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Abstract. For model-based black-box testing, test cases are often selected from the syntactic appearance of the spec-
ification of the system under test, according to a pre-given test data adequacy criterion. We introduce a novel approach
that is semantics-based, independent of the syntactic appearance of the system specification. Basically, we model the
system under test as a random variable, whose sample space consists of all possible behavior sets (with respect to
the specification) over the known interface of the black-box. The entropy of the system is measured as the (Shannon)
entropy of the random variable. In our criterion, the coverage of a test set is measured as the expected amount of en-
tropy decrease (i.e., the expected amount of information gained) once the test set is run. Since our criterion is syntactic
independent, we study the notion of information-optimal software testing where, within a given constraint, a test set is
selected to gain the most information.
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1. Introduction

Software testing (roughly speaking, evaluating software by running it) is still the most widely accepted approach for
quality assurance of software systems with nontrivial complexity. A textbook testing procedure is shown in Fig. 1
[AmO08]. A test case is the input data fed to the system under test. When a test case is selected, the system can then be
executed with the test case. In consequence, the tester decides whether the result of the execution is as expected or not
(e.g., comparing the result with the system’s specification). After a set of test cases are run, an error (the system does
not meet its specification) is possibly identified. However, when there is no error found, one usually cannot conclude
that the system does meet its specification. This is because, for a nontrivial system, there are potentially infinitely many
test cases and a tester can only run finitely many of them. On the other hand, a test case is selected before the test case
is run and an error can only be identified after a test case is run. This raises a great challenge in software testing: How
should test cases be selected?

Test cases are typically generated according to a pre-given test data adequacy criterion [GoG75], which associates
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Fig. 1. A textbook testing procedure [AmO08].

a degree of adequacy with the test set (i.e., the set of generated test cases) to indicate coverage of the test set with
respect to a system specification [ZHM97]. Formally, a test data adequacy criterion C is a function that maps a triple
of a system under test, a specification and a test set to an (adequacy) degree in [0, 1] [ZhH92]. In particular,

C(Sys, Spec, t) = r (1)

indicates that, under the criterion C, the adequacy of the test set t on the system Sys with respect to the specifica-
tion Spec is of degree r. Naturally, as we mentioned earlier, a test data adequacy criterion, besides judging the test
quality of an existing test set, is also a guideline of a test case generator [ZHM97]. In this paper, we treat the system
Sys in (1) as a black-box [Bei95, MyS04, AmO08]. This is typical when the source code of the system is usually
unavailable (e.g., commercial off-the-shelf (COTS) systems) or is too complex to analyze. In this case, even though
the implementation details of the Sys are not clear, some attributes Attr of it could be known; e.g., whether Sys is
deterministic or nondeterministic, how many states the Sys has, what constitutes the input-output interface of the Sys,
etc. Consequently, we can rewrite (1) into

C(Attr, Spec, t) = r. (2)

Sometimes, we just omit the parameter Attr when it is clearly given in the context. We shall emphasize that, since
the system under test is a black-box, the degree r in (2) is independent of the specific system Sys under test and also
independent of the results of executing the test set t.

Note that in (2), when the criterion C and the system attributes Attr are given, the test set t is essentially generated
from the system specification Spec for each given r. Examples of formalisms used for the system specification are
logical expressions (such as Boolean formulas and temporal logic formulas [Pnu77]) which describe the system’s
behaviors as a mathematical statement, C-like code (such as PROMELA [Hol97]), tables (such as SCR [Hei02]), and
graphs (such as data flow graphs, control flow graphs and statecharts) which describe how a system is intended to
operate. One might have already noticed that a system can be described using different formalisms. Even within one
formalism, one can specify the same system in different ways such that the resulting specifications share the same
semantics. For instance, suppose that Boolean formulas A ∨ B and (A ∧B) are specifications for a Boolean circuit.
These two specifications have the same semantics, though their syntactic appearances are different.

Common testing criteria give the adequacy degree of a test set based on the syntactic appearance of the system
specification. Hence, those criteria are syntax-based. This causes problems. For instance, a slight change to a specifi-
cation’s syntactic appearance, even if the specification still keeps its semantics, might result in a dramatically different
adequacy degree for the same test set. Additionally, if a syntax-based test data adequacy criterion returns the same
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adequacy degree for two test sets, then the two test sets are indistinguishable with respect to the criterion. For instance,
in the branch coverage criterion, each branch is born equal. This is not intuitively true. A similar problem exists for
Clause Coverage [AOH03] for ground formulas (i.e., without quantifiers) in first order logic and testing criteria for
temporal logic formulas [TSL04]; the criteria could not tell the difference between two test sets that achieve the same
coverage.

An ideal test set will always identify an error whenever the system under test has an error. It is widely agreed
that one direct measurement of the effectiveness of a test set is its fault-detecting ability [DuN84, WeJ91, ZHM97].
However, it is understood that there are simply no computable and ideal criteria to generate effective test sets [ZHM97].
In our opinion, fault-detecting in a black-box system is closely related to our knowledge about the system. This is
particularly true considering the fact that faults are often not easy to find. We summarize our opinion into the following
two intuitive statements:

• the more we test, the more we know about the system under test;
• the more we know about the system under test, the more likely faults can be found.

From these statements, it is desirable to have a way to measure the amount of information of the black-box system
Sys (about which we only know its attributes Attr) we gain with respect to the specification Spec once the tests t

(selected according to (2) using a given adequacy r) are run. Therefore, the measure concerns the system’s semantics
instead of its syntax. This naturally leads us to use Shannon entropy [Sha48, CoT06] to measure the information gain
and, because of its syntactic-independence, we can now cross-compare the information gains of two test sets t1 and
t2 of the same black-box system; even though t1 and t2 are generated from different criteria C, different specifica-
tions Spec, and/or different degrees r. For instance, consider a component-based system which is a nondeterministic
choice C12C2 over two components C1 and C2. C1 is modeled using statecharts [Har87] in standardized modeling
language UML, while C2 is modeled using logical expressions such as LTL formulas [CGP99]. Suppose that we use
the branch-coverage [AmO08] criterion and the property-coverage criterion [TSL04] as testing criteria for C1 and C2,
respectively. We also have a test set t which consists of two subsets t1 and t2, which are test sets for components C1

and C2, respectively. It would be impossible to obtain a coverage that the test set t achieves on the whole system, even
if we already have the branch coverage that t1 achieves on C1 and the predicate coverage that t2 achieves on C2. On the
contrary, our information-theoretic approach can overcome this problem, since our approach is syntactic independent,
and it does not care whether a system is modeled as a graph or a formula, as long as its semantics remains the same.
As will be shown in the paper, the information gain is calculated before tests are run. Therefore, the information gain
also serves as a syntax-independent coverage measure once no faults are found after a test set is run (which is often
the case). Our paper is outlined as follows.

We model the system under test as a reactive labeled transition system Sys whose observable behaviors are se-
quences of input-output pairs. We also assume that the system under test is deterministic. In some software testing
literature [VaP05], an observable behavior is called a trace. In this context, the objective of software testing is to test
whether the observable behaviors of a black-box software system conform with a set of sequences of input-output
pairs. The set is called a trace-specification, which specifies the observable behaviors that the system under test is
intended to have. Let P be a set of sequences of input-output pairs, which is a trace-specification that the system under
test is intended to conform with. This P is the whole or part of the system specification. Since in practice, we can
only test finitely many test cases, here we assume that P is a finite (but could be huge) set. We use a tree T , called
the trace-specification tree, to represent the trace-specification, where each edge is labeled with an input-output pair.
Clearly, it is possible that not every path (from the root of T to some node in T ) is an observable behavior of the
Sys; it is testing that tells which path is and which path is not. When, through testing, a path is indeed an observable
behavior of the Sys, we mark each edge on the path as “connected”. When, however, the path is not an observable
behavior of the Sys, the test result shows the longest prefix of the path such that the prefix is an observable behavior of
the Sys. In this case, we mark every edge (if any) in the prefix as “connected” and the remaining edges on the path as
“disconnected”. Hence, an edge is marked connected (resp. disconnected) when the path from the root of T to the edge
itself (included) is (resp. is not) an observable behavior. Notice that observable behaviors of the Sys are prefix-closed
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and hence, when an edge is marked disconnected, all its offspring edges are also disconnected. Therefore, running
tests is a procedure of marking the edges of T .

Before any tests are performed, we do not know whether, for each edge in T , it is connected or disconnected. (It
is the tests that tell which is the case for each edge.) After testing a sufficient number of test cases, every edge in T

is marked either connected or disconnected. At this moment, the system tree is the maximal subtree of T such that
every edge of the system tree is marked connected. The system tree represents all the observable behaviors of the Sys
with respect to the trace-specification P . Hence, before any tests are run, there is uncertainty in what the system tree
would be. Adopting the idea of entropy in information theory, we model the system tree (which we do not clearly
know before the testing) as a random variable XT , whose sample space is the set of all subtrees that share the same
root with the tree T . The entropy , written H(T ), of the system is measured as the (Shannon) entropy of the random
variable XT . In order to calculate H(T ), we need probabilities of edges being connected or not. Those probabilities
could be pre-assigned. However, usually probabilities of edges are simply unknown. In that case, we can calculate the
probabilities of edges such that H(T ) reaches the maximum (i.e., we do not have any additional information).

After a set t of test cases is executed, we know a little more about the system tree from the execution results. In
consequence, the entropy of the system decreases from H(T ) to H(T |after testing t), the conditional entropy given
the tests. That is, the information gain of running tests t is

G(t) = H(T )−H(T |after testing t).

This gain is calculated before the testing begins, and hence we can use the gain as a guideline to develop information-
optimal testing strategies that achieve the most gain. In other words, we can pick the test set t that can achieve maxG(t)

subject to some constraint (e.g., the size of t is bounded by a certain number).
Notice that the aforementioned information gain G(t) is syntactic independent; i.e., it is independent of the for-

malism that is used to describe the behaviors in P . This is because the entropy of a random variable keeps unchanged
after a one-to-one function is applied [CoT06]. More intuitively, the amount of Shannon information in an object is
the same no matter whether one describes it in English or in French.

Shannon entropy has been used in various areas in Computer Science. For instance, in data mining, a neural
network-like classification network with hidden layers is constructed in analyzing a software system’s input-output
relation through a training set [LFK03]. The algorithm in constructing the network stops when further adding new
layers would not make the entropy of the network significantly decrease. The resulting classification network is then
used to help select “non-redundant” test cases. Note that our work is completely different from [LFK03], as, we study
“information-optimal” testing processes, and our information-optimal test strategy is pre-computed without running
any training set. Also, our work emphasizes the semantic dependency between test cases, whereas in many cases,
researchers in testing treat test cases as a set (all members are born equal) [Gau95]. Reference [NVS04] studies
optimal testing strategies for nondeterministic systems, while using a game theory approach.

The concept of Shannon entropy, in some historical literature [Lan61, Lad07], is closely related to the second law
of thermodynamics in physics. This law requires that the process that brings down the entropy of a thermal system
causes a positive heat flow from the system to its environment. Landauer’s principle [Lan61] states a similar principle
in the digital world. That is, in a computational device, the erasure of the Shannon information is accompanied by a
generation of heat. While running the test cases, the Shannon entropy of the system under test is decreasing. From
Landauer’s principle, there should be a heat flow from the system under test to the environment during the software
testing process. Hence, the software system is cooling down during a software testing process. From this point of view,
intuitively, our information-optimal testing strategy cools down the system under test fastest.

The rest of the paper is organized as follows. We formally give our definitions and terminologies on languages,
trees, transition systems, and finite automata in Section 2, together with an array selection algorithm that will be used
throughout this paper. In Section 3, we formally define the entropy of a trace-specification represented as a tree and the
information-optimality of a testing strategy, and develop algorithms to calculate information-optimal testing strategies
of the system under test. In section 4, we study information-optimal testing strategies when the trace-specification is
represented as a finite automaton. We summarize our study and briefly introduce our future work in Section 5.
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2. Preparations

In this section, we provide definitions and terminologies on languages, finite automata, trees, (labeled) transition
systems, and an algorithm, called MAX-SELECT, on selecting certain numbers from arrays, which will be used later
in the paper.

2.1. Languages and Finite Automata

Let Σ be an alphabet. A language L is a set of words on the alphabet; i.e., L ⊆ Σ∗. For two words ω and ω′, we use
ω′ ≺ ω to denote the fact that ω′ is a (not necessarily proper) prefix of ω. L is prefix-free if, for any ω ∈ L and any
ω′ ≺ ω, we have

ω′ ∈ L implies ω = ω′.

L is prefix-closed if, for any ω and any ω′ ≺ ω, we have

ω ∈ L implies ω′ ∈ L.

Let A = ⟨S, sinit, F,Σ, R⟩ be a deterministic finite automaton (DFA), where S is the set of states with sinit being the
initial state, F is the set of accepting states, Σ = {a1, · · · , ak} is the alphabet, and R ⊆ S × Σ× S is the set of state
transitions, satisfying that from a state and a symbol, one can at most reach one state (formally, ∀s ∈ S, a ∈ Σ, there
is at most one s′ with (s, a, s′) ∈ R). A word ω = x1 · · ·xi in Σ∗ is accepted by A if there is a sequence of states
s0s1 · · · si, such that s0 = sinit, si ∈ F , and (sj−1, xj , sj) ∈ R for 1 ≤ j ≤ i. The language L(A) that A accepts is
the set of words accepted by A. Without loss of generality, we assume that A is cleaned up. That is, every state in A is
reachable from the initial state, and can reach an accepting state.

When a language is finite, a tree can also be employed to represent it, as in below.

2.2. Trees

Let L ⊆ Σ∗ be a finite language and L̂ be its maximal prefix-free subset. Naturally, one can use a tree T to represent
L. Every edge in T is labeled with a symbol in Σ, and any two distinct child edges (a child edge of a node N is the
edge from N to a child node of N ) of the same node cannot have the same label. Furthermore, T has |L̂| leaves and
for each leaf, the sequence of the labels on the path from the root to the leaf is a word in L̂. We use the following
terminologies for the tree T :

• an edge from a node N to its child node N ′ is denoted by ⟨N,N ′⟩ where N is the source of ⟨N,N ′⟩ and N ′ is the
a-child of N when the edge is labeled with a ∈ Σ;

• the parent edge of an edge ⟨N,N ′⟩ (N is not the root) is the edge from the parent node of N to N itself;
• a sibling edge of edge e is an edge that shares the same source with e;
• t is a subtree of T if t is a tree, and every node and every edge in t is a node and an edge, respectively, in T ;
• the root path of node N is the path (of edges) from the root of T all the way down to N itself. When we collect

the labels of the edges on the path, a word in Σ∗ is obtained. Sometimes, we simply use the word to (uniquely)
identify the path;

• the root path of subtree t is the root path of the root of the subtree t in T ;
• an empty tree is one that contains exactly one node.We use ∅ to denote an empty tree when the node in the tree is

clear from the context;
• we use t ≺ T to denote that t is a subtree of T and shares the same root with T . Intuitively, when t ≺ T , the t can

be obtained by dropping some leaves repeatedly from T ;
• a subtree at node N is a subtree of T with root N . We use the maximal subtree at N to denote the maximal such

subtree at N ;
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Fig. 2. A tree represents the language L = {a1, a2, a2a2, a2a3} over the alphabet Σ = {a1, a2, a3}.

• a subtree under edge ⟨N,N ′⟩ is a subtree at node N ′;

• the child-tree under edge ⟨N,N ′⟩ is the maximal subtree at node N ′;

• a child-tree of node N is the child-tree under edge ⟨N,N ′⟩ for some N ′. In this case, the child-tree is also called
the a-child-tree of N , when N ′ is the a-child of N , for some a ∈ Σ;

Example 1. Fig. 2 gives a tree T representing L = {a1, a2, a2a2, a2a3} over the alphabet Σ = {a1, a2, a3}. The
subtree with the set of edges {e1, e2} is a subtree t ≺ T . The a2-child-tree of the root of T is the one with the set of
edges {e3, e4}; the a1-child-tree with the set of node(s) {N1} is simply an empty tree. ⊓⊔

2.3. Transition Systems

Let Sys be the software system under test. Here we modify the formal model in [XiD05]. A similar model can be
found in a later paper [Tre08]. Sys is a transition system that changes from one state to another while executing a
transition labeled by a symbol. Formally,

Sys = ⟨S, sinit,∇, R⟩
is a (labeled) transition system, where S is the set of states with sinit ∈ S being the initial state, ∇ is a finite set
of symbols, and R will be explained in a moment. More specifically, ∇ = Π ∪ Γ, where Π and Γ are two disjoint
subsets, and Π is the set of input symbols, while Γ is the set of output symbols. In particular, we call Π× Γ the set of
observable (input-output) pairs (sometimes, we also call such pairs as observable events), and (Π,Γ) is the interface of
Sys. R ⊆ S× (Π×Γ)×S is the set of state transitions. An executable sequence of Sys, ω = x1 · · ·xi for some i, is a
word on alphabet (Π×Γ), such that there is a sequence of states, say, s0 · · · si, with (sj−1, xj , sj) ∈ R for 1 ≤ j ≤ i,
and s0 is the initial state sinit. We call such a word ω an (observable input-output) behavior of the system. Note that
a general form of executable sequence (i.e., a sequence of input, output and internal symbols) can be modeled as ours,
if one has at most a fixed number of inputs, followed by an output. For instance, we can encode the sequence, say,
input1, · · · , inputi, output, as one pair ⟨(input1, · · · , inputi), output⟩ in an expanded input alphabet. Our system
here is actually a reactive system [HaP89], and the theoretical root of our model is Mealy machines [HMU07] and
I/O automata [LyT89]. Note that the labeled transition system is universal since the number of states could be infinite.
Also note that behaviors of Sys are prefix-closed. In this paper, Sys is a black-box system (i.e., we assume that we
only know its interface).

In our context, software testing is to test whether the (black-box) software system Sys conforms with a trace-
specification. No matter what formalism is used, the trace-specification, semantically, is commonly a set of sequences
in (Π × Γ)∗. This set is a language that specifies the (observable) behaviors that the system under test is intended to
have. The trace-specification, denoted as Poriginal ⊆ (Π×Γ)∗, could be an infinite language. For instance, when test-
ing a TV remote control, theoretically, there are an infinite number of button combination sequences to test. However,
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in the real world, we can only test up to a given bound d on the length of the input sequence. The trace-specification,
denoted as P , that in practice we plan to test against, is a “truncation” of the original trace-specification Poriginal.
That is, P = {ω : ∃ω′ ∈ Poriginal, ω ≺ ω′ and |ω| ≤ d}. In other words, P is the set of all prefixes (up to the given
length d) of words in Poriginal. Hence, P is simply a prefix-closed finite language.

In practice, this Poriginal (as well as P ) can be the whole or part of the system specification that describes the
expected behaviors of the system under test. Such a specification can be drawn from, for instance, the design documents
and requirement documents of the system Sys under test. How to derive such a Poriginal and P is out of the scope of
this paper; the reader is referred to [BJK05] for, e.g., model-based software testing. In this paper, we simply assume
that the Poriginal and the P are given.

The transition system Sys defined earlier is in general output-nondeterministic. That is, it is possible that, for
some observable behavior ω ∈ (Π× Γ)∗ and some input symbol b ∈ Π, there are more than one output symbol c ∈ Γ

such that ω(b, c) (i.e., the concatenation of the string ω and the symbol (b, c)) is also an observable behavior of the
Sys. In other words, one can possibly observe more than one output from an input symbol. The source of output-
nondeterminism comes from such things as a highly nondeterministic implementation (such as a concurrent program)
of the Sys under test, or a partial specification of the interface. It is still an on-going research issue how to test an
output-nondeterministic system Sys [NVS04, TrB03, PYH03].

On the other hand, output-deterministic systems constitute a most important and most common class of software
systems in practice; this is particularly true when such a system is used in a safety-critical application in which
nondeterministic outputs are intended to be avoided. Formally, the transition system Sys is output-deterministic if
for each ω ∈ (Π × Γ)∗ and input symbol b ∈ Π, there is at most one output symbol c ∈ Γ such that ω(b, c) is
an observable behavior of Sys. Implicitly, we have an option of “crash” after applying an input, which makes our
approach more general than other models. For instance, suppose that, for a traffic light system with sensors, when a
car is approaching at midnight (so no other cars are around), it is desirable that the light turns yellow or turns red.
In here, we use ayellow and ared to represent the input-output pairs (approaching, yellow) and (approaching, red),
respectively. When the system is not assumed output-deterministic, a test shows that ayellow is actually observable
does not necessarily conclude that ared is not actually observable. However, when we assume that the system is
output-deterministic, this additional knowledge will conclude exactly one of the following three scenarios: when the
car is approaching,

(i) the light turns yellow;
(ii) the light turns red;
(iii) neither (i) or (ii); e.g. the light system crashes.

Hence, the positive test result of, say, (i), immediately implies that outcomes like (ii) and (iii) are not possible.
In this paper, we focus on output-deterministic systems. Actually, if a test execution engine can be built for output-

nondeterministic systems, we can see that testing output-nondeterministic systems is a special case of testing output-
deterministic systems, which will be discussed later in this paper.

2.4. A Technical Algorithm MAX-SELECT

We now present an algorithm to solve the following selection problem, which will be used in several algorithms later
in the paper.

Let k be a number. Suppose that we are given q arrays of numbers, Y1, · · · , Yq , each of which has k + 1 entries.
Each array Yj is nondecreasing, i.e., Yj [index] ≤ Yj [index + 1], 0 ≤ index ≤ k − 1, and the first entry Yj [0] is
0. Let I ≤ k be a number. We would like to select indices index1, · · · , indexq , satisfying

∑
1≤j≤q

indexj = I , of the

arrays Y1, · · · , Yq , respectively, such that the sum∑
1≤j≤q

Yj [indexj ] (3)
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is maximal. The instance of the problem is written as MAX-SELECT over ({Y1, · · · , Yq}, I). The result includes the
desired indices and the sum in (3).

We use SUM({Y1, · · · , Yq}, I) to denote the maximal sum reached in (3) for the problem instance. Suppose that
the set Y = {Y1, · · · , Yq} is partitioned into two nonempty subsets Y ′ and Y ′′. One can show

SUM(Y, I) = max
0≤i≤I

(SUM(Y ′, i) + SUM(Y ′′, I − i)). (4)

The algorithm MAX-SELECT that solves the problem is as follows. We first build, in linear time, a balanced binary
tree t with q leaves, leaf1, · · ·, leafq , and with roughly 2q nodes. Each leafj corresponds to the array Yj , 1 ≤ j ≤ q. In
the sequel, we simply use a set of arrays to denote a set of leaves. Let N be a node in t. We associate it with a table of
k + 1 entries. The ith entry, 0 ≤ i ≤ k, contains a number SUMN [i] and a set INDN [i] of pairs: each pair is a number
1 ≤ j ≤ q and an index to the array Yj . Initially, SUMN [i] = 0 and INDN [i] = ∅, for all i. When N is a leaf Yj , we
further initialize SUMN [i] = Yj [i] and INDN [i] = {(j, i)}, for all 0 ≤ i ≤ k. We now explain the meaning of the table.
Let N be a nonleaf node in t. We use YN to denote the set of leaf nodes of which N is an ancestor. After the algorithm
is run, SUMN [i] is the value SUM(YN , i), and INDN [i] records the desired indices for the MAX-SELECT instance
over (YN , i). That is,

SUMN [i] =
∑

(j,indexj)∈INDN [i]

Yj [indexj ].

Let N1 and N2 be the two child nodes of N (every nonleaf node in a balanced binary tree has exactly two children).
From (4), SUMN [i] = max

0≤l≤i
(SUMN1 [l]+SUMN2 [i−l]), which provides a way to calculate SUMN [·] and INDN [·] presented

in the following algorithm:

MAX-SELECT({Y1, · · · , Yq}, I):
//To find solutions to MAX-SELECT problem instances over ({Y1, · · · , Yq}, i),
//for all i ≤ I, and return the solution for i = I.
//Suppose that the balanced binary tree t is already built with the arrays
//Y1, · · ·Yq being the leaves. Each node N is associated with SUMN [·] and INDN [·]
//that are already initialized as described earlier in the subsection.
1. For level := 1 to (height of t)

//a node of level (height of t) is the root
2. For each nonleaf node N of level level

//suppose that N1 and N2 are the two child nodes of N
3. For i := 0 to I
4. SUMN [i] := max

0≤l≤I
(SUMN1 [l] + SUMN2 [i− l]);

5. Suppose that 1 ≤ l∗ ≤ I reach the maximal in line 4;
6. INDN [i] := INDN [l∗] ∪ INDN [i− l∗];
7. Return SUMroot[I] and index1, · · · , indexq.

//root is the root of T
//SUMroot[I] is the value SUM({Y1, · · · , Yq}, I)
//INDroot[I] is a set of pairs (j, indexj), for each 1 ≤ j ≤ q

Clearly, the algorithm runs in worst-case time O(k2q), recalling that k+1 is the size of each of the arrays Y1, · · · , Yq .

3. Information Gain of Tests and Information-Optimal Testing Strategies

In this section, we assume that the system Sys under test is a black-box transition system with its interface known.
Recall that Π and Γ are the input symbols and output symbols of Sys, respectively. Throughout this section, the system
Sys under test is assumed to be output-deterministic. Before we develop algorithms for information-optimal testing
of such systems, we need definitions on the test oracle.

As explained before, we use Poriginal ⊆ (Π × Γ)∗ to denote a set of intended input-output behaviors of the Sys

under test. The trace-specification P ⊆ Poriginal is a finite set that we will actually test against, which is the set of
all prefixes (up to length of a given number d) of sequences in Poriginal. In the sequel and without loss of generality,
we simply assume that P is a finite set ⊆ (Π× Γ)∗. We use a tree T , i.e., the trace-specification tree, to represent P ,
where every edge on T is labeled with a pair of input and output symbols. When we drop output symbols from every
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Fig. 3. (1) A trace-specification tree T . (2) The corresponding input testing tree TΠ of T .

sequence in P , we obtain a set PΠ ⊆ Π∗ of input symbol sequences; i.e., PΠ = {b1 · · · bn : (b1, c1) · · · (bn, cn) ∈
P, for some n and each ci ∈ Γ}. The tree TΠ that represents PΠ is called the input testing tree.

Example 2. In Fig. 3 (1), we show the trace-specification tree T representing the trace-specification P =

{(b1, c1), (b2, c2), (b2, c4), (b2, c2)(b3, c3), (b2, c4)(b3, c5), (b2, c4)(b4, c6), (b2, c4)(b4, c7)}. The trace-specification
P specifies that the system under test (which is output-deterministic) is expected to have the following behaviors:

• Initially, when button b1 is pressed, color c1 is shown.

• Initially, when button b2 is pressed, either color c2 or color c4 is shown.

• when color c2 is shown, further pressing button b3 will show color c3.

• when color c4 is shown, we can further press button b3 or b4.

• when pressing button b3, color c5 is shown.

• when pressing button b4, either color c6 or c7 is shown.

From P , we can obtain the set PΠ = {b1, b2, b2b3, b2b4}, and the corresponding input testing tree is shown in Fig. 3
(2). ⊓⊔

We further assume that Sys is sequentially testable; that is, there is a test execution engine oracle such that, if we
send an input sequence π = b1 · · · bn on Π to the oracle, it will “read” symbols in π, one by one, from b1 up to bn
while running the black-box Sys (this is a common assumption for black-box testing [PVY01]). As a result, the oracle
returns an output symbol right after each input symbol read. The run stops when the Sys crashes on some input, or,
the last symbol in the sequence is read and the corresponding output symbol is returned. Formally, a test case π is a
word in Π∗. The oracle is equipped with a deterministic program Test that runs on Sys and π and always halts with
an output Test(Sys, π). The run is said testing π. The oracle, as usual, honestly relays the outputs from the Sys. That
is, for all n and b1 · · · bn ∈ Π∗,

• Test(Sys, b1 · · · bn) = c1 · · · cn if (b1, c1) · · · (bn, cn) is an observable behavior of Sys;

• Test(Sys, b1 · · · bn) = c1 · · · ci⊥, for some i < n, if (b1, c1) · · · (bi, ci) is an observable behavior of Sys, and
(b1, c1) · · · (bi, ci)(bi+1, c) is not an observable behavior of Sys, for any c ∈ Γ. The symbol ⊥ /∈ Γ indicates “Sys
crashes”.

Notice that, for empty string ϵ, Test(Sys, ϵ) = ϵ by definition. Since Sys is output-deterministic, Test(Sys, π) is
unique.

We say that the Sys conforms with P if, for every input symbol sequence b1 · · · bn ∈ PΠ, for some n, we have
Test(Sys, b1 · · · bn) = c1 · · · cn ∈ Γ∗ and (b1, c1) · · · (bn, cn) ∈ P (in some literature, this is called ≤iot-correct
with respect to P [VaP05]). That is, in terms of the trace-specification tree, for each path from the root in the in-
put testing tree TΠ, suppose that the sequence of labels on the path is b1 · · · bn, one can find a path in the trace-
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specification tree T such that the label sequence on the latter path is (b1, c1) · · · (bn, cn) for some c1, · · · , cn satisfying
that (b1, c1) · · · (bn, cn) is an observable behavior of Sys.

Running a test case can be considered as a process of marking on the trace-specification tree T as follows. An
edge in T is marked with “connected” if the sequence of the input-output labels on the path from the root to the edge
(included) is an observable behavior of Sys; it is marked with “disconnected” if otherwise. Let the edge e be labeled
with (b, c) ∈ Π× Γ. One can observe that:

(1) once e is marked disconnected, every edge in the child-tree under edge e must be also marked disconnected (this is because the set of observable
behaviors of Sys is prefix-closed);

(2) once e is marked connected, then every sibling edge e that is labeled with (b, c′) for some c′ ∈ Γ must be marked disconnected (this is
because Sys is output-deterministic), and hence edges in the child-trees under such sibling edges must also be marked disconnected.

Therefore, once e is marked, we implicitly assume that markings are already propagated further to its siblings (that
share the same input symbol with e) and the offspring edges of itself and the siblings, using the above observation.
Now, suppose that we run Test(Sys, b1 · · · bn) and obtain c1 · · · cn ∈ Γ∗ as the result. Clearly by definition, the edges
on the path (from the root of T ) labeled with (b1, c1) · · · (bn, cn) are all marked connected. When Test(Sys, b1 · · · bn)
results in c1 · · · ci⊥ for some i < n, the edges on the path (from the root of T ) labeled with (b1, c1) · · · (bi, ci) are all
marked connected but all the edges in the child-tree under the last edge on the path are marked disconnected.

Initially, none of the edges in T is marked. As we test more and more test cases in PΠ, more and more edges in
T are marked. Clearly, when all test cases in PΠ are tested, every edge in T is marked. Notice that, in this case, the
system tree is the maximal subtree t of T such that t ≺ T and every edge in t is marked connected. The system tree
exactly characterizes all the observable behaviors of Sys for all input sequences in PΠ. Consider a subtree t of T . We
say that t is output-deterministic if, for any edge e with some label (b, c) ∈ Π×Γ, e does not have a sibling edge with
label (b, c′) for any c′ ∈ Γ. Observe that the system tree must be an output-deterministic subtree t ≺ T .

3.1. Entropy of a Trace-specification Tree

Before any testing is performed, we do not know exactly what the system tree is except that it is an output-deterministic
subtree t ≺ T . We now treat the system tree as a random variable XT and first study the algorithm in calculating its
entropy.

Consider a path (labeled by) (b1, c1) · · · (bn, cn) in the trace-specification tree T , and the set E of the child edges
of the last edge (bn, cn) on the path. Suppose that e1, · · · , el for some l, are all the edges in E that are labeled by
(b, c1), · · · , (b, cl), respectively, for some b ∈ Π and some c1, · · · cl ∈ Γ. We use Eb to denote {e1, · · · , el}. Let
p(ei) be the probability that edge ei is marked connected when all its ancestor edges are marked connected, and
all other edges in Eb are marked disconnected. That is, p(ei) is the probability that (b1, c1) · · · (bn, cn)(b, ci) is the
only observable input-output behavior of the Sys (with (b1, c1) · · · (bn, cn) as prefix and with length n+1) given that
(b1, c1) · · · (bn, cn) is an observable behavior of the Sys. Probabilities p(ei) could be pre-assigned (e.g., obtained from
usage study [ALR09]). However, usually probabilities of edges are simply unknown. In that case, we can calculate the
probabilities of edges such that H(T ) reaches the maximum (i.e., we do not have any additional information), which
will be discussed later. Since Sys is output-deterministic, the p(·) must obviously satisfy the following additional
constraint, for each b, ∑

ei∈Eb

p(ei) ≤ 1.

We use p(t, T ) to denote the probability of t being the system tree (that shares the same root with T ; i.e., t ≺ T ).
Clearly, p(t, T ) = 0 when t is not output-deterministic. Observe that∑

t≺T and
t is output−deterministic

p(t, T ) = 1

10
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Fig. 4. A (b, ·)-component tree Tb of T .

and hence p(·, T ) is a distribution. Now, the entropy of XT , simply written H(T ), is

H(T ) = −
∑

t≺T and
t is output−deterministic

p(t, T ) log p(t, T ).

Similarly, we can also define H(t) for a subtree t (while keeping the probability assignments of the edges) of T as:

H(t) = −
∑

t′≺t and
t′ is output−deterministic

p(t′, t) log p(t′, t). (5)

Note that throughout this paper, the base of the logarithm is 2. In other words, we measure entropy in bits. By
definition, H(∅) = 0, since for the empty tree ∅, the system tree has only one choice that is the empty tree itself.
Before we show how to calculate H(T ), some more definitions are needed. Let b ∈ Π and E be the set of child edges
of T ’s root. The (b, ·)-component tree Tb of T exactly consists of each edge e in E that is labeled with (b, c) for some
c and the child-tree under the edge e. We use C < T to denote that C is a (b, ·)-component tree of T for some b ∈ Π.

Example 3. For the trace-specification tree T shown in Fig. 3, the edge (b1, c1) forms the (b1, ·)-component tree
of T ; edges (b2, c2) and (b2, c4), together with the child-trees under them, form the (b2.·)-component tree of T . ⊓⊔

One can show the following proposition,
Proposition 1.

H(T ) =
∑
C<T

H(C).

That is, the entropy of T is the summation of the entropy of each (b, ·)-component trees, b ∈ Π.
For a (b, ·)-component tree C = Tb, suppose that it consists of child trees T1, · · · , Tl for some l, and edges e1, · · · el

with labels (b, c1), · · · , (b, cl) from the root of T to the root of T1, · · · , Tl, respectively (see Fig. 4). We use p1, · · · , pl
to denote the probability assignments p(e1), · · · , p(el), respectively. One can show,

Proposition 2. For the (b, ·)-component tree C = Tb shown in Fig. 4,

H(C) = H(Tb) =
∑

1≤i≤l

piH(Ti)−
∑

1≤i≤l

pi log pi − (1−
∑

1≤i≤l

pi) log(1−
∑

1≤i≤l

pi).

The entropy H(Tb), according to Proposition 2, is the “average” entropy of H(Ti)’s, together with the uncertainty
introduced by output-determinism: among edges (b, c1), · · · , (b, cl), at most one of them is contained in the system
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tree since at most one of c1, · · · , cl can be the output from the input b. This additional entropy,

−
∑

1≤i≤l

pi log pi − (1−
∑

1≤i≤l

pi) log(1−
∑

1≤i≤l

pi),

is exactly the entropy of a random variable with (l + 1) outcomes, and each outcome with probability assignments
p1, · · · , pl, 1−

∑
1≤i≤l

pi, respectively. From the two propositions above, an algorithm that calculates the entropy of an

output-deterministic trace-specification tree T is immediately given as follows, with time complexity O(n), where n

is the size of T (i.e., the number of edges in T ).

ALG-entropy-tree(T):
//To calculate the entropy H(T ) of the trace-specification tree T with
//given probability assignments p(·) for an output-deterministic system.
//The return value of this algorithm is the entropy H(T ).
1. If T = ∅
2. H(T ) := 0;
3. Return H(T );
4. If T only has one (b, ·)-component tree

//T now is in the form of a (b, ·)-component tree for some b,
//shown in Fig. 4, consists of l edges (b, c1), · · · , (b, cl) along with
//child-trees Ti under edges (b, ci) (1 ≤ i ≤ l); each edge (b, ci) with
//probability assignment pi

5. H(Ti) := ALG-entropy-tree(Ti);
6. H(T ) :=

∑
1≤i≤l

piH(Ti)−
∑

1≤i≤l

pi log pi − (1−
∑

1≤i≤l

pi) log(1−
∑

1≤i≤l

pi);

7. Return H(T );
8. H(T ) :=

∑
C<T

ALG-entropy-tree(C);

9. Return H(T ).

Before we proceed further, we need more notation. Given a trace-specification tree T and its corresponding input
testing tree TΠ, for a path (labeled by) ω = (b1, c1) · · · (bi, ci) in T , by definition, we have a path ωΠ = b1 · · · bi
in TΠ; in this case, we write ω ∼ ωΠ. Similarly, for a node N in T , suppose that the path from the root to N is ω.
Correspondingly, in TΠ, we have a path ωΠ from the root to some node NΠ, such that ω ∼ ωΠ; in this case, we say
N ∼ NΠ. For a subtree t of T , we can find a minimal subtree tΠ of TΠ, such that for each node N in t, there is some
node NΠ in tΠ such that N ∼ NΠ; in this case, we say t ∼ tΠ. For a subtree tΠ of TΠ, let t be a maximal subtree t

of T such that t ∼ tΠ; in this case, we say t ≃ tΠ (note that there could be more than one such t, depending on the
location of the root of t in T ). Intuitively, a subtree t that satisfies t ≃ tΠ is a maximal subtree of T , such that once
every edge in tΠ is tested, every edge in t will be marked.

Example 4. For the trace-specification tree T and its corresponding input testing tree TΠ shown in Fig. 3, con-
sidering the subtree t of T that consists of nodes N4, N5, N6 and N7, and the subtree t′ of TΠ that consists of nodes
N ′

2, N
′
3 and N ′

4, we have t ≃ t′. For the subtree t′′ of T that consists of nodes N2 and N3, we also have t′′ ≃ t′. ⊓⊔
Now, consider an edge e in TΠ. In the following, we will define the entropy “gain” G(e) after the edge e is tested.

To do this, consider all those subtrees t of T that satisfy t ≃ e (here e is treated as the subtree of TΠ that only has the
edge e). Recall that the t’s are those t’s that are marked after e is tested.

Example 5. Consider the trace-specification tree T and its corresponding input testing tree TΠ shown in Fig. 3.
For the edge e = ⟨N ′

2, N
′
3⟩ in TΠ, we have t1 ≃ e and t2 ≃ e, where t1 consists of nodes N2 and N3, and t2 consists

of nodes N4 and N5 in T . Similarly, for the edge e′ = ⟨N ′
2, N

′
4⟩, the only subtree t′ of T such that t′ ≃ e′ is the one

consisting of nodes N4, N6 and N7. ⊓⊔
For a subtree t of T with t ≃ e, we use ωt = e1 · · · ej , for some j, to denote the root path of t in the trace-

specification tree T . Also, we define p(ωt) = p(e1) · · · p(ej) when ωt is not empty, and when ωt is an empty path,
p(ωt) = 1. Since t ≃ e, it is clear that t must be in the form of a subtree only containing a number edges, say,
e1, · · · , el, for some l, that share the same source (the root of t), shown in Fig. 5. By definition in (5), we have
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Fig. 5. A subtree t of T such that t ≃ e for some edge e in TΠ.

H(t) = −(
∑

1≤i≤l

pi log pi + (1−
∑

1≤i≤l

pi) log(1−
∑

1≤i≤l

pi)). Now, we define the entropy gain of the edge e in TΠ as

G(e) =
∑
t≃e

p(ωt)H(t). (6)

One can show, using Propositions 1 and 2, that the entropy H(T ) of the trace-specification tree T can be expressed
as the summation of the entropy gains of the edges in the input testing tree TΠ:

Proposition 3.

H(T ) =
∑

e in TΠ

G(e).

That is, once all the edges in the input testing tree is tested, the total gain is exactly the uncertainty H(T ) of the
trace-specification tree; i.e., no uncertainty is left.

Example 6. Consider the trace-specification tree T and its corresponding input testing tree TΠ shown in Fig. 3.
Suppose that the probability assignments of edges in T are as follows: p(⟨N0, N1⟩) = p(⟨N2, N3⟩) = p(⟨N4, N5⟩) =
1/2, p(⟨N0, N2⟩) = 2/9, p(⟨N0, N4⟩) = 2/3, and p(⟨N4, N6⟩) = p(⟨N4, N7⟩) = 1/3. We have H(T ) = log 18 bits
by applying the algorithm ALG-entropy-tree(T). We can also calculate H(T ) using Proposition 3. For the edge
e = ⟨N ′

2, N
′
3⟩ in TΠ, we have t1 ≃ e and t2 ≃ e, where t1 consists of nodes N2 and N3, and t2 consists of nodes N4

and N5 in T . By definition, H(t1) = H(t2) = 1. By (6), we have G(e) = p(⟨N0, N2⟩)H(t1) + p(⟨N0, N4⟩)H(t2) =

2/9 + 2/3 = 8/9. Similarly, for all other edges in TΠ, we have G(⟨N ′
0, N

′
1⟩) = 1, G(⟨N ′

0, N
′
2⟩) = 4/3 log 3 − 8/9,

and G(⟨N ′
2, N

′
4⟩) = 2/3 log 3. From Proposition 3, we have H(T ) = 1 + 2 log 3 = log 18, which coincides with the

results obtained from ALG-entropy-tree(T). ⊓⊔

3.2. Testing Strategies and Gain

By running test cases in PΠ, one can check whether a software system Sys conforms with the given trace-specification
P , which is a set of intended observable behaviors that Sys is supposed to have. Let T be the trace-specification tree
that represents P . Recall that, running test cases using the oracle resembles the process of marking some edges in T .
Since the gain of information on the initially unknown system tree of T after running a number of test cases in PΠ

corresponds to the reduction of entropy of the testing tree by marking edges in T , a strategy that specifies the ordering
of marking edges also represents the process of gaining the information while running tests.

A testing strategy C is a sequence of edges in the input testing tree TΠ, in the form of

eC(1), · · · , eC(g),

for some g ≤ m (m is the number of edges in TΠ), satisfying the constraint that parent edges should precede their
child edges in C. That is, for any 1 ≤ i ≤ g, if e is the parent edge of eC(i), then there is a j with 1 ≤ j < i ≤ g such
that e = eC(j). Naturally, the strategy gives the ordering that test cases (i.e., input symbol sequences) should be run.

Let α be a prefix of C, which corresponds to a subtree tα (i.e., tα exactly contains all the edges in α) of the input
testing tree TΠ with tα ≺ TΠ. Let Tα ≺ T be the maximal subtree of the trace-specification tree T such that, for each
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Fig. 6. (1) A trace-specification tree T . (2) The corresponding input testing tree TΠ of T .

path (b1, c1) · · · (bi, ci), for some i, in Tα, we have that b1 · · · bi is a path in the aforementioned subtree tα of TΠ that
represents α; i.e., Tα ≃ tα. That is, after α is tested (i.e., every test case represented in tα is tested), the uncertainty in
Tα is gone completely, since, in this case, every edge in Tα is marked already using the test results. We use G(α) to
denote the expected entropy reduction of T after α is tested, which is also the information gained on the system tree
of T . The gain G(α) is defined as H(Tα). From Proposition 3 (taking Tα as T and tα as TΠ), we have

G(α) =
∑

e in tα

G(e), (7)

and naturally, G(α) = H(T ) when α is the entire strategy C when g = m (that is, C covers all the edges in TΠ). When
all the edges in TΠ are tested, the entropy gain is H(T ); i.e., no uncertainty is left. Let PreC(k) be the prefix of C of
length k. One can easily show that G(PreC(k1)) ≤ G(PreC(k2)), for any k1 ≤ k2. That is, as we test more edges in
the input testing tree, more information is gained. Sometimes, we abuse the notation G and use

G(tα) = G(α) (8)

to denote the gain of the subtree tα of TΠ. In fact, (8) already gives the information gain of a test set tests as follows.
Recall that the set can be represented as a subtree t of TΠ; the gain of tests is defined as

G(tests) = G(t). (9)

In later sections, we will show how to select test cases that achieve the maximal amount of information gain under
certain constraints.

3.3. Information-Optimal Testing Strategies with Pre-given Probability Assignments

In this subsection, unless stated otherwise, we assume that a testing strategy C covers all the edges in TΠ. An
information-optimal testing strategy, as explained before, tries to make a maximal reduction of entropy in the test-
ing tree. Formally,

Definition 1. Let T be a trace-specification tree and TΠ be the corresponding input testing tree with m edges.
C∗ is a global information-optimal testing strategy if, for any testing strategy C, G(PreC∗(k)) ≥
G(PreC(k)), for each 0 ≤ k ≤ m.
That is, for any given length of prefix, a global information-optimal testing strategy reduces more uncertainties than
any other strategy. Note that a global information-optimal testing strategy may not necessarily exist.

Example 7. Consider the trace-specification tree T in Fig. 6 (1) with Π = {b1, · · · , b7} and Γ = {true}. Its input
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testing tree is shown in Fig. 6 (2). Let ei be the edge in T labeled with (bi, true), and e′i be the edge in TΠ labeled
with bi, 1 ≤ i ≤ 7. The probability assignments of edges are as follows: p(e1) = 8/9, p(e2) = p(e3) = p(e4) =

p(e7) = 1/2, p(e5) = 3/4 and p(e6) = 2/3. The input testing tree TΠ does not have a global information-optimal
testing strategy, since one can easily check that, assuming that C∗ were a global information-optimal testing strategy,
PreC∗(1) = e′5, while PreC∗(3) = e′1, e

′
2, e

′
3, which leads to a contradiction. ⊓⊔

Now, we define a weaker form of information-optimality, when we are only allowed to test for k edges, and we try
to maximize the entropy reduction after testing the k test cases.

Definition 2. Let T be a trace-specification tree, TΠ be the corresponding input testing tree with m edges and
k be a number ≤ m. C∗ is a k-information-optimal testing strategy if, for any testing strategy C,
G(PreC∗(k)) ≥ G(PreC(k)).

Note that the testing ordering within the first k edges would not matter (of course, parents should be tested before
their children) when the k edges are given, since the gain is always the entropy of the subtree consisting of those k

edges. Hence, finding a k-information-optimal testing strategy is equivalent to picking the first k edges to test in TΠ.
Those k edges form a k-information-optimal subtree of TΠ, which is a subtree sharing the same root with TΠ that has
the maximal gain among all the subtrees (sharing the same root with TΠ) which have k edges. Clearly, enumerating
all possible subtrees t ≺ TΠ with k edges and picking the one with the maximal gain will result in an exponential time
algorithm in k. In below, we will present an efficient algorithm that finds a k-information-optimal testing strategy C∗

for a given number k.
We associate each node N in TΠ with a table of k+1 entries. The ith entry, 0 ≤ i ≤ k, contains a number GN [i] and

a set OPTN [i] of edges, where GN [i] is the gain of the i-information-optimal subtree at node N , and OPTN [i] records
the set of edges in that i-information-optimal subtree at node N . Suppose that N has q child nodes N ′

1, · · · , N ′
q , for

some q ≥ 1. GN (i) can be calculated from GN ′
1
[index1], · · · , GN ′

q
[indexq], for some index1, · · · , indexq < i. We

define another array Yj [·] for each N ′
j . Each Yj [i+1] records the gain of the (i+1)-information-optimal subtree of the

component tree TN ′
j
, which consists of the edge ⟨N,N ′

j⟩ together with the child-tree under the edge. Clearly, the (i+1)-
information-optimal subtree of TN ′

j
exactly contains the edge ⟨N,N ′

j⟩, together with the i-information-optimal subtree
at node N ′

j . From (7), we have Yj [i+1] = G(e)+GN ′
j
[i], where e = ⟨N,N ′

j⟩. One can observe that the i-information-
optimal subtree at node N must be, for some index1, · · · , indexq , the union of indexj-information-optimal subtrees
of TN ′

j
, for all 1 ≤ j ≤ q. Therefore, we have GN [i] =

∑
1≤j≤q

Yj [indexj ]. The selection of index1, · · · , indexq

is left to the algorithm MAX-SELECT. The algorithm ALG-opt(T, TΠ, k) that calculates the k-information-optimal
subtree of TΠ is given as follows, where GN [·] and OPTN [·] are global variables. If N is a leaf node, then we initialize
GN [i] = 0 and OPTN [i] = ∅ for each 0 ≤ i ≤ k.

ALG-opt(T, TΠ, k):
//To find a k-information-optimal subtree of a given input testing tree TΠ with
//pre-given probability assignment p(e) for every edge e in the
//trace-specification tree T.
//The return value has two parts: the entropy Hroot[k] and the set of
//edges OPTroot[k] of the k-information-optimal subtree, where root is the root of TΠ.
//GN [·] and OPTN [·] in below are global variables, initialized as in above.
1. If k = 0
2. For each node N in TΠ

3. GN [k] := 0 and OPTN [k] := ∅;
4. Return;
5. Run ALG-opt-tree(T, TΠ, k − 1);
6. For level := 1 to (height of TΠ)

//a node of level (height of TΠ) is the root
7. For each nonleaf node N of level level

//suppose that N ′
1, · · · , N ′

q, for some q ≥ 1, are all the child nodes of N
8. For each 1 ≤ j ≤ q
9. Yj [0] := 0;
10. G(e) :=

∑
t≃e

p(ωt)(−(
∑

1≤i≤l

pi log pi + (1−
∑

1≤i≤l

pi) log(1−
∑

1≤i≤l

pi)));

//e = ⟨N,N ′
j⟩; in the RHS of line 10, e is treated as the

//subtree of TΠ that only has the edge e; ωt = a1 · · · ai is the
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//root path of t, p(ωt) = p(a1) · · · p(ai); p(ωt) = 1 if ωt = ∅; suppose
//that t exactly contains l edges, say e1, · · · , el that share the
//same source, and each edge el has probability assignment pi

11. For 0 ≤ i ≤ k − 1
12. Yj [i+ 1] := G(e) +GN′

j
(i);

//Yj [i+ 1] stores the entropy of the (i+ 1)-information-optimal
//subtree of the component tree TN′

j
mentioned earlier

13. Run MAX-SELECT({Y1, · · · , Yq}, k);
//MAX-SELECT({Y1, · · · , Yq}, k) returns a sequence index1, · · · , indexq

14. GN [k] :=
∑

j:indexj ̸=0
Yj [indexj ];

15. OPTN [k] :=
∪

j:indexj ̸=0
OPTN′

j
[indexj − 1] ∪ {⟨N,N ′

j⟩};

16. Return Groot[k] and OPTroot[k].

In line 13, the (worst-case) time of running the algorithm MAX-SELECT({Y1, · · · , Yq}, k) is O(k2q), as pointed
out in Section 2.4, MAX-SELECT is called every time when calculating an entry of HN [·] and an entry OPTN [·]
of node N . Since there are k + 1 entries for N , the time of finishing calculating all the entries of N is O(k3q).
Notice that q is the branching factor of N (see line 7), that is the number of child nodes of N , and the summation
of all such branching factors for all nodes is m, which is the size of T . Hence the (worst-case) time complexity of
ALG-opt(T, k) is O(mk3), given that in line 10, all the t’s satisfying t ≃ e are preprocessed and already stored
in a data structure at e. The preprocessing can be done in time O(n + m), where n is the size of T . Therefore, the
(worst-case) time complexity of ALG-opt(T, TΠ, k) is O(n+mk3).

As mentioned earlier, a global information-optimal testing strategy might not exist for certain trace-specification
trees. We can use the algorithm ALG-opt(T, TΠ, k) for computing k-information-optimal testing strategies to deter-
mine the existence of a global information-optimal testing strategy by setting k all the way from 1 to m. However, this
is not practically efficient when m is large. It is interesting to see whether there are efficient algorithms in deciding the
existence of a global information-optimal testing strategy by looking at the tree’s structure.

We now consider the following greedy information-optimal testing strategy, which aims to reduce the entropy most
at each step.

Definition 3. Let T be a trace-specification tree and TΠ be the corresponding input testing tree with m edges. C∗

is a greedy information-optimal testing strategy if, for any testing strategy C with k− 1, for some
k, being the length of the longest common prefix between C∗ and C, G(PreC∗(k)) ≥ G(PreC(k)).

From the definition, we can have the following observation. Consider two testing strategies C and C′ of TΠ with
the longest common prefix between them of length k − 1. Suppose that eC(k) is e and eC′(k) is e′. We have

G(PreC(k)) ≥ G(PreC′(k)), if and only if, G(e) ≥ G(e′). (10)

To construct the greedy information-optimal testing strategy, we first introduce the concept of available set. Let E be
a set of edges in TΠ. We define the available set of E, written AS(E), to be the set of edges e in TΠ such that e is
either a child edge or a sibling edge of some edge in E. Intuitively, if edges in E form a subtree t ≺ TΠ, when adding
one or more edges in AS(E) to t, we can obtain a new subtree t′, such that t′ ≺ TΠ and t ≺ t′. By definition, eC(k)
must be selected from AS({eC(k), · · · , eC(k−1)}). By (10), at each step we pick the edge (from the available set) that
can achieve the maximal gain. The gain of an edge e, G(e), is calculated in the same way as in ALG-opt(T, TΠ, k).

ALG-greedy-opt(T, TΠ):
//To find a greedy information-optimal testing strategy of the input testing tree TΠ,
//with pre-given probability assignment p(e) for each edge e
//in the trace-specification tree T.
//The return value is a greedy information-optimal testing strategy C∗ of TΠ.
1. AS[1] := {e : e is an edge originating from TΠ’s root}.
2. For each 1 ≤ i ≤ m
3. For each e ∈ AS[i]
4. G(e) :=

∑
t≃e

p(ωt)(−(
∑

1≤i≤l

pi log pi + (1−
∑

1≤i≤l

pi) log(1−
∑

1≤i≤l

pi)));

//in the RHS of line 4, e is treated as a subtree of TΠ that only
//has the edge e; ωt = a1 · · · ai is the root path of subtree t in T,
//p(ωt) = p(a1) · · · p(ai); p(ωt) = 1 if ωt = ∅; suppose that t exactly
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//contains l edges, say e1, · · · , el that share the same source,
//and each edge el has probability assignment pi in T

5. Suppose that e∗ ∈ AS[i] achieves max
e∈AS[i]

G(e);

6. eC(i) := e∗;

7. AS[i+ 1] := (AS[i]− {eC(i)}) ∪ CHILDREN(eC(i));

//AS[i+ 1] now records AS({eC(1), · · · , eC(i)})
8. Return C∗ = eC(1), · · · , eC(i), · · · , eC(m).

The (worst-case) time complexity of ALG-greedy-opt(T, TΠ) is O(n +m2), with n being the size of T and m

being the size of TΠ.
By definition, a greedy information-optimal testing strategy always selects the edge that can reduce the entropy

most at each step. Of course, this greedy strategy does not necessarily lead to the information-optimal testing strategies
as given in Definition 1 and 2. For example, for the trace-specification tree and the input testing tree in Fig. 6 with
probability assignments given in Example 7., the prefix of length 3 of a 3-information-optimal testing strategy is
e′1, e

′
2, e

′
3, while in a greedy information-optimal testing strategy, the prefix of length 3 is e′5, e

′
6, e

′
1. However, the

greedy information-optimal testing strategy fits the situation that the testing procedure may be stopped at any time,
and hence each time, we only aim to maximally reduce the entropy for each individual step.

3.4. Entropy and Information-Optimal Test Strategies of a Trace-specification Tree with Probability
Assignments in the Worst Case

The aforementioned algorithms for information-optimal testing strategies rely on the probability assignments of edges,
p(·), in the trace-specification tree T . When the assignment p(·) is explicitly given, we write H(T, p(·)) to denote the
entropy of T under p(·), which is calculated using algorithm ALG-entropy-tree(T). However, in practice, we
usually do not know what the p(·) is. That is, we do not know the probability of whether an edge will be connected
or disconnected with respect to the system under test. We now consider the worst case that we know the least amount
of information on the system (i.e., the system under test is a truly blackbox). We will give the result in the worst
case, where the uncertainty H(T, p(·)) achieves the maximum for some p(·). Unless stated otherwise, from now on
in this section, we use H(T ) to denote the maximal entropy of the testing tree T in the worst case; i,e., H(T ) =

sup
p(·)

{H(T, p(·))}. We use p∗(·) to denote the worst-case probability assignments on which the maximum is achieved.

Because of Proposition 1, it suffices for us to consider the case when T is a (b, ·)-component tree shown in Fig. 4.
In this case,

H(T ) =
∑

1≤i≤l

piH(Ti)−
∑

1≤i≤l

pi log pi − (1−
∑

1≤i≤l

pi) log(1−
∑

1≤i≤l

pi). (11)

Suppose that, for the child-trees T1, · · · , Tl, we have already obtained the worst-case probability assignments and each
H(Ti) in (11) is already the worst-case entropy. We now calculate the pi = p∗i , i = 1, · · · , l, in (11) that make the RHS
maximal. Notice that H(T ) in (11) is a concave function over p1, · · · , pl, since the second-order partial derivatives

∂2H(T )

∂pi∂pj
< 0, for all 1 ≤ i, j ≤ l.

Therefore, let partial derivatives

∂H(T )

∂pi
= 0, i = 1, · · · l.

We have,

H(Ti)− log p∗i + log(1−
∑

1≤j≤l

p∗j ) = 0, i = 1, · · · l.
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Solving the above equations for the p∗1, · · · , p∗l , we obtain the solutions

p∗i =
2H(Ti)

1 +
∑

1≤j≤l

2H(Tj)
, i = 1, · · · l. (12)

This already gives an algorithm to calculate the p∗(·) as follows.

ALG-p∗(T):
//To calculate the probability assignments p∗(·) of edges
//in the trace-specification tree T in the worst case.
//The return value is the probability assignments p∗(·).
1. For each leaf node N in T
2. H(tN ) := 0;

//tN is the child-tree under the edge e = ⟨N ′, N⟩ for some N ′

3. For level := 1 to (height of T)
//a node of level (height of T) is the root

4. For each nonleaf node N of level level
//suppose that the component trees of N are
//(b1, ·)-component tree, · · ·, (bq , ·)-component tree for some q

5. For 1 ≤ h ≤ q
//let th be the (bh, ·)-component tree that consists of edges
//e1, · · · , el labeled with (bh, c

1), · · · (bh, cl) respectively, together
//with the child-trees Ti’s under the edges, and the entropy
//H(Ti) is already calculated in the previous level; suppose
//the probability assignment of ei labeled with (bj , c

i) is p∗i

6. p∗i := 2H(Ti)

1+
∑

1≤j≤l
2
H(Tj)

, i = 1, · · · , l;

7. H(th) :=
∑

1≤i≤l

p∗iH(Ti)−
∑

1≤i≤l

p∗i log p∗i − (1−
∑

1≤i≤l

p∗i ) log(1−
∑

1≤i≤l

p∗i );

8. H(tN ) :=
∑

1≤h≤q

H(th);

//tN is the child-tree under the edge e = ⟨N ′, N⟩ for some N ′

9. Return p∗(·).
The time complexity of ALG-p∗(T) is O(n), where n is the size of T .

Example 8. Consider the trace-specification tree T shown in Fig. 3 (1). Now we calculate the probability as-
signments of edges in the worst case. For the node N4, it has a (b3, ·)-component tree and a (b4, ·)-component
tree. For the (b3, ·)-component tree, the child-tree under the edge ⟨N4, N5⟩ is empty and with entropy 0; hence
p∗(⟨N4, N5⟩) = 20

1+20 = 1
2 . For the (b4, ·)-component tree, the child-trees T1 and T2 under the edges ⟨N4, N6⟩

and ⟨N4, N7⟩, respectively, are also empty; hence p∗(⟨N4, N6⟩) = p∗(⟨N4, N7⟩) = 20

1+(20+20) = 1
3 . Similarly, we

have p∗(⟨N2, N3⟩) = 1
2 , p∗(⟨N0, N1⟩) = 1

2 , p∗(⟨N0, N2⟩) = 2
9 , and p∗(⟨N0, N4⟩) = 6

9 . Also, the entropy of T in the
worst case is H(T ) = log 18 bits. ⊓⊔

Now, one can find the k-information-optimal testing strategy and the greedy information-optimal testing strategy
of an input testing tree in the worst case using the algorithms ALG-opt(T, TΠ, k) and ALG-greedy-opt(T, TΠ),
respectively, by running the algorithm ALG-p∗(T) first to give the probability assignments of edges in the worst case.
Note that, as before, the global information-optimal testing strategy may or may not exist.

Example 9. Consider the trace-specification tree T in Fig. 3 (1) and its corresponding input testing tree
TΠ in Fig. 3 (2). In the worst case that the entropy H(T ) reaches the maximum, let k = 3. Then a k-
information-optimal testing strategy of TΠ is ⟨N ′

0, N
′
2⟩, ⟨N ′

2, N
′
4⟩, ⟨N ′

0, N
′
1⟩. The greedy information-optimal strategy

is ⟨N ′
0, N

′
2⟩, ⟨N ′

2, N
′
4⟩, ⟨N ′

0, N
′
1⟩, ⟨N ′

2, N
′
3⟩. Note that in this example, the global information-optimal testing strategy

exists, which is (in this order) ⟨N ′
0, N

′
2⟩, ⟨N ′

2, N
′
4⟩, ⟨N ′

0, N
′
1⟩, ⟨N ′

2, N
′
3⟩. ⊓⊔

4. Information-Optimal Testing Strategies on Automata Used as Tree Representations

Throughout this section, the system Sys under test is assumed to be output-deterministic. Additionally, we assume
that a trace-specification tree is tight; i.e., at each node, each input symbol has at most one output symbol. Formally,
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s

a1

a2

Fig. 7. A DFA A whose accepting language is (a1 + a2)∗.

T is tight if, for each node N in T and each input symbol b ∈ Π, there is at most one edge from node N with label
(b, c), for some c ∈ Γ. In this case, a trace-specification tree and its input testing tree have exactly the same topological
appearance (see Fig. 6 for an example). Since T is tight, for a test case ω = b1 · · · bl (for some l) in the input testing
tree TΠ, there is a unique path in T with labels (b1, c1) · · · (bl, cl), for some c1, · · · , cl ∈ Γ. That is, the expected output
c1 · · · cl is unique and already specified in T for the test case ω = b1 · · · bl. Therefore, we do not distinguish the two
trees, and simply treat the trace-specification tree T as the testing tree. Because of this, in this section, we also call the
input-output sequence (b1, c1) · · · (bl, cl) as a test case. Let Σ = Π× Γ. Hence, the testing tree T is simply a tree with
labels in Σ.

Recall that, the original trace-specification, Poriginal, could be an infinite set of words over the interface Σ; the
trace-specification P we actually plan to test is the set of words where each word is a prefix (of length ≤ d) of some
word in Poriginal. In other words, P can be specified by Poriginal together with d. One can often use a (deterministic
finite) automaton A to represent Poriginal (when it is regular), since it is practically a more succinct model compared
with the tree representation of the trace-specification P . For instance, for the original trace-specification Poriginal =

(a1+a2)
∗, the trace-specification we actually test is P = (a1+a2)

≤d. The testing tree T representing P is a complete
binary tree, whose size is exponential in d. On the other hand, if we use an automaton A in Fig. 7 to accept the language
(a1 + a2)

∗ (i.e., Poriginal), the automaton only has one state and two transitions. Therefore, the trace-specification P

we actually test can be specified by two parameters: an automaton A representing Poriginal, and the longest length
d we could test for each sequence in Poriginal. Suppose that P is given as an automaton A and a length d. If we
calculate the entropy of the testing tree T representing P by building T (using ALG-entropy-tree(T)), the time
complexity would be exponential in the size of the automaton A and the length d. In the following, we discuss how
to efficiently calculate the worst-case entropy of the testing tree T , and develop information-optimal testing strategies
directly on the automaton A, without building T .

Let A = ⟨S, sinit, F,Σ, R⟩ be a DFA specified in Section 2.1. We further define A(s) = ⟨S, s, F,Σ, R⟩ as the
finite automaton that keeps all the parameters in A except that it changes the initial state sinit to s ∈ S. Let L(A, s, d)

be the set of words such that each word is a prefix (of length ≤ d) of some word in L(A(s)).
Let T be the testing tree that represents P . Recall that P is truncated from Poriginal = L(A) up to length d; i.e.,

P = L(A, sinit, d). Now we develop algorithms to calculate the entropy of T in the worst case (i.e., the entropy H(T )

reaches the maximum). The algorithms are based on Proposition 1 and 2. Note that since T is tight, a (b, ·)-component
tree Tb, with b ∈ Π, in Fig. 4 now exactly consists of one edge e originating from the root and a child-tree t′ under e,
as shown in Fig. 8; hence the formula in Proposition 2,

H(Tb) =
∑

1≤i≤l

piH(Ti)−
∑

1≤i≤l

pi log pi − (1−
∑

1≤i≤l

pi) log(1−
∑

1≤i≤l

pi),

now can be written as

H(Tb) = HBinary(p(e)) + p(e)H(t′),

where HBinary(·) is the binary entropy function, HBinary(p(e)) = −p(e) log p(e)−(1−p(e)) log(1−p(e)). Therefore,

H(T ) =
∑
i

(HBinary(p(ei)) + p(ei)H(Ti)), (13)
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t'

e

Fig. 8. The tree Tb consists of a child-tree t′ and an edge e from the root of T to the root of t′.

where ei is an edge that directly originates from the root of T , and Ti is the child-tree under ei. In the worst case, from
(12), we have p∗(ei) =

2H(Ti)

1+2H(Ti)
, and therefore (13) can be written as

H(T ) =
∑
i

log(1 + 2H(Ti)). (14)

Recall that the tree T is represented by a given automaton A. To use (14) to calculate the worst-case entropy H(T )

directly on the automaton A, we build an array hs[0 · · · d] with d+ 1 entries for each state s in the automaton A, and
the levelth (0 ≤ level ≤ d) entry hs[level] equals H(A, s, level), where H(A, s, level) is the (worst case) entropy
of the testing tree that represents L(A, s, level). Clearly, for the testing tree that represents L(A, s, level), each of
its child-trees represents L(A, s′, level − 1), for each direct successor s′ of s (i.e., (s, a, s′) ∈ R for some a ∈ Σ),
respectively. From (14), we have

hs[level] =
∑

s′∈SUCC(s)

log(1 + 2hs′ [level−1]),

where SUCC(s) is the set of direct successors of s. Note that SUCC(s) could be a multiset; i.e., if there are multiple
transitions from s to s′, then s′ should be counted multiple times in SUCC(s). In particular, hs[0] = 0 for each state s,
which means that, the testing tree representing L(A, s, 0) is an empty tree, therefore, H(A, s, 0) = 0. The algorithm
ALG-entropy-DFA-worst(A, d) is given as follows.

ALG-entropy-DFA-worst(A, d):
//To calculate the entropy of the testing tree representing P = L(A, sinit, d)
//in the worst case. The return value is the entropy hs[level] of the testing
//tree representing L(A, s, level), for each state s in A, and 0 ≤ level ≤ d.
1. For each s ∈ S and for 0 < level ≤ d
2. hs[level] := null;
3. hs[0] := 0;
4. level := 1;
5. Repeat
6. For each state s
7. hs[level] :=

∑
s′∈SUCC(s)

log(1 + 2hs′ [level−1]);

8. level := level + 1;
9. Until level ≥ d+ 1;
10.Return hs[0 · · · d] for each state s.

The time complexity of the algorithm ALG-entropy-DFA-worst(A, d) is O(dn), where n is the number of
transitions in A (also called the size of A). When we finish running the above algorithm on A, we will get an array
for each state s, and the value hs[level] equals H(A, s, level). Therefore, hsinit [d] is the entropy of the testing tree T

representing L(A, sinit, d), which is the trace-specification P that we actually test, as mentioned earlier.
In the following, we show an example of running the algorithm ALG-entropy-DFA-worst(A, d) on an au-

tomaton A with d = 3.
Example 10. An automaton A is given in Fig. 9, with s1 being the initial state, and s5 being the accepting state.
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Fig. 9. Run ALG-entropy-DFA-worst(A, d) on a DFA A with d = 3.

a

b d

c
e f

Fig. 10. The testing tree representing P = L(A, s1, 3).

Recall that a, b, c, d, e, f in Fig. 9 are in Σ = Π × Γ. Assume that we can only test up to d = 3 steps for each
string in L(A); i.e., the trace-specification P we actually test is L(A, s1, 3). Fig. 9 (1) ∼ (4) shows how the arrays
of states evolve while ALG-entropy-DFA-worst(A, d) is running on A (blank entries denotes for null). At the
beginning, lines 1 ∼ 3 initialize the entries as in Fig. 9 (1), which corresponds to H(A, s, 0) = 0 for every s ∈ S,
since the set of strings originating from s of length 0 is empty. For each state s ∈ S, we gradually update its entries
according to lines 6 ∼ 8 as shown in Fig. 9 (2) ∼ (4). Finally, hs1 [3] = log 16 implies that H(A, s1, 3) = log 16 = 4

bits. That is, the entropy of the testing tree T representing P = L(A, s1, d) is 4 bits. We can check the result with the
tree T in Fig. 10. In the worst case, H(T ) = 4 bits, which coincides with hs1 [3]. ⊓⊔

Note that, the number d is usually pre-given. However, if A is a directed acyclic graph (DAG), we could set d to the
length of the longest string in L(A) (which could be found using depth-first-search) such that the trace-specification
we actually test is L(A); i.e., P = Poriginal.
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Fig. 11. Run ALG-entropy-DFA-worst(A, d) on the finite automaton A in Fig. 9, with d = 4.

Example 11. In the DFA A in Fig. 9, the longest string in L(A) is of length 4. Therefore, we set d to 4, and run
ALG-entropy-DFA-worst(A, d) on A. In this case, the trace-specification P is L(A). The result is shown in
Fig. 11. Since hs1 [4] = log 22, the entropy of the testing tree T that represents P = L(A) is log 22. ⊓⊔

Next, we study information-optimal testing strategies of the trace-specification P in the worst case directly on
the finite automaton A. Recall that in the testing tree T that represents P , an edge e is labeled with some symbol
a ∈ Σ = Π × Γ. p(e) denotes the probability that e is connected; i.e., the symbol a succeeds (in fact, p(e) is the
probability that a succeeds, given that the symbols labeling the parent of e succeeds. In the sequel, we simply say
that p(e) is the probability that a succeeds, when the context is clear). Correspondingly, we also have the probability
that symbol a succeeds in the automata representation. Let r = (s, a, s′) be a transition in the finite automaton A. We
define p(r(level)) as the probability that, in the testing tree representing L(A, s, level), the symbol a (that is labeled
on an edge originating from the root of the testing tree) succeeds, for each 1 ≤ level ≤ d. Recall that in the worst
case, the probability of an edge e is p∗(e) = 2H(t′)

1+2H(t′) , where t′ is the child-tree under e. In the DFA A, after running
ALG-entropy-DFA-worst(A, d) on A, hs[level] is the entropy of the testing tree t that represents L(A, s, level),
and hs′ [level− 1] is the entropy of the testing tree t′ that represents L(A, s′, level− 1). Clearly, t′ is a child-tree of t.
Therefore, in the worst case, p(r(level)) = p∗(r(level)) = 2hs′ [level−1]

1+2hs′ [level−1] . The algorithm that calculates probability
assignments in the worst case for transitions in the DFA A, p∗(·), is given as follows.

ALG-p∗-DFA-worst(A, d):
//To calculate the probability assignments p∗(·) in the worst case in a DFA A
//when only testing sequences of length up to d. The return value is
//the probability p∗(r(level)) for each transition r in A, 1 ≤ level ≤ d.
1. Run ALG-entropy-DFA-worst(A, d) on A;

//This will return hs[0 · · · d] for each state s.
2. For each transition r = (s, a, s′) in A
3. For each 1 ≤ level ≤ d

4. p∗(r(level)) := 2
h
s′ [level−1]

1+2
h
s′ [level−1] ;

5. Return p∗(·).

The time complexity of ALG-p∗-DFA-worst(A, d) is actually the time complexity of
ALG-entropy-DFA-worst(A, d), which is O(dn). (From now on, when the context is clear, we simply
use a to denote a transition (s, a, s′)).

Example 12. Now we calculate the probability assignments p∗(·) in the DFA A shown in Fig. 11. After running
ALG-p∗-DFA-worst(A, d), p∗(a(4)) = 21/22, p∗(b(4)) = 2/3, p∗(d(4)) = 6/7, p∗(e(4)) = 2/3, p∗(c(4)) =

22



s1 s2

s3

s4

s5

1 1/2

2 2/3

3 2/3

4 2/3

a

b

d

c

f

e

1 1/2

2 4/5

3 6/7

4 6/7

1 1/2

2 4/5

3 15/16

4 21/22

p*(a(.))

p*(d(.))

1 1/2

2 1/2

3 1/2

4 1/2

p*(f(.))

1 1/2

2 1/2

3 1/2

4 1/2

p*(c(.))p*(b(.)), p*(e(.))

Fig. 12. Run ALG-p∗-DFA-worst(A, d) on the finite automaton A in Fig. 11, with d = 4.

1/2, and p∗(f(4)) = 1/2. The complete probability assignments p∗(r(level)) for each transition r and 1 ≤ level ≤ 4

are illustrated in Fig. 12. ⊓⊔
Remember that a finite automaton is just another form of a testing tree. A testing strategy C of a finite automaton

A, which resembles a testing strategy of a testing tree, specifies an ordering in which we test sequences in the trace-
specification P = L(A, sinit, d). Now that we have ways to calculate probability assignments on DFA A, we can
develop algorithms to calculate testing strategies of A. Before giving the formal definition of a testing strategy on a
DFA, we first introduce some notation. Let α be a string and L be a language. We say α ≺ L, if α is a prefix of some
word in L. We use α = β ◦ κ to denote the string α that is a concatenation of β and κ, where each of β and κ can
either be a symbol or a string. Sometimes, we simply write α = βκ. Suppose that α = ωa ≺ L(A, sinit, d). When A

runs on α, we use s(α) to denote the state of A right after the last symbol a in α = ωa is read. In particular, for an
empty string ϵ, we define s(ϵ) = sinit. A testing strategy C of a DFA A with respect to a given length d is in the form
of

C = αC(1), · · · , αC(i), αC(i+1), · · · , αC(g),

for some g > 0, where each string αC(i) = ωa ≺ L(A, sinit, d) for some ω and a. Sometimes, we just call C a testing
strategy of L(A, sinit, d). By testing αC(i) = ωa in the testing strategy C, we mean to test the rightmost symbol a in
αC(i), and symbols in ω have already been tested. In this way, the testing strategy C actually specifies a testing strategy
in the corresponding testing tree T that represents L(A, sinit, d). Therefore, a prefix of C corresponds to a subtree
t ≺ T that represents the strings in the prefix. We simply call the entropy of that subtree t as the gain of that prefix
of the testing strategy C. The number g is pre-given. In fact, in order to make the strategy C be an exhaustive testing
strategy of L(A, sinit, d), the g, in worst case, can be exponential in n (the number of transitions in A). In practice,
such a long strategy may not be exhaustively tested anyway. Therefore, one can expect that the given length g of the
strategy is not unreasonably large.

For the k-information-optimal testing strategy (with worst-case entropy) of a DFA A, the idea to calculate it is
similar to ALG-opt(T, k). We first run ALG-p∗-DFA-worst(A, d) to obtain the worst-case probability assign-
ments p∗(·). We associate each state s in A with two arrays Hs[·, ·] and OPTs[·, ·]. The meanings of the two arrays
are explained as follows. Let T be the testing tree representing P = L(A, sinit, d). For a state s in A and a number
0 ≤ level ≤ d, consider the subtree T (s, level) of T that represents L(A, s, level), which keeps the probability
assignments of edges in T . Hs[level, i] and OPTs[level, i] record the entropy and the set of root paths (i.e., the k-
information-optimal testing strategy) of the i-information-optimal subtree of T (s, level), for each 0 ≤ level ≤ d and
0 ≤ i ≤ k, respectively. We initialize Hs[level, i] = 0 and OPTs[level, i] = ∅ for each 0 ≤ level ≤ d and 0 ≤ i ≤ k.
For each state s in A, suppose that r1, · · · , rq are all the transitions from s, and rj = (s, aj , s

′
j) for some aj and s′j ,

for all 1 ≤ j ≤ q. Note that the s′1, · · · , s′q are not necessarily distinct. From the i-information-optimal subtree of
T (s′j , level) (whose entropy is stored in Hs′j

[level, i]), we can calculate the (i + 1)-information-optimal subtree of
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the component tree Ts′j
which consists of an edge labeled with aj together with T (s′j , level) under the edge. Similar

to the algorithm ALG-opt(T, k), we define another array Yj [·] to record the entropy of that (i + 1)-information-
optimal subtree of Ts′j

in Yj [i + 1]. In this way, we obtain arrays Y1[·], · · · , Yq[·]. The problem of calculating the
entropy of the i-information-optimal subtree of T (s, level+ 1) (i.e., Hs(level+ 1, i)) now becomes selecting indices
index1, · · · , indexq , satisfying

∑
1≤j≤q

indexj = i, for Y1, · · · , Yq , such that
∑

1≤j≤q

Yj [indexj ] achieves the maxi-

mum, which, again, can be solved by the algorithm MAX-SELECT. The algorithm ALG-opt-DFA-worst(A, d, k)

that calculates the k-information-optimal subtree of the testing tree representing L(A, sinit, d) is given as follows,
where Hs[·, ·] and OPTs[·, ·] are global variables, which are already initialized in above.

ALG-opt-DFA-worst(A, d, k):
//To calculate the k-information-optimal subtree of the tree representing
//L(A, sinit, d). Assume that probability assignments in the worst case p∗(·) are
//pre-calculated using ALG-p∗-DFA-worst(A, d). The return values has two
//parts: the entropy Hsinit [d, k] and the set of root paths (i.e., the
//k-information-optimal testing strategy) OPTsinit [d, k].
//Hs[·, ·] and OPTs[·, ·] are global variables, which are initialized as in above.
1. If k = 0
2. For each state s and each 0 ≤ level ≤ d
3. Hs[level, k] := 0 and OPTs[level, k] := ∅;
4. Return;
5. Run ALG-opt-DFA-worst(A, d, k − 1);
6. For each state s that has at least one successor
7. For level := 1 to d

//suppose that r1, · · · , rq, for some q ≥ 1, are all the transitions
//from state s. We use s′1, · · · , s′q to denote the target-states in the
//transitions (note that the s′1, · · · , s′q are not necessarily distinct).

8. For each 1 ≤ j ≤ q
9. Yj [0] := 0;
10. For 0 ≤ i ≤ k − 1
11. Yj [i+ 1] := p∗(rj(level)) ·Hs′j

[level − 1, i] +H(p∗(rj(level)));

12. Run MAX-SELECT({Y1, · · · , Yq}, k);
13. Hs[level, k] :=

∑
j:indexj ̸=0

Yj [indexj ];

14. OPTs[level, k] :=
∪

j:indexj ̸=0
{aj} ∪ {aj ◦ ω : ω ∈ OPTs′j

[indexj − 1]};

//aj is the symbol on transition rj
15. Return Hsinit [d, k] and OPTsinit [d, k].

Following the analysis of algorithm ALG-opt(T, k), we can obtain that the (worst-case) time complexity of
ALG-opt-DFA-worst(A, d, k) is O(ndk3), where n is the number of transitions in A.

For the greedy information-optimal testing strategy, similarly as in the case for the testing tree, we also have
the available set of {αC(1), · · · , αC(i−1)}, denoted as AS({αC(1), · · · , αC(i−1)}), to represent the set of strings that
are qualified to be αC(i). Formally, for a set of strings L, we define AS(L) = {ωa : ω ∈ L and s(ω, a, s′) ∈
R for some state s′}. That is, the AS(L) is the set of string ωa that are extended from a string ω in L, with an
additional symbol a such that the automaton A will not crash after reading through ωa. Notice that, when strings
in {αC(1), · · · , αC(i−1)} form a subtree t ≺ T (in here, each string in t is a path), we can show that, strings in
{αC(1), · · · , αC(i)} also form a subtree t′ ≺ t′ with t ≺ t′ ≺ T , whenever αC(i) ∈ AS({αC(1), · · · , αC(i−1)}). Now
consider αC(i) = ωa, for some ω and a. Suppose that, when running A on the word ωa, the last transition fired is
r = (s, a, s′) for some s, s′. When one tests the last symbol a in the ωa (so, in this case, all symbols in ω are already
tested), the probability that a succeeds in the worst case, as show in ALG-p∗-DFA-worst(A, d), is p∗(r(d−|ω|)) =
p∗(r(d − |αC(i)| + 1)). Modifying the algorithm ALG-greedy-opt(T) that calculates the greedy information-
optimal testing strategy of a testing tree, we have the following algorithm, ALG-greedy-DFA-worst(A, d), that
calculates the greedy information-optimal testing strategy of a DFA A in the worst case.

ALG-greedy-DFA-worst(A, d):
//To calculate the greedy information-optimal testing strategy of a DFA A,
//when only testing sequences of length up to d.
//The return value is the greedy information-optimal testing strategy C∗ of A.
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a1 a2 an

b1 b2 bn
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......

c1 c2

d1
d2

cn

dn

Fig. 13. An example finite automaton A.

1. run ALG-p∗-DFA-worst(A, d) on A;
//This gives probability assignment p∗(r(level)) for all transitions
//r ∈ R in A and 1 ≤ level ≤ d.

2. AS[1] := {a : r = (sinit, a, s
′) ∈ R for some s′};

3. For each 1 ≤ i ≤ g
4. If AS[i] = ∅
5. Return C∗ = αC(1), · · · , αC(i−1);
6. Else
7. For each α ∈ AS[i]
8. If |α| = 1
9. ∆(α) := H(p∗(r(d)));

//α = a, and r = (sinit, a, s
′) for some s′.

10. Else
11. ∆(α) := (

∏
1≤j≤|α|−1

p(rj(d− j + 1)))H(p∗(r|α|(d− |α|+ 1)));

//α = a1 · · · aj · · · a|α|−1aα, and rj = (s, aj , s
′) for some s and s′.

12. Suppose that α∗ ∈ AS[i] achieves max
α∈AS(αC(i))

∆(α);

13. αC(i) := α∗;

14. AS[i+ 1] := (AS[i]− {αC(i)}) ∪ {αC(i) ◦ a : (s(αC(i)), a, s
′) ∈ R for some s′};

//Now, AS[i+ 1] = AS({αC(1), · · · , αC(i)})
15.Return C∗ = αC(1), · · · , αC(g).

Let bs be the number of transitions starting from a state s, and in worst case, bs = O(n), where n is the number
of transitions in A. We assume that g > d. The time complexity of ALG-greedy-DFA-worst(A, d) is O(dn) +

O(gbs log bs) = O(gn log n), where O(dn) is time of running ALG-p∗-DFA-worst(A, d), and O(gn log n) is
time of running lines 7 ∼ 14 for maximally g times.

Example 13. Following ALG-greedy-DFA-worst(A, d), we calculate the greedy information-optimal test-
ing strategy C∗ for the DFA A in Fig. 11, where d = 4. We set g to a relatively large number such that
the testing strategy obtained is the exhaustive testing of P = L(A, sinit, d). At the beginning, from line 2 in
ALG-greedy-DFA-worst(A, d), AS[1] = {a}; therefore, αC(1) = a, and AS[2] = {ab, ad} according to line
9. Since the probability that the symbol b in ab succeeds is p∗(b(4 − |ab| + 1)) = p(b(3)) = 2/3, and the prob-
ability that the symbol d in ad succeeds is p∗(d(3)) = 6/7. We have ∆(ab) = p∗(a(4))H(p∗(b(3))) = 0.88,
and ∆(ad) = p∗(a(4))H(p∗(d(3))) = 0.56; from lines 12 and 13, we have αC(2) = ab and AS[3] = {ad, abc}.
Keep doing so, until AS[i] = ∅ for some i, and finally we obtain the greedy information-optimal testing strategy
C∗ = a, ab, abc, ad, adf, ade, adec (in this order). ⊓⊔

Finally, we show that a test set that achieve 100% branch coverage could still reveal very little information of a
software system. Consider the finite automaton A (which can be interpreted as a software design) shown in Fig. 13.
Let a test set t consist of a1 · · · an, b1 · · · bn, c1 · · · cn, d1 · · · dn and together with all their prefixes. Clearly, t achieves
100% branch coverage in A. However, one can show that, under worst-case probability assignments of edges, the ratio
of t’s information gain to the entropy of the automaton approaches 0 as n → ∞. On the other hand, two test sets
sharing the same branch coverage may gain dramatically different amount of information. For instance, consider the
two test sets
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• t1 consisting of a1 · · · an, b1 · · · bn, and together with all their prefixes,

• t2 consisting of c1 · · · cn, d1 · · · dn, and together with all their prefixes.

Clearly, t1 and t2 both achieve 50% branch coverage. One can show that under worst-case probability assignments
of edges, the ratio of the information gain of t1 to the information gain of t2 approaches to ∞ as n → ∞. Similarly,
our conclusions remain for path coverage. This example implies that the path a1 · · · an is “more important” (i.e.,
contains much more information) than the path c1 · · · cn as n becomes large. Notice that, under path coverage, these
two paths are not distinguishable since they have the same path coverage. As the information gain criterion is syntax-
independent, it provides a way to compare test sets that are not differentiable under other traditional testing criteria
and helps us select a set that achieves maximal information gain using algorithms presented earlier.

5. Conclusion

In our understanding, software testing is a cooling-down process, during which the entropy (or uncertainty) of the
system under test decreases. In this paper, we have studied information-optimal software testing where test cases are
selected to gain the most information (i.e., cools down the system under test fastest). More specifically, we represent
a trace-specification (a finite set of input-output sequences) as a tree, that the black-box transition system under test is
intended to conform with. When the tree is associated with pre-given probability assignments on the edges, we have
developed polynomial-time algorithms calculating the entropy of the trace-specification and computing k-information-
optimal and greedy information-optimal testing strategies. When the tree is not pre-given with probability assignments
on the edges, we have studied efficient algorithms calculating the assignments that make the trace-specification be
with maximal entropy (i.e., the worst case that we know the least amount of information about the system under
test). In this latter case, we have also provided polynomial-time algorithms computing k-information-optimal and
greedy information-optimal testing strategies. Finally, we have generalized our algorithms to find information-optimal
testing strategies to the case when the trace-specification is tight and when the trace-specification is, often succinctly,
represented as a finite automaton. We shall emphasize that the information-optimal testing strategies are calculated
before any testing is performed.

We now briefly discuss testing an output-nondeterministic system Sys. We assume that there is an oracle O (i.e.,
a test engine) to consume a test case (which is a sequence of input-output pairs) and provide a sequence of Boolean
values to tell whether the prefixes of a test case are the observable behaviors of Sys. Logically, we can treat the
Sys as an output-deterministic system Sys′ where an input-output pair in Sys is an input symbol in Sys′ and the
output symbols in Sys′ are simply Booleans. However, this does not confirm the following statement: testing output-
nondeterministic systems is special case of testing output-deterministic ones. A precise conclusion should be, once
the oracle O for testing output-nondeterministic system is built, the statement is true. However, as we have mentioned
earlier, the oracle is difficult to build in practice, which makes testing nondeterministic systems hard.

In the future, we plan to compare our cooling-down testing approaches with existing structural testing techniques
and see if our approaches can be combined with the existing techniques to improve their effectiveness. We will also
study an information-theoretic information-optimal approach in testing concurrent systems. However, the entropy of
a concurrent system is difficult (even in theory) to calculate because of the communications between components. We
have studied a simple model where in a concurrent system, two identical components communicate with each other
only through synchronization. For this simple model, we are able to effectively calculate the entropy of the concurrent
system and its information-optimal testing strategies (the strategy is decompositional; i.e., testing each component
alone without integrating testing. See also [XiD05, Xie05] for similar ideas.). We plan to study similar algorithms
for more general concurrent system models and determine how the communications between components affect the
information-optimal testing over the entire system.
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