) says is that at � � ,
no vectors with priorities higher than � � are applicable. By Lemma 3, (A2) is sufficient to imply � %� � �
� � � .
Lemma 2, in conjunction with (A1) and (A2), further implies � %� � �
� ��� � . (A3) and (A4) are again trivial.

Based on our earlier discussion, it is then straightforward that the above system of linear inequalities has
an integer solution iff ��* � � � �0� . Hence, the reachability problem is in NP.

22

