On Composition and Lookahead Delegation of
e-Services Modeled by Automata ***

Zhe Dang ® Oscar H. Ibarra ™™ Jianwen Su®
aSchool of Electrical Engineering and Computer Science,
Washington State University, Pullman, WA 99164, USA

®Department of Computer Science, University of California,
Santa Barbara, CA 93106, USA

Abstract

Let M be a class of (possibly nondeterministic) language acceptors with a one-way input
tape. A system (A4; A1, ..., A,;) of automata in M is composable if for every string w =
ay -+ - ay, of symbols accepted by A, there is an assignment of each symbol a; in w to
one of the A;’s such that for each 1 < 7 < r, the subsequence of w assigned to A; is
accepted by A;. For a nonnegative integer k, a k-lookahead delegator for (A; A1, ..., A;)
is a deterministic machine D in M which, knowing (a) the current states of A, Ay, ..., A,
and the accessible “local” information of each machine (e.g., the top of the stack if each
machine is a pushdown automaton, whether a counter is zero or nonzero if each machine is
a multicounter automaton, etc.), and (b) the k£ lookahead symbols to the right of the current
input symbol being processed, can uniquely determine the A; to assign the current symbol.
Moreover, every string w accepted by A is also accepted by D; i.e., the subsequence of
string w delegated by D to each A; is accepted by A;. Thus, k-lookahead delegation is a
stronger requirement than composability, since the delegator D must be deterministic. A
system that is composable may not have a k-delegator for any k.

We study the decidability of composability and existence of k-delegators for various
classes of machines M. Our results generalize earlier ones (and resolve some open ques-
tions) concerning composability of deterministic finite automata as e-services to finite au-
tomata that are augmented with unbounded storage (e.g., counters and pushdown stacks)
and finite automata with discrete clocks (i.e., discrete timed automata). The results have
applications to automated composition of e-services.

* A preliminary version of this paper was presented at the 15th International Symposium
on Algorithms and Computation.
**This research was supported in part by NSF grants I1IS-0101134, CCR-0208595, CCF-
0430531, and CCF-0430945.
* Corresponding author.

Email addresses: zdang@eecs .wsu.edu (Zhe Dang), ibarra@cs.ucsb.edu
(Oscar H. Ibarra), su@cs.ucsb.edu (Jianwen Su).

Preprint submitted to Elsevier Science 28 June 2005

1 Introduction

E-services provide a general framework for discovery, flexible interoperation, and
dynamic composition of distributed and heterogeneous processes on the Internet
[16]. Automated composition allows a specified composite e-service to be imple-
mented by composing existing e-services. When e-services are modeled by au-
tomata whose alphabet represents a set of activities or tasks to be performed (such
machines are often called “activity automata”), automated design is the problem
of “delegating” activities of the composite e-service to existing e-services so that
each word accepted by the composite e-service can be accepted by those e-services
collectively with each accepting a subsequence of the word, under possibly some
Presburger constraints on the numbers and types of activities that can be delegated
to the different e-services.

In traditional automata theory, an automaton is a language acceptor that is equipped
with finite memory and possibly other unbounded storage devices such as a counter,
a stack, a queue, etc. The automaton “scans” a given input word in a one-way/two-
way and nondeterministic/deterministic manner while performing state transitions.
As one of the most fundamental concepts in theoretical computer science, automata
are also widely used in many other areas of computer science, in particular, in mod-
eling and analyzing a distributed and concurrent system. For instance, one may
view a symbol a in an input word that is read by the automaton as an input/output
signal (event). This view naturally leads to automata-based formal models like I/O
automata [21]. On the other hand, when one views symbol a as an (observable) ac-
tivity that a system performs, the automaton can be used to specify the (observable)
behavior model of the system; i.e., an activity automaton of the system. For in-
stance, activity automata have been used in defining an event-based formal model
of workflow [28]. Recently, activity (finite) automata are used in [5] to model e-
services. An important goal as well as an unsolved challenging problem in service
oriented computing [23] such as e-services is automated composition: how to con-
struct an “implementation” of a desired e-service in terms of existing e-services.

To approach the automated composition problem, the technique adopted in [5] has
two inputs. One input is a finite set of activity finite automata, each of which mod-
els an “atomic” e-service. The second is a desired global behavior, also specified
as an activity finite automaton, that describes the possible sequences of activities
of the e-service to be composed. The output of the technique is a (deterministic)
delegator that will coordinate the activities of those atomic e-services through a
form of delegation. Finding a delegator, if it exists, was shown to be in EXPTIME.
The framework was extended in [13] by allowing “lookahead” of the delegator, i.e.,
to have the knowledge of & future incoming activities (for a given k). A procedure
was given to determine the existence of a k-lookahead delegator.

The models studied in [5,13] have significant limitations: only regular activities

are considered since the underlying activity models are finite automata. In real-
ity, more complex and non-regular activity sequences are possible. For instance,
activity sequences describing a session of activities releaseAs, allocateAs,
releaseBs and allocateBs satisfying the condition that the absolute differ-
ence between the number of releaseAs and the number of allocateas, as
well as the absolute difference between the number of releaseBs and the num-
ber of allocateBs, is bounded by 10 (the condition can be understood as some
sort of fairness) are obviously non-regular (not even context-free). Therefore, in
this paper, we will use the composition model of [13] but focus on, instead of fi-
nite automata, infinite-state (activity) automata. The automata-theoretic techniques
we use in our presentation are different from the techniques used in [5,13]. Notice
that the problem is not limited only to e-services. In fact, similar automated design
problems were also studied in the workflow context [29,20] and verification com-
munities (e.g., [6,1,25,19]). In the future, we will also look at how our techniques
and results can be applied to these latter problems.

In this paper, we use Ay, ..., A, to denote 7 activity automata (not necessary finite-
state), which specify the activity behaviors of some r existing e-services. We use A
to denote an activity automaton (again, not necessary finite-state), which specifies
the desired activity behavior of the e-service to be composed from the existing e-
services.

The first issue concerns composability. The system (A; Ay, ..., A,) is composable
if for every string (or sequence) w = a; - - - a, of activities accepted by A, there
is an assignment (or delegation) of each symbol in w to one of the A;’s such that
if w; is the subsequence assigned to A;, then w; is accepted by A;. The device
that performs the composition is nondeterministic, in general. We start our dis-
cussion with A, Ay, ..., A, being restricted counter-machines (finite automata aug-
mented with counters, each of which can be incremented/decremented by 1 and
can be tested against 0). One of the restrictions we consider is when the counters
are reversal-bounded [17]; i.e., for each counter, the number of alternations between
nondecreasing mode and nonincreasing mode is bounded by a given constant, inde-
pendent of the computation. As an example, the above mentioned release-allocate
sequences can be accepted by a deterministic reversal-bounded counter-machine
with 4 reversal-bounded counters. We use notations like DFAs or NFAs (determin-
istic or nondeterministic finite automata) and DCMs or NCMs (deterministic or
nondeterministic reversal-bounded counter-machines). In [13], it was shown that
composability is decidable for a system (A; Ay, ..., A,) of DFAs. We generalize
this result to the case when A is an NPCM (nondeterministic pushdown automaton
with reversal-bounded counters) and the A;’s are DFAs. In contrast, we show that
it is undecidable to determine, given DFAs A and A; and a DCM A, with only
one l-reversal counter (i.e., once the counter decrements it can no longer incre-
ment), whether (A4; A, Ay) is composable. We also look at other situations where
composability is decidable. Further, we propose alternative definitions of composi-
tion (e.g., T-composability) and investigate decidability with respect to these new

definitions.

When a system is composable, a composer exists but, in general, it is nondeter-
ministic. The second issue we study concerns the existence of a deterministic del-
egator (i.e., a deterministic composer) within some resource bound. We adopt the
notion of k-lookahead delegator (or simply k-delegator) from [13] but for infinite-
state automata. (We note that [5] only studied 0-lookahead delegators.) This special
form of a delegator is assumed to be efficient, since in its implementation, the del-
egator does not need to look back to its delegation history to decide where the
current activity shall be delegated. For a nonnegative integer k, a k-delegator for
(A; Ay, ..., A,) is a DCM D which, knowing (1) the current states of A, A, ..., A,
and the signs of their counters (i.e., zero or non-zero), and (2) the k£ lookahead
symbols (i.e., the k£ “future” activities) to the right of the current input symbol
being processed, can deterministically determine the A; to assign the current sym-
bol. Moreover, every string w accepted by A is also accepted by D, i.e., the sub-
sequence of string w delegated by D to each A; is accepted by A;. Clearly, if a
system (A; Ay, ..., A,) has a k-delegator for some k, then it must be composable.
However, the converse is not true — a system may be composable but it may not
have a k-delegator for any k.

In [5], the decidability of the existence of a 0-lookahead delegator (i.e., no looka-
head) when the automata (i.e., A, A4, ..., A,) are DFAs was shown to be is in EXP-
TIME. The concept of lookahead was introduced in [13] where the focus was still
on DFAs. There, algorithms were obtained for deciding composability and deter-
mining, for a given k, the existence of a k-lookahead delegator. We extend these
results. In particular, we show that it is decidable to determine, given a system
(A; Ay, ..., A,) of DCMs and a nonnegative integer k, whether the system has a
k-lookahead delegator.

Our results generalize to composition and lookahead delegation when we impose
some linear constraints on the assignments/delegations of symbols. Doing this al-
lows us to further specify some fairness linear constraint on a delegator. For in-
stance, suppose that we impose a linear relationship, specified by a Presburger rela-
tion P, on the numbers and types of symbols that can be assigned to Ay, ..., A,.. We
show that it is decidable to determine for a given k, whether a system (A4; A4, ..., A;)
of DCMs has a k-delegator under constraint P. However, it is undecidable to de-
termine, given a system (A4; Ay, Ay), whether it is composable under constraint P,
even when A, Ay, A, are DFAs and P involves only the symbols assigned to As.

Composability and existence of k-lookahead delegators for systems consisting of
other types of automata can also be defined and we study them as well. In particular,
we show that composability is decidable for discrete timed automata [3] (these are
NFAs augmented with discrete-valued clocks).

The remainder of the paper is organized into six sections after this section. Section

2 defines (actually generalizes) the notion of composability of activity automata
and proves that it is undecidable for systems (A; A;, As), where A, A; are DFAs
and A, is a DCM with one 1-reversal counter. It is also undecidable when A, A, A,
are DFAs and when a Presburger constraint is imposed on the numbers and types
of symbols that can be delegated to A; and As. In contrast, composability is de-
cidable for systems (A; A1, ..., A;) when A, ..., A, are DFAs (even NFAs) and A
is an NPCM. Decidability holds for other restricted classes of automata as well.
Section 3 introduces T'-composability and shows that 7T'-composability is decidable
for various automata. Section 4 looks at the decidability of the existence for a given
k of a k lookahead delegator and shows, in particular, that it is decidable to deter-
mine, given a system (A; Ay, ..., A,) of NCMs and a nonnegative integer k, whether
the system has a k-delegator (even when A is an NPCM). The decidability holds,
even if the delegation is under a Presburger constraint. Section 5 briefly studies the
notion of “upper composability”. Section 6 investigates composability of discrete
timed automata. Section 7 is a brief conclusion.

2 Composability

Throughout the remainder of this paper, we will use the following notations: a
DFA (NFA) is a deterministic (nondeterministic) finite automaton; DCM (NCM)
is a DFA (NFA) augmented with reversal-bounded counters; NPCM (DPCM) is
a nondeterministic (deterministic) pushdown automaton augmented with reversal-
bounded counters.

Machines with reversal-bounded counters have nice decidable properties (see, e.g.,
[17,18,11]), and the languages they accept have the so-called semilinear property.
They have been useful in showing that various verification problems concerning
infinite-state systems are decidable [8,7,9,12,10,24].

Assumption: For ease in exposition, we will assume that when we are investi-
gating the composability and k-delegability of a system (A; Ay, ..., A,) that the
machines operate in real-time (i.e., they process a new input symbol at every step).
The results can be generalized to machines with a one-way input tape with a right
input end marker, where the input head need not move right at every step, and ac-
ceptance is when the machine eventually enters an accepting state at the right end
marker. This more general model can accept fairly complex languages. For exam-
ple, the language consisting of all binary strings where the number of 0’s is the
same as the number of 1’s can be accepted by a DCM which, when given a bi-
nary input, uses two counters: one to count the (0’s and the other to count the 1’s.
When the input head reaches the right end marker, the counters are simultaneously
decremented, and the machine accepts if the two counters reach zero at the same
time. Note that the DCM has two 1-reversal counters. In the constructions in proofs
of the theorems, we will freely use these non-real-time models with the input end

marker. It is known that nondeterministic such machines have decidable emptiness
and disjointness problems but undecidable equivalence problem; however, the de-
terministic varieties have a decidable containment and equivalence problems [17].

Definition 1 Let (A; Ay, ..., A,) be a system of activity automata that are DCMs
over input (or activity) alphabet 2. Assume that each DCM starts in its initial state
with its counters initially zero. We say that a word (or a sequence of activities)
w = a - - a, 1s composable if there is an assignment of each symbol a; to one of
the Ay, ..., A, such that if the subsequence of symbols assigned to A; is w;, then
w; is accepted by A; (for 1 < i < r). We say that the system (A; Ay, ..., 4,) is
composable if every word w accepted by A is composable.

Fig. 1. Four e-Services

Example 1 An online club offers its customers to access its services. To use the
services provided, a customer may engage in a “registration” (represented by r)
session (to provide various information), or an access session which consists of
one or more accesses (a) and a payment with either cash (s) or a credit card (c).
The e-Service is shown as A in Fig. 1, which accepts the language (r|(aa*(s|c)))*.
Assume that there are three existing e-Services, Ay, A, and Az, where A; handles
registration, cash payments for one or more accesses, As is similar to A; except
that some customers may use promotion for free accesses, and A, can also han-
dle accesses and make credit card transactions. Clearly, the system (A; A, Ay) is
composable where processing of accesses will be done by whoever collects the

payment, cash (A;) or credit card (As).

The system (A; Ay, A3) is also composable, but in this case, the delegator need only
know if the customer will make a credit card payment in the next activity; if so Ag
will perform a, otherwise A3 does it. Thus this system has a 1-lookahead delegator
(to be defined more precisely later). |

It is known that it is decidable whether a system (A; Ay, ..., 4,) of DFAs is com-
posable [13]. Somewhat unexpectedly, the following result says that it becomes
undecidable when one of the A;’s is augmented with one 1-reversal counter.

Theorem 1 It is undecidable to determine, given a system (A; A;, As), where A

and A, are DFAs and A, is a DCM with one 1-reversal counter, whether it is com-
posable.

PROOF: It is known (see [22]) that every Turing machine (TM) can be simulated
by a program M with one counter (that can hold any nonnegative integer), which
starts in an an initial state and counter value zero. It uses the following types of
instructions:

— (8',¢:=20¢)

— (¢,c: 3c)

= (¢,c:=1¢/2)

— (¢, c:=1¢/3)

— (¢ if ¢ is divisible by 2 else s”)
— (¢ if ¢ is divisible by 3 else s”)

where s, s, s” represent states, c is the counter, ¢ := 2c¢ (resp., ¢ := 3c) means
multiply the value of the counter by 2 (resp., 3), and ¢ := ¢/2 (resp., ¢ := ¢/3)
means divide the value of the counter by 2 (resp., 3) and this is defined only if ¢ is
divisible by 2 (resp., by 3). Hence, the halting problem for these one-counter pro-
grams is undecidable. Let M be a one-counter program. Without loss of generality,
we assume that when M halts, it does so after a positive odd number of steps. Let
the states of M be 1, ..., n for some n.

Let ¥ = {$,%,0,),a,b,a,b, } be an alphabet. Let m > 0. An m-block word is a
string in the following form:

B;--- B, $%6. (1)

Each block B; is in the following form:

SCASC' A

where C is in the form of a'd’ (for some numbers %, 5) and C' is in the form of a’'t’ '
(for some numbers 7', j'). C' is intended to encode a configuration of M where the
state is ¢ and counter value is j. C’ is also intended to encode a configuration where
the state is 7' and the counter value is j'. However, since C' is a word on alphabet
{a, b} and C" is a word on alphabet {a, b}, we call C as a plain configuration and
C' as a dot configuration. The string $$ is called a separator. Hence, each word
in (1) can be described as a concatenation of m blocks, followed by an additional
separator along with an end marker . Each block is a concatenation of a separator,
a plain configuration, a \, a separator, a dot configuration, and a \. A block word is
an m-block word for some m > 0.

A block word is valid if it is in (1) for some m > 0, and in the word,

e the state encoded in the plain/dot configuration in every block is in the range of
1..n (where n is the number of states of M),

o the first plain configuration encodes the initial configuration of M and the last
dot configuration encodes a halting configuration of M.

Let L be the set of all valid block words. Clearly, L is a regular language and can
be accepted by a DFA A.

Before we proceed further, some more definitions are needed. Let C' and C’ be a
plain configuration and a dot configuration, respectively. A semi-block is a word

that is either $$CA$$C’' A$ or $$C'A$SC A$, for some C and C".

Notice that for each block word in the form of (1), there are many substrings that
are semi-blocks. Each such substring is called an embedded semi-block. Now, we
construct two languages L, and Ls. L; is the set of all words w such that w is
a result of dropping one embedded semi-block from some block word. Clearly,
after dropping an embedded semi-block, a block word is no longer a block word.
Therefore, L N L; = &. Ly is the union of two languages L} and L3. L] is the set
of all semi-blocks in the form of $$CA$$C’A$ such that C' can not reach C' by one
move in M. Similarly, L3 is the set of all semi-blocks in the form of $$C’A$$C\$
such that C’ can not reach C' by one move in M. Since a semi-block itself is not a
block word, we have L. N Ly, = &. Clearly, L, is still a regular language and can
be accepted by a DFA A;. L, can be accepted by a DCM A, with one 1-reversal
counter.

We claim that (A; A, Ay) is composable iff M does not halt right after 2m — 1
moves for some m > 0.

(=) Assume that (A; A, Ay) is composable. Let w be a valid block word in (1).
Hence, w € L. Therefore, there is a way to assign each symbol in w either to A,
or to Ay, such that wy; € L; and wy € Lg, where w; (resp. wy) is the subsequence
of symbols assigned to A; (resp. A). Since L is disjoint with L; and with Lo, both
wi and wq are not empty words. Notice that A, only accepts words ws in the form
of a semi-block, i.e., wo 18

$SCASSC' NS (2)

or

$SC'AISCAS 3)

for some C and C’. We use ws, to denote the result of dropping the first symbol and
the last symbol from ws. That is, wy = wh. A key observation here is that the

substring wy, in the word w, delegated to A, must be a substring of w. To see this,
we write w = w,w,, where the w, is delegated entirely to A; and the first symbol
of w; is delegated to A,. Since wy = wh, the first symbol of wy is also the first
symbol $ in w,. Now, where is the second symbol (that must be $) in w, delegated?
We have two cases to consider.

Case 1. The second symbol $ in w, is delegated to A,. In this case, all the im-
mediately following non-$ symbols must also be delegated to A,. Otherwise, the
resulting wq can not be in L;. Suppose that wy is in (2) (the case when ws is in (3)
is similar). In this case, these non-$ symbols are exactly C'\. Then, we write w into
wp$$C Aw!, where w), is delegated to A; and $$C A is delegated to A,. Clearly, w
starts with $. This $§ must also be delegated to A,. Otherwise, the prefix of w’, that
contains $$ followed by a dot configuration must be entirely delegated to A;. This
implies that w, either starts with $$ followed by a dot configuration or contains a
substring that is a dot configuration (the last configuration encoded in w,,) followed
(delimited with A$$) by another dot configuration (the first configuration encoded
in w?). This is not possible according to the definition of L;. Therefore, the first
symbol § in w! must be delegated to A,. Similar reasonings will show that the sec-
ond symbol § in w’, as well as all the immediately following non-$ symbols must
also be delegated to A,. These latter non-$ symbols are exactly C’\. Therefore, w),
is a substring of w.

Case 2. The second symbol $ in w, is delegated to A;. Recall that the first sym-
bol $ in w, is already delegated to A, (i.e., is the first symbol in wy). We write
ws = $$w,w), where all symbols (except the first symbol §) in $$w;, are entirely
delegated to Ay, and § is the first symbol of w’, and delegated to A,. Notice also that
w,, must contain a substring encoding a plain/dot configuration. Now, we are using
arguments similar to the ones made in Case 1 to show that wy is a prefix of w’. To
see this, we assume that wy is in (2) (the case when wsy, is in (3) is similar). That is,
wh = §CA$C’ \. First, notice that after the first symbol § in w’, is delegated to Ay
(this § corresponds to the first symbol in w}), all the immediately following non-$
symbols in w’ must also be delegated to A,. Otherwise, the resulting w; ¢ L;.
Hence, w!, can be written into $C' Aw? for some w?. Clearly, the w! must start with
$. Then, where is this $ delegated? It must be also delegated to A,. Otherwise, the
resulting w; would contain a dot configuration (the last configuration encoded in
w,,) immediately followed (delimited by A$$) by another dot configuration (the first
configuration encoded in w?) and clearly such w; can not be in L; by definition.
Hence, the first symbol $ in w” must be delegated to A,. The second symbol § in
w? must also be delegated to A,. Otherwise, the resulting w; contains at least two
occurrences of § such that in each occurrence, the symbol immediately before the
$ is not $ (The first occurrence is the second symbol $ in w, which is delegated to
Ay; the second occurrence is the second symbol § in w”, which would be delegated
to A;). These two occurrences of $’s make w; ¢ L,. From here, one can show that
the first two symbols in w” as well as all the immediately following non-$ symbols
must be delegated to As; i.e., $$C’\ is a prefix of w¥. Therefore, w} is a substring

of w.

Since w} is a substring of w, w does not encode an execution of M; i.e., M does
not halt right after 2m — 1 moves for some m > 0, since each w in (1) contains
exactly 2m configurations.

(<) Assume that (A; Ay, Ay) is not composable. Therefore, there is a valid block
word w in L that witnesses the assumption. Let wy be any embedded semi-block
in w. Clearly, when we assign this ws in w to As, the remaining word w; is in
L,. The assumption forces that wy ¢ Ly. Hence, ws encodes a valid move in M.
The result holds for every embedded semi-block ws. Therefore, w itself encodes a
halting execution of M i.e., M halts right after 2m — 1 moves for some m > 0.

Since the halting problem for the aforementioned one-counter programs M is un-
decidable, it is also undecidable whether (A; A, Ay) is composable when A and
A, are DFAs and A, is a DCM with one 1-reversal counter. |

Remark 1 Obviously, if the machines are NCMs, composability is undecidable. In
fact, take A to be the trivial machine that accepts ¥* (the universe). Take A; to
be an an arbitrary NCM with one 1-reversal counter. Then the system (A; Ay) is
composable iff ¥* is contained in L(A;). But the latter problem is known to be
undecidable [4]. However, unlike NCMs, equivalence of DCMs is decidable.

Theorem 2 If A is an NPCM and Aq, ..., A, are DFAs (or even NFAs), then com-
posability of (A4; A4, ..., A,) is decidable.

PROOF: First we construct from Ay, ..., A, an NFA B which accepts a string w €
>* iff there is an assignment of the symbols in w to the A;’s such that if w; is the
subsequence assigned to A;, then w; is accepted by A;.

B is constructed as follows. Let 9; be the transition function of A;. The initial state
of Bis (¢?, ..., q%), where ¢ is the initial state of A;. The transition of B is defined
by: 6((q1, -, gr), @) = {(p1, ..., pr) | forsome 1 < i < r,p; € 8;(¢;,a) and p; = g;
for all j # i}. The accepting states of B are all states (g1, ..., ¢,) such that each g;
is an accepting state of A;.

Then we construct from A and B an NPCM C' that accepts a string x if it is accepted
by A but is not accepted by B. C operates by guessing the symbols of x bit-by-bit
and simulating A and B in parallel on x. Simulation of A is straightforward. To
simulate B, C' uses the “subset construction” technique (for converting an NFA to
DFA without actually doing the conversion) and builds/updates the subset as it pro-
cesses the symbols of z. At the end of the input, C' checks that there is no accepting
state in the reachable subset. C' accepts if A accepts and B rejects. Clearly, the sys-
tem is not composable iff C' accepts a nonempty language. The result follows since
the emptiness problem for NPCMs is decidable [17]. |

10

It is of interest to determine the complexity of the composability problem. For ex-
ample, a careful analysis of the proof of the above theorem and the use of Savitch’s
theorem that a nondeterministic S(n) space-bounded TM can be converted to an
equivalent deterministic S%(n) space-bounded TM [26], we can show the follow-
ing:

Corollary 1 Composability of a system (A; A1, ..., A,) of NFAs can be decided in
deterministic exponential space (in the sum of the sizes of the machines).

There are other cases when composability becomes decidable, if we apply more
restrictions to A, Ay, ..., A,. A language L is bounded if L C w7 - - - wj, for some
given k and strings w1, ..., w (Which may not be distinct).

Theorem 3 Composability is decidable for a system (A; Ay, ..., A,) of NCMs if
A accepts a bounded language. The result holds even if A and one of the A;’s are
NPCMs.

PROOF: We prove the result for the general case when A is an NPCM accepting
a language which is a subset of wj - - - wj, and one of the A4;’s is an NPCM. As
in the proof of Theorem 2, we construct an NPCM B which accepts a string w €
3 iff there is an assignment of the symbols in w to the A;’s such that if w; is
the subsequence assigned to A;, then wj is accepted by A;. Then we modify B to
an NPCM B’ that accepts the language L(B) N wy - - - wj. Clearly, the system is
composable iff L(A) C L(B'). The result follows since the containment problem
for NPCMs accepting bounded languages is decidable [17]. |

Another restriction on the A;’s is the following. We assume that Y; is the input
alphabet of A;. An input symbol a is shared if a € ¥; N X; for some 7 # j. We say
that (A; Ay, ..., A,) is n-composable if every word w accepted by A and containing
at most n appearances of shared symbols is composable. Then we have:

Theorem 4 The n-composability of a system (A; Ay, ..., A,) is decidable when A
is an NPCM and each A, is a DCM.

PROOF: Notice that n is fixed. Therefore, there are only finitely many choices to
assign the (at most) n shared symbols to Ay, ..., A,. Let 7 be one such choice.
Clearly, under the choice 7, each symbol in a word w can be uniquely assigned to
one of Ay, ..., A,; let w; denote the subsequence assigned to A; from w. One can
construct a DCM B” from Ay, ..., A, such that w is accepted by B” iff each w; # €
is accepted by A;. The result follows, since the n-composability is equivalent to
checking, for each 7, L(A) C L(BT), which is decidable. This is because we can
construct, from A and B”, an NPCM C that accepts a string x if it is accepted by
A but is not accepted by B”. As in the proof of Theorem 2, C' operates by guessing
the symbols of x bit-by-bit and simulating A and B in parallel on z. Simulation of
A is straightforward, as is the simulation of B7, since it is deterministic. Then the

11

system is not n-composable (for the given 1) iff C' accepts a nonempty language,
which is decidable. 1

For our next result, we recall the definitions of semilinear set and Presburger rela-
tion [14]. A set R C N" is a linear set if there exist vectors vg, v1, ..., v; in N” such
that R = {v | v = vo+a1v1+- - -+avy, a; € N}. The vectors vg (referred to as the
constant vector) and vy, ..., v; (referred to as the periods) are called the generators
of the linear set R. A set R C N" is semilinear if it is a finite union of linear sets.
It is known that R is a semilinear set if and only if it is a Presburger relation (i.e.,
can be specified by a Presburger formula).

Let ¥ = {a4, ..., a, } be an alphabet. For each string w in X*, we define the Parikh
map of w to be Y(w) = (numg, (w), ..., num,, (w)), where nums, (x) is the num-
ber of occurrences of a; in w. For a language L. C X*, the Parikh map of L is

(L) ={¢(w) | w e L}.

Let A, Ay, ..., A, be a system of DFAs over input alphabet >, and P be a Pres-
burger relation (semilinear set). Suppose that we want to check whether the sys-
tem is composable under constraint P on the numbers and types of symbols that
are assigned/delegated to the A;’s. The constraint is useful in specifying a fairness
constraint over the delegations (e.g., it is never true that the absolute value of the
difference between the number of activities a assigned to A; and the number of
activities a assigned to A is larger than 10). Let ¥ = {ay, ..., a, } and P be a Pres-
burger relation (formula) over (r + 1)n nonnegative integer variables (note that n
is the cardinality of 3 and r + 1 is the number of the DFAs, including A). Under
the constraint P, the composability problem might take the following form:

Presburger-constrained composability problem: Given a system (A; A1, ..., A;)
of DFAs, is the system composable subject to the constraint that for every string
w € L(A), there is an assignment of the symbols in w such that if wy, ..., w, are the
subsequences assigned to Ay, ..., A, respectively, then

(1) A; accepts w; (1 <7 < r),and
2) (Y(w), Y (wr), ..., v(w,)) satisfies the Presburger relation P.

Unfortunately, because of Theorem 1, the above problem is undecidable:
Corollary 2 The Presburger-constrained composability problem is undecidable for
systems (A; A, Ay) of DFAs and a Presburger formula P (even if the formula only
involves symbols assigned to A,).

PROOF: This follows directly from the proof of Theorem 1. We just treat Ly as

the intersection of a regular language (hence, accepted by a DFA) and a language
definable by some Presburger formula P. |

12

3 T-Composability

From the above results, it seems difficult to obtain decidable composability for
(A; Ay, ..., A,) when one or more of Ay, ..., A, are beyond DFAs. Below, we will
apply more restrictions on how A, ..., A, are going to be composed such that a
decidable composability can be obtained. We define a mapping 7 : ¥ — 2{L-7}
such that each symbol a € 3 is associated with a type T'(a) C {1, ...,7}. Fora € X
and1 < i < r,let(a); =aifi € T(a) and (a); = € (the null string) if i & T'(a).
For a string w = ay - - - a,, we use (w); to denote the result of (ay); - - - (an);. For
each A, its input alphabet ¥; consists of all a’s with i € T'(a). Therefore, (w); is
the result of projecting w under the alphabet of A;. We now modify the definition
of composability as follows. (A; Ay, ..., 4,) is T-composable if, for every string w
accepted by A, each (w); is accepted by A;. Notice that this definition is different
from the original one in the sense that every symbol a in w is assigned to each A;
with ¢ € T'(a). Therefore, assignments of symbols in w is deterministic in the new
definition (there is a unique way to assign every symbol). One can show:

Theorem 5 The T-composability of (A; Ay, ..., A,) is decidable in the following
cases:

e Ais an NPCM and each A; is a DCM;
e Aisan NCM and each A; is a DPCM.

PROOEF: Clearly, (A; Ay, ..., A;) is not T-composable if and only if there is some w
and 1 < t < r such that w € L(A) but (w); ¢ L(A;). Hence (for both parts), we
can construct an NPCM B which, when given a string w, guesses ¢ and simulates
A (guessing the transitions of A, since it is nondeterministic) and A; in parallel and
accepts if A accepts w and (w); # € is not accepted by A; . The result follows since
the emptiness problem for NPCMs is decidable. |

Theorem 5 does not generalize to the case when one of the A;’s is an NCM, for the
same reason as we stated in Remark 1.

We may take another view of the composition of Ay, ..., A,. As we have mentioned
earlier, each activity automaton A; is understood as the behavior specification of
an e-service. Each sequence w; of activities accepted by A; is an allowable be-
havior of the service. In the original definition of composability, the activity au-
tomata Ay, ..., A, are composed through interleavings between the activities in the
sequences wy, ..., w,. Clearly, if activities between two services are disjoint, the
original definition of composability becomes T-composability with 7’(a) being a
singleton set for every symbol a (i.e., each activity a belongs to a unique activ-
ity automaton). When the activity automata share some common activities (e.g.,
a belongs to both A; and A,; i.e., T'(a) = {1,2}), the T-composability defini-
tion implies that an a-activity in A; must be synchronized with an a-activity in

13

Ajy. This is why in T-composability, such a symbol ¢ must be assigned to both A,
and As. Notice that the assignment of each symbol (activity) is deterministic in 7'-
composability. The determinism helps us generalize the above theorem as follows.

A reset-NCM M is an NCM that is equipped with a number of reset states and
is further augmented with a number of reset counters (in addition to the reversal-
bounded counters). The reset counters are all reset to O whenever M enters a reset
state. (As usual, we assume that initially the counters start with 0, i.e., with a reset
state) We further require that on any execution, the reset counters are reversal-
bounded between any two resets. One may similarly define a reser-NPCM. Notice
that an NCM (resp. NPCM) is a special case of a reset-NCM (resp. reset-NPCM)
where there is no reset counter.

Theorem 6 The emptiness problem for reset-NCMs is decidable.

PROOF: Let A be a reset-NCM. Without loss of generality, we assume that, when
A accepts an input word w, it does so on a reset state and at the end of the in-
put and with all the counters 0. Since an r-reversal-bounded counter can be simu-
lated by 2r 1-reversal-bounded counters, we further assume, WLOG, each reversal-
bounded counter in A makes exactly one reversal. An accepting execution of A on
w can therefore be split into one or more segments, where each segment starts and
ends with a reset state (i.e., the reset counters are all O at the beginning and at the
end of the segment) and in between, A does not enter a reset state. We say that a
segment is monotonic if each reversal-bounded counter is either nondecreasing or
nonincreasing on the segment (i.e., the reversal-bounded counters do not make any
reversals on the segment). We identify the segment with ¢ (the starting reset state),
¢' (the ending reset state), and 7 (a mode vector that tells the mode (nondecreas-
ing/nonincreasing) of each reversal-bounded counter within the segment). Clearly,
there are only a bounded number B of segments that are not monotonic segments
on any accepting executions on all w. On a monotonic segment with identification
(g,q',7), we use vector v to denote the net increment/decrement for each reversal-
bounded counter. Since, on the segment, A can be simulated by an NCM, all such
v for all possible segments with the same identification clearly forms a semilin-
ear set (or, equivalently, a Presburger relation). Thus, the set can be “generated”
by M(4,¢ 1) @ counter machine with nondecreasing counters [15]. (By convention,
we assume that the machine crashes prematurely if the set is empty.) Now, we are
ready to construct an NCM M to simulate A on w. M starts with the initial state
of A. Whenever A runs on a monotonic segment identified with some (g, ¢', 7),
M runs M, 4) to update (increment/decrement according to 7) its own reversal-
bounded counters. Whenever A runs on a nonmonotonic segment, M simulates A
faithfully. Notice that the reversal-bounded counters in M are still reversal-bounded
even though we use M, 4) to perform updates. When A accepts, M makes sure
that each reversal-bounded counter returns to 0. Clearly, A accepts a nonempty
language iff M does. The result follows, since M only uses a finite number of
reversal-bounded counters: the original reversal-bounded counters in A, monotonic

14

counters in each M(q,q,’T), reset counters (only resets at most B times, e.g., can be
made reversal-bounded). |

We use reset-NPM to denote a reset-NPCM that contains only reset counters and a
stack. One can show that the emptiness of reset-NPMs is undecidable.

Theorem 7 The emptiness problem for reset-NPMs and hence reset-NPCMs is
undecidable.

PROOF: Let M be a deterministic two-counter machine. Similar to the proof of
Theorem 1, we use a*b/c*, called a plain configuration, to encode a configuration
of a two-counter machine where the state is 7 and the two counter values are j and
k respectively. For the same configuration, we may also use a’c*b’, called a reverse
configuration, to encode it. Consider a sequence w

$Co3C18 - --$CL$

of configurations, where Cy, Cs, Cy, ... are plain configurations, and Cy, Cj3, Cs, ...
are reverse configurations. w is accepting if it encodes a halting execution of M;
i.e, Cy is the initial configuration of M, (), is an accepting configuration of M,
and for each 1 < t < m, C;_; reaches C, in a move of M. One can construct a
reset-NPM to accept the set of all accepting w’s. The result follows. |

Now, we generalize Theorem 5 as follows.

Theorem 8 T-composability of (A; Ay, ..., A,) is decidable when A is an NCM
and each A; is a reset-DCM.

The proof of Theorem 8 is similar to that of Theorem 5 but using Theorem 6 instead.

Let NPDA (DPDA) denote a nondeterministic (deterministic) pushdown automa-
ton. Thus, an NPDA is a special case of a reset-NPM, one that does not have reset
counters. Using Theorem 7, one can show,

Theorem 9 7'-composability of (A; Ay, ..., A,) is undecidable when A is a DPDA
and each A; is a reset-DCM, even for the case when r = 1.

PROOF: Let M be a reset-NPM. We modify M into another reset-NPM M’ as
follows. M' simulates M on input word w. Whenever M fires a transition ¢, M’
reads an input symbol ¢. Of course, if the transition of M also reads an input symbol
a, M' reads the same input symbol a along with the input symbol ¢. The stack and
counter operations remain in M'. Hence, M’ accepts an accepting execution of M.
Note that M’ is deterministic since the state transitions are provided on its input
tape. Clearly, L(M) = @ iff L(M') = &. Now, let A be obtained from M’ by
ignoring the operations for reset counters, and A} be obtained from M’ by ignoring

15

the stack operations. Notice that L(A)NL(A)) = L(M'). AisaDPDA, and A is a
DCM. Take A; to be the DCM that accepts the complement of L(A}). Observe that
(A; Ay) is not T-composable iff L(A) N L(A}) = L(M') = @. The result follows
from Theorem 7. i

4 Lookahead Delegator

Given k, a k-lookahead delegator (or simply k-delegator) for the system of NCMs
(A; Ay, ..., A,) is a DCM D which, knowing the current states of A, A, ..., A,
and the statuses (i.e., signs) of their counters (i.e., zero or non-zero), and the &
lookahead symbols to the right of the current input symbol being processed, D can
uniquely determine the transition of A, the assignment of the current symbol to one
of Ay, ..., A,, and the transition of the assigned machine. Moreover, for every string
x accepted by A, D also accepts; i.e., the subsequence of string x delegated by D to
each A; is accepted by A;. Clearly, if a system has a k-delegator (for some k), then
it must be composable. However, the converse is not true, in general. For example,

the system in Figure 1(a) is composable, but it does not have a k-delegator for any
k.

Example 2 Consider again Example 1 and in particular the system (A; A, As).
It is easy to see that all a activities immediately preceding an s or ¢ has to be
delegated to A; or Ay, respectively. Without knowing which letter, s or ¢, will be
coming, the delegator cannot correctly determine whether A; or A5 should perform
the activities a. Thus, the system has no k-delegator for any k. On the other hand,
the system (A; Ay, A3) has a 1-delegator. It is straightforward to generalize this
example (by adding additional states) to show that for every k, there exists a system
that has a (k + 1)-delegator but not a k-delegator. 1

So that we can always have k lookahead, let $§ be a new symbol and f be a new
state. Extend the transition function of A by defining the transition from any state,
including f, on symbol $ to f. Then make f the only (unique) accepting state. Thus
the new NCM accepts the language L(A)$" and it has only one accepting state f.
We can do the same thing for A4, ..., A, with fi, ..., f. their unique accepting states.
For convenience, call the new machines also A, A, ..., A,.

For ease in exposition, in what follows, we assume that 7 = 2, and each of A, A;, Ay
has only one reversal-bounded counter. Generalizations to any 7 > 2 and machines
having multiple reversal-bounded counters is straightforward. Note that the transi-
tion of A has the form: d4(q,a,s) = {..., (p, d), ...}, which means that if A is in
state ¢ and the input is a and the sign of its counter is s (zero or non-zero), then A
can change state to p and increment the counter by d where d = 0, + 1, — 1, with
the constraint that if s = 0, then d = 0, + 1. The same holds for transitions §; and

16

09 of A; and Ay. We assume that the counters are initially zero.

Let £ be a nonnegative integer. We can construct a candidate k-delegator DCM D
as follows: each state of D is a tuple (g, p1, p2, u), where ¢ is a state of A, p; is a
state of A;, and u is a string of length k. However, in the case (q°, p?, p3, u), where
qo is the initial state of A and p the initial state of A;, the length of u can be less
that k, including zero length, in which case u = e. Then the initial state of D is
(q°, P, P9, €). The transition ¢ of D is defined as follows:

(1) 6((¢°% p?,19,¢€),0,0,0,a) = ((¢°,p?, p3,a), 0,0, 0) for all symbol a.

) 6((¢°% p?,19,v),0,0,0,a) = ((¢°, %, PS5, va),0,0,0) for all string v such that
|v| < k and symbol a.

(3) 5((Q>p1ap21 av)’ §, 81, 52, b) = ((qlapllapIZ’ Ub)a d, dl; d2) for all q,pP1,P2, S, S1,
Sq, all string v such that |v| = k and symbols a, b, where:
(a) (qla d) € 5A(Q7 a, S);
(b) either pll = D1, dl =0, and (p,27 d2) € 52(p27 a, 52)

or py = po, dy = 0, and (p, d1) € 01(p1, @, S1)-

Moreover, the choice ((¢', p}, pb),d, d1,ds) once made is unique for the pa-
rameters ((q, p1,p2, av), s, 1, S2). (Note that in the general case there are
many choices that can be made for the given parameters.)

(4) Note that in (g, p1, p2, u), any suffix of v may be a string of $’s.

(5) Then (f, fi, fo, $*) is the accepting state of D, where f, f1, f» are the unique
accepting states of A, A;, As.

Now D is a DCM. Since the class of languages accepted by DCMs is effectively
closed under complementation, we can construct a DCM FE accepting the comple-
ment of L(D). Then D is a k-delegator of (A; Ay, Ay) iff L(A) N L(E) = . We
can construct from NCM A and DCM E an NCM F accepting L(A) N L(E). We
can then check the emptiness of L(F') since the emptiness problem for NCMs is
decidable. Now D is just one candidate for a k-delegator. There are finitely many
such candidates. Every choice that can be made in item 3) above corresponds to one
such candidate. By exhaustively checking all candidates, we either find a desired
k-delegator or determine that no such k-delegator exists. Thus, we have shown the
following:

Theorem 10 It is decidable to determine, given a system of NCMs (A4; A4, ..., 4;)
and a nonnegative integer k, whether the system has a k-delegator. |

Since the emptiness problem for NPCMs is also decidable, we can generalize the
above result to:

Corollary 3 It is decidable to determine, given a system (A; Ay, ..., A,), where A
is an NPCM and A, ..., A, are NCMs, and a nonnegative integer k, whether the
system has a k-delegator. |

Corollary 4 If we impose some Presburger constraint P on the delegation of sym-

17

bols by the k-delegator (e.g., some linear relationships on the number of symbols
delegated to Ay, ..., A,), then the existence of such a P-constrained k-delegator is
also decidable.

PROOF: It is known that every Presburger set P (or, equivalently, semilinear set)
can be accepted by a DCM [17]. Thus, we can augment the DCM D in the proof of
Theorem 10 and Corollary 3 with a DCM accepting P. |

Open Question: Is it decidable to determine, given a system of DCMs (A4, Ay, ...
A,), whether it has a k-delegator for some k?

Y

Corollary 5 It is decidable to determine, given a system (A; A1, ..., A,) and a non-
negative integer k, where A is a DPDA (deterministic pushdown automaton), A, is
a PDA (nondeterministic pushdown automaton) and A,, ..., A, are NFAs, whether
the system has a DPDA k-delegator. (Here, the delegation depends also on the top
of the stack of A;.)

PROOF: The proof is similar to that of Theorem 10 using the fact that equivalence
of DPDAs is decidable [27]. |

For the special case when the machines are NFAs, we can prove the following (from
the proof of Theorem 10 and Savitch’s theorem):

Corollary 6 We can decide, given a system (A; Ay, ..., A.) of NFAs and a non-
negative integer k£, whether the system has a k-delegator in nondeterministic ex-
ponential time (in £ and the sum of the sizes of the machines) and hence, also, in
deterministic exponential space. |

5 Upper Composability

The definition of composability of (A; A1, ..., A;) in Section 2 implies that every
behavior accepted by activity automaton A is an interleaving of behaviors accepted
by Aj, ..., A,. Therefore, A could be considered as a lower-approximation of the
composition (A1, ..., A,;) from Ay, ..., A,. Naturally, one would also consider an
upper-approximation of (Aq, ..., A,). This suggests the following definition of up-
per composability. We say that the system (Aj, ..., A,; A) is upper-composable if,
for any word w = a; - - - a,, and for any assignment of each symbol a; to one of the
Ay, ..., A, such that w; (the subsequence of symbols assigned to A;) is accepted by
A;, w is accepted by A. That is, all the interleavings of any r words accepted by
Ay, ..., A, respectively are also accepted by A. It is not hard to show that

Theorem 11 The upper-composability of (A, ..., A,; A) is decidable in the fol-
lowing cases:

18

e Each A, is an NCM and A is a DPCM.
e 7 =1and A; is an NPCM and A is a DCM.

Clearly, due to Remark 1, the upper-composability of (A;; A) is undecidable when
A;isaDFA and A is an NCM.

6 Composability of Timed Automata

A timed automaton [3] can be considered as a finite automaton augmented with a
finite number of clocks. The clocks can reset to zero or progress at the same rate,
and can be tested against clock constraints in the form of clock regions (i.e., com-
parisons of a clock or the difference of two clocks against an integer constant, e.g.,
x — 1y > 6, where x and y are clocks.). Timed automata are widely regarded as
a standard model for real-time systems, because of their ability to express quanti-
tative time requirements. In particular, by using the standard region technique, it
has been shown that region reachability for timed automata is decidable [3]. This
fundamental result and the technique are useful, both theoretically and practically,
in formulating various timed temporal logics and developing verification tools (see
[2] for a survey).

In this section, we study composability of discrete timed automata (DTA) A, where
clocks take values in N. Formally, A clock constraint is a Boolean combination of
atomic clock constraints in the following form: z ~ ¢,z — y ~ ¢, where ~ denotes
<, 2, <,>, or =, cis an integer, x,y are nonnegative integer-valued clocks. Let
Lx be the set of all clock constraints on clocks X. A discrete timed automaton
(DTA) A is a tuple (@, 3, X, T) where @ is a finite set of (control) states, ¥ is
the input alphabet, X = {1, ..., 24} is a finite set of nonnegative integer-valued
clocks, T C @ x 2%¥ x Lx x (X U {e}) x Q is a finite set of transitions. Each
transition

(g, \ 1, a,q") “4)

denotes a transition from state g to state ¢’ with input a, enabling condition [€ Lx
and a set of clock resets A C X. Note that A may be empty. Also note that since
a state may be connected to more than one state through multiple edges with the
same enabling condition, A is, in general, nondeterministic.

The semantics of A is defined as follows. A is equipped with a one-way input tape.
Initially, A starts in a designated initial state with all the clocks being 0. An exe-
cution of A consists of firing a sequence of transitions in the form of (4). Firing a
transition ¢ in (4) takes A from the current state ¢ to the next state ¢’ while consum-
ing (reading) input a € X U {e}. This is possible only if the current clock values
satisfies the enabling condition on the transition. Clocks values are updated as a

19

result of the transition. That is, if there are no clock resets on the transition ¢ (¢ is
a progress transition, i.e., A\ = &), then all the clocks progress by one time unit.
If, however, A # @ (i.e., t is a reset transition), then every clock in \ resets to 0
while every clock not in A does not change. For simplicity, we may assume that on
a progress transition, the input a read by the transition is always €. Otherwise, ¢ can
be simulated by a reset transition that resets a dummy clock and reads the symbol
a € X followed by a progress transition that reads e. The global clock is a clock that
never resets (i.e., a clock indicating the current time). Without loss of generality,
we assume that A contains a global clock.

We say that a word w is accepted by A when w is provided on the input tape, if A is
able to enter a designated accepting state. We use L(A) to denote the set of words
accepted by A. For DTAs, one may develop a similar definition of composability
as in Section 2. However, the definition does not justify the intended meaning of
composability. For instance, let A; and A be two DTAs, and suppose that ac (resp.
bd) is accepted by A; (resp. A,). Observe that an interleaving like abced of the two
words is not necessarily accepted by the DTA composed from A; and A,. This
is because, when composing, A; and A, share the same global clock. To devise a
proper definition of composability for DTAs, we first introduce timed words [3].

A timed word is a sequence of pairs

(a'latl)) "(a'n:tn) (5)

such that each a; € X,t; € N,and t; < --- < t,. We say that the timed word
is accepted by A if w = a; ---ay, is accepted by A and this fact is witnessed by
some accepting run of A such that each ¢; is the timestamp (the value of the global
clock) when symbol a; is read in the run. Thus, the timed word not only records
the sequence of symbols a; - - - a,, accepted by A but also remembers the timestamp
when each symbol is read. Let A, A, ---, A, be DTAs. A timed word in the form
of (5) is timed composable if there is an assignment of each pair (a;, ;) to one of
the Ay, ..., A, such that, for 1 < 7 < r, the subsequence (also a timed word) of pairs
assigned to A; is accepted by A;. We say that (A; Ay, ..., A,) is timed composable
if every timed word accepted by A is timed composable. The main result of this
section is the following:

Theorem 12 The timed composability of discrete timed automata (A; Ay, ..., 4;)
is decidable.

PROOF: We need to represent a timed word w in (5) as a relative word w, in the
following form:

$t1 ai $t2_t1 ag - - - $t" _t“*an (6)
where $ is a new symbol. We now construct two DTAs A’ and A”, both of which

20

run on relative words. On a relative word w in (6), A’ simulates A as follows. A’
is exactly the same as A except that, whenever the global clock in A progresses by
one time unit, so does the global clock in A together with a read of symbol $ from
w. On the other hand, A” simulates a composition of Ay, ..., A,. On a relative word
w in (6), A” runs all of A4, ..., A, in parallel and synchronously (they all share the
same global clock) as follows. A” keeps reading symbols from 2. When A” reads a
symbol § from 1, every A; executes a progress transition. When A” reads a symbol
a; from w, A" guesses one of Ay, ..., A, and let the guessed automaton execute
a reset transition that reads the symbol a;. At any moment before and after A”
reads a symbol ($ or an a;), A” may also let each of A4, ..., A, execute a sequence
of reset transitions that reads only €’s (the length of the sequence for each A; is
nondeterministically determined). Initially, all of A, ..., A, start with their initial
states. A" accepts w if when the entire word is read by A”, each of Ay, ..., A, enters
an accepting state. Notice that both A’ and A” are DTAs. Clearly, (A; Aq,---, A;)
is timed composable iff L(A’) C L(A"). The result follows, since languages (sets
of words, instead of sets of timed words) accepted by DTAs are regular using the
region technique [3]. |

7 Conclusion

In this paper, we looked at the problems of composability and k-delegatability in
systems of infinite-state automata (e.g. machines with reversal-bounded counters
and pushdown stacks). Our investigation was motivated by automated design prob-
lems in the area of e-services/web-services. We derived decidable and undecidable
results for various types of machines. In particular, we generalized earlier results
on composability and k-delegatability and resolved some interesting problems in
the literature. In the future, we plan to investigate the complexities of our decision
procedures and extend our work to omega-automata. We will also look at how our
techniques and results can be applied to other areas, e.g., in workflows and verifi-
cation.

References

[1] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable specifications
of reactive systems. In Proc. 16th Int. Collog. on Automata, Languages and
Programming, 1989.

[2] R. Alur. Timed automata. In CAV’99, volume 1633 of Lecture Notes in Computer
Science, pages 8-22. Springer, 1999.

[3] R. Alur and D. Dill. Automata for modeling real-time systems. Theoretical Computer
Science, 126(2):183-236, 1994.

21

[4] B. Baker and R. Book. Reversal-bounded multipushdown machines. Journal of
Computer and System Sciences, 8:315-332, 1974.

[5] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Automatic
composition of e-services that export their behavior. In Proc. Ist Int. Conf. on Service
Oriented Computing (ICSOC), volume 2910 of LNCS, pages 43-58, 2003.

[6] J. Buchi and L. Landweber. Solving sequential conditions by finite-state strategies.
Transactions of the American Mathematical Society, 138:295-311, 1969.

[7] Z.Dang. Pushdown time automata: a binary reachability characterization and safety
verification. Theoretical Computer Science, 302:93-121, 2003.

[8] Z.Dang, O. Ibarra, T. Bultan, R. Kemmerer, and J. Su. Binary reachability analysis of
discrete pushdown timed automata. In Proc. Int. Conf. on Computer-Aided Verification
(CAV), pages 69-84, 2000.

[9] Z. Dang, O. H. Ibarra, and R. A. Kemmerer. Generalized discrete timed automata:
decidable approximations for safety verification. Theoretical Computer Science,
296:59-74, 2003.

[10] Z. Dang, O. H. Ibarra, and P. San Pietro. Liveness Verification of Reversal-bounded
Multicounter Machines with a Free Counter. In FSTTCS’ 01, volume 2245 of Lecture
Notes in Computer Science, pages 132—143. Springer, 2001.

[11] Z. Dang, O. H. Ibarra, and Z. Sun. On the emptiness problems for two-way
nondeterministic finite automata with one reversal-bounded counter. In ISAAC’02,
volume 2518 of Lecture Notes in Computer Science, pages 103—114. Springer, 2002.

[12] Z. Dang, P. San Pietro, and R. A. Kemmerer. Presburger liveness verification for
discrete timed automata. Theoretical Computer Science, 299:413-438, 2003.

[13] C. E. Gerede, R. Hull, O. H. Ibarra, and J. Su. Automated composition of e-services:
Lookaheads. In Proceedings of the 2nd International Conference on Service Oriented
Computing, 2004.

[14] S. Ginsburg and E. Spanier. Semigroups, presburger formulas, and languages. Pacific
J. of Mathematics, 16:285-296, 1966.

[15] T. Harju, O. Ibarra, J. Karhumaki, and A. Salomaa. Some decision problems
concerning semilinearity and computation. Journal of Computer and System Sciences,
65:278-294, 2002.

[16] R. Hull, M. Benedikt, V. Christophides, and J. Su. E-services: A look behind the
curtain. In Proc. ACM Symp. on Principles of Database Systems, 2003.

[17] O. H. Ibarra. Reversal-bounded multicounter machines and their decision problems.
Journal of the ACM, 25(1):116-133, January 1978.

[18] O. H. Ibarra, T. Jiang, N. Tran, and H. Wang. New decidability results concerning
two-way counter machines. SIAM J. Comput., 24:123-137, 1995.

[19] O. Kupferman and M. Y. Vardi. Synthesizing distributed systems. In Proc. IEEE
Symposium on Logic In Computer Science, 2001.

22

[20] S. Lu. Semantic Correctness of Transactions and Workflows. PhD thesis, SUNY at
Stony Brook, 2002.

[21] N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms. In
Proc. 6th ACM Symp. Principles of Distributed Computing, pages 137-151, 1987.

[22] M. Minsky. Recursive unsolvability of Post’s problem of Tag and other topics in the
theory of Turing machines. Ann. of Math., 74:437-455, 1961.

[23] M. Papazoglou. Agent-oriented technology in support of e-business. Communications
of the ACM, 44(4):71-77, 2001.

[24] P. San Pietro and Z. Dang. Automatic verification of multi-queue discrete timed
automata. In COCOON’03, volume 2697 of Lecture Notes in Computer Science, pages
159-171. Springer, 2003.

[25] A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In Proc.
IEEE Symp. on Foundations of Computer Science, 1990.

[26] W. Savitch. Relationship between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4:177-192, 1970.

[27] G Senizergues. The equivalence problem for deterministic pushdown automata is
decidable. volume 1256 of Lecture Notes in Computer Science, pages 671-681.
Springer, 1997.

[28] M. Singh. Semantical considerations on workflows: An algebra for intertask
dependencies. In Proc. Workshop on Database Programming Languages (DBPL),
1995.

[29] W. M. P. van der Aalst. On the automatic generation of workflow processes based on
product structures. Computer in Industry, 39(2):97-111, 1999.

23

