
Decompositional Algorithms for Safety Verification and
Testing of Aspect-Oriented Systems

�

Cheng Li and Zhe Dang
���

School of Electrical Engineering and Computer Science
Washington State University, Pullman, WA 99164, USA

Abstract. To efficiently solve safety verification and testing problems for an
aspect-oriented system, we use multitape automata to model aspects and pro-
pose algorithms for the aspect-oriented system specified by a number of primary
labeled transition systems (some of them are black-boxes) and aspects. Our al-
gorithms combine automata manipulations over the aspects and primary systems
with black-box testing over each individual black-box, but without generating the
woven system.

1 Introduction

Aspect-oriented Programming (AOP) [1] has been considered among “ten emerging ar-
eas of technology that will soon have a profound impact on the economy and on how
we live and work” [14]. In a software system, a concern is understood as a property
of interest. Separation of concerns has long been regarded as a main principle in soft-
ware engineering. A concern can be implemented as a component (if it can be cleanly
encapsulated in a generalized procedure or object) or as a cross-cutting aspect (if other-
wise; e.g., a security aspect interleaved with several components) [1]. In AOP, primary
systems can be woven with aspects into woven systems – final executables – by aspect
weavers. This process is called weaving, which has provided a new way to compose
a complex system, whose reusability, extensibility and adaptability may also be in-
creased. The successes of AOP at the code level (e.g., AspectJ [2]) have also inspired
researchers to study methodologies in aspect-oriented design that bring in cross-cutting
concerns even at earlier software development stages [9, 10, 8, 12, 3, 4].

Despite its convenience in addressing cross-cutting concerns, introducing aspects
into a system on the other hand raises a quality assurance issue in the woven system:
how to assure that a collection of aspects really add the functionality they are sup-
posed to, and moreover, do not invalidate desirable properties of the primary system
to which the aspects are woven? That is, we would like to assure that aspects perform
their intended behavioral modifications over the primary system without producing any
undesirable side effects. Theoretically, it is clear that, once a primary system is given,
a well-specified aspect (we assume that the aspect “knows” how to weave) will give us
a construction on the woven system. Therefore, the quality assurance problem is essen-
tially a verification problem and verification techniques like model checking [5] can be
applied on the woven system directly. However, this direct approach has serious issues:
�

The work was supported in part by NSF Grant CCF-0430531.
���

Corresponding author (zdang@eecs.wsu.edu)

– Before the model-checking starts on the woven system, one has to wait till the
woven system is constructed. But when the model-checking actually starts, the state
space in the woven system may have already exploded, in particular when nested
weaving is involved.

– When the primary system contains components that are black-boxes (such as a
COTS component, whose source code or design details are unavailable), a woven
system may not even be available.

To address the issues, in this paper, we study fundamental algorithms that are possible
to verify/test an aspect-oriented system or design, but without weaving (i.e., without
constructing the woven system).

In our study, a system or design is modeled as a labeled transition system. An as-
pect is a multitape automaton, or more precisely, the tuple language accepted by the au-
tomaton. It characterizes how behaviors of several primary systems can be woven into
a behavior of the woven system. We then define an aspect-oriented system

�
as a tree

whose leaves are primary systems and nonterminal nodes are aspects. As defined in the
paper, the woven system, also denoted by

�
, can be constructed through automata ma-

nipulations (assuming that the automata for the aspects as well as the primary systems
are of finite-state). We study the safety verification problem as follows: Given a regular
set ����� (of event sequences), whether the woven system has a behavior in ����� . Our
safety verification algorithm is a top-down and then bottom-up process that explores the
structure of the tree

�
(using automata manipulations), during which a regular �������
	��

is calculated and updated for each node. Once any one of these ������
	�� s becomes empty,
the algorithm halts. Our algorithm makes it possible to obtain the answer to the safety
verification problem before the entire tree is explored. We also study the safety testing
problem which is exactly the same as the safety verification problem, except that one
or more of the primary systems are black-boxes. Our safety testing algorithm explores
the structure of the tree

�
and makes use of the white-box primary systems as well as

the test results of those black-boxes that have been tested in the algorithm. Then, the
algorithm computes, through automata manipulations, a ������
	�� for the black-box that
is about to test. This �������
	�� has the following property: a behavior of the black-box that
is not in the �������
	�� can not cause the woven system

�
to have a behavior in the given

����� . Hence, this �������
	�� can be used to further eliminate the unnecessary tests that
would otherwise be tested on the black-box. The algorithm selects and performs tests
for each of the black-boxes in this way. The algorithm halts when one of these ������
	�� s
becomes empty. Therefore, essentially, our safety testing algorithm is decompositional
and dynamic: tests run on a black-box are tailored to the specific safety testing problem
instance of

�
. Furthermore, tests performed over a black-box will be used later in the

algorithm to further trim away unnecessary tests performed over other black-boxes.

2 Related Work

Recently, a significant amount of papers have been published to address the modeling
and verification problems of aspect-oriented systems.

In [18, 16], model-checking has been used to verify aspect-oriented systems at the
source code level by extracting finite-state designs. Unfortunately, such an approach

may cause false negatives on the verification results. References [9, 10, 8, 12, 3] extend
the UML (Unified Modeling Language) to support aspect-oriented design, where the
primary system and aspects can be woven at the design level. However, since the seman-
tics of UML is not formal in general, the woven design can not be faithfully verified. To
address the issue, some researchers seek to translate a subclass of aspect-oriented UML
to a formal specification language associated with a formal analysis tool. For instance,
in [4], performance is modeled as an aspect using aspect-oriented UML which is trans-
lated into Rapide ADL [15] to evaluate if the woven system satisfies a time-response
requirement. Reference [17] adapts a role-based aspect-oriented modeling method for
aspect-oriented UML design and uses Alloy, a lightweight formal specification lan-
guage and analysis tool, to verify the woven system. However, as pointed out by au-
thors, the translation from UML to Alloy was done manually and only worked for some
special cases.

Our approach is totally different from all approaches we mentioned above. Our
safety verification and testing algorithms verify and test aspect-oriented systems with-
out constructing the actual woven systems. We also believe that our formal approach
of using multitape automata and their manipulations in studying verification problems
of aspect-oriented systems is also new: this approach will also make research results
that are already established in automata theory be available in analyzing aspects and
aspect-oriented systems, e.g., aspects that are of infinite-state.

Our algorithms are also related to our decompositional testing algorithms [6] for
concurrent systems containing black-box components. In these latter algorithms which
are inspired by the decompositional verification ideas by Giannakopoulou et. al.[7], test
sequences are generated and run on a concurrent component that are customized to
its specific deployment environment. Since blackbox testing (instead of verification) is
used in [6], unlike the framework in [7], the testing algorithms in [6] does not require
a complete specification about a component to be incorporated into the concurrent sys-
tem. On the other hand, we study decompositional testing algorithms for aspect-oriented
systems in this paper instead of concurrent systems in [6].

3 Systems, Transactions, and Aspects

In this paper, a system � is a (nondeterministic) labeled transition system, where its
labels, called (external) events, are drawn from a given finite alphabet � . Formally,
� �������
	������������� where � is a (not necessarily finite) set of states (with 	������
being the initial state) and ������������� �"!$#%�&�'� defines transitions, each of which
is in the form of ��	(� �)��	�*+� , for some 	(�
	,*&� � and ���-�.�/�"!$# , indicating that state
	 transits to state 	�* while event � is observed (when � �0! (i.e., � is silent), nothing
is observed). Therefore, when � runs by following the state transitions, one observes
a sequence of events, i.e., a word 1 in �32 . Formally, an execution of � is, for some4 , a sequence ��	 � � �65%�
	"5��7�8	%5,� �:9;��	9�<�$=7=$=7�$��	7>(?@5%� �:>A�
	7>6� of transitions in � , which starts
from the initial state 	$� . A word 1 is a behavior of � if, for some execution of � shown
above, 1 is � 5 =7=$= � > (after ignoring all the silent events in � 5 =7=$= � >). In particular, when
the word ends with a special event BC�'� , its is called a valid transaction of � . Notice
that the special symbol is an indication of the end of a transaction and, moreover, there

could be multiple appearances of B ’s before the last appearance of B in the transaction.
As usual, we use � ����� to denote the set of all transactions of � .

The events in � serves as the interface of � . Even though � can be an infinite-state
system (i.e., the state set � is infinite), its behaviors over the interface could be simple;
e.g., � ����� forms a regular language (such a view of interface automata is studied in
[11]). Clearly, when � is a finite-state system (i.e., the state set � is finite), � ����� has
to be a regular language.

Labeled transition systems � are a popular abstract representation of a software
system and its design. In case when the transition graph � of � is unknown (but its
interface � is known), � is considered as a black-box. In this paper, we assume that
the black-box can be tested. That is, there is a procedure �������	�:������1 � that returns a
definite (yes/no) answer on whether 1 is a transaction of � . In automata theory, this
is called membership testing; i.e., whether 1.�
� ����� . Clearly, in order for one to im-
plement the procedure �������� , a number of requirements of � must be met (e.g., one
needs to distinguish input events and output events in � , one might want to assume that
� is input deterministic, � has an implementation to run, etc.; see [13] for a compre-
hensive survey on black-box testing). For ease of presentation, we simply assume that
the black-box � has already met all the necessary requirements such that the black-box
testing procedure �������	� does exist and is given. As we all know, black-box testing can
even run on infinite-state systems.

An important class of verification queries, called the safety verification problem, is
as follows:

Given: a system � and a set ����� � � 2 ,
Question: � ������� � ��� ��� ?

In above, ������� � 2 specifies a set of bad transactions that are not supposed to be the
transactions of � . Clearly, a negative answer to the Question indicates an error in the
system with respect to its requirement specified as “no � ��� transactions”. Automata-
theoretic model-checking techniques can be used to solve the safety verification prob-
lem when both � and ����� are in certain restricted forms. In particular, when � is a
finite-state system and ����� is a regular set, the problem can be solved.

When � is a black-box, the safety verification problem can not be solved in gen-
eral. In this case, black-box testing can be used to obtain an inconclusive answer as
follows. We assume that a procedure �������������:��������� is given which returns a set
of words. Each word 1 that is in the set and in ����� is then run on the testing proce-
dure ��������� ��� 1 � . If one of such 1 is successful (i.e., ��������;������1 � returns “yes”),
then a negative answer to the Question in the safety verification problem is identified.
Otherwise, the answer is inconclusive. The set of tests that ������������� generates has
to be finite (patience of a test engineer is practically bounded). In practice, it is still
an ongoing research issue in Software Engineering on how to define an “adequate”
������������� , in particular when � is a grey-box (with partial information on its transi-
tion graph known). Nevertheless, in this paper, we assume that such a �����������	��� exists
and given (e.g., a straightforward version of �����������	��� is to return the set of all words
in � 2 whose length are not longer than 40).

Before we proceed further, we present a simple banking system (modified from
[12]) shown in Figure 1, which will be used throughout this paper. With this simple

banking system, a customer can open and close a bank account. With a bank ac-
count, the customer can login to the system and perform a number of atomic accesses
on the bank account, then logout the system. An atomic access can be any one of
withdraw, deposit or getBlance on the account. According to Figure 1,

open � deposit � getBlance � logout ��B

is a valid transaction: the customer opens an account and deposits some money on
the account, then getBlance of the new created account before logout. However,

open � withdraw � getBlance � logout ��B

is not valid transaction: the figure specifies that any costumer should deposit some cash
to the account first, before withdrawing from the account.

getBalance

depositopen ��� ������

���
logout

��� ��	close

withdraw,

login

deposit,

Fig. 1. A simple banking system

In aspect-oriented software development, an aspect can be understood as a structural
transformer (e.g., a program transformer in AspectJ) or a behavioral transformer (a
relation between event sequences). We use the latter understanding in this paper and
thus an aspect is called a behavioral aspect. The semantics of the aspect, which is
specified by the relation, is independent of the syntax (i.e., the transition graph) and
the semantics (i.e., the behaviors) of a primary system � . Therefore, even without the
primary system � , one can still design an aspect. Also, it guarantees that the semantics
of the woven system does not change whenever the semantics of the primary system
does not change. In the following, we will present a formal definition of an aspect,
which can be applied to several primary systems (e.g., “interleaving” can be considered
as an aspect that weaves two systems into one where the two systems run concurrently).

Formally, a
�

-ary behavioral aspect � is a relation � � ���32$�� � � 2 , which
specifies how to weave

�
primary behaviors into a woven behavior. Let � 5,�7=$=7=7���

be labeled transition systems over events � . The set of woven transactions, written
� � � ��� 57�<�$=7=7=$� � ��� ��� , is the set of all words 1 B such that there are transactions
1&5"B �7=$=7=���1 B in � ��� 5��<�7=$=7=$� � � � � , respectively, satisfying �81 5$B �$=7=7=7� 1 B � 1 B ���� . To further abuse the notation, we simply use � � � 5��7=$=7=���� � to denote the set.
For a given behavioral aspect � , a weaving function is a function ��� � � 5 �$=7=$=��
� �
that maps from � 5 �7=$=7=$�
� (called primary systems) to some system � , called a wo-
ven system, such that � ����� ��� ��� 5 �$=7=7=$�
� � . Notice that, even though a behavioral
aspect is independent of the transition graphs of the primary systems, as an exercise in

computability theory, one can show that a computable weaving function always exists
and can be constructed for a given recursively enumerable behavioral aspect, when the
primary systems are given as Turing machines (or any other universal computing de-
vices). That is, the existence of such a computable weaving function tells us that, in
the most general sense, a woven system can be constructed automatically from primary
systems using a behavioral aspect.

4 Finite-state Behavioral Aspects and Weaving

We now study finite-state behavioral aspects that are tuple languages accepted by multi-
tape finite automata. A (nondeterministic) multitape finite automaton consists of a finite
control and 4 (for some 4) input tapes. Each tape has a one-way and read-only head.
The automaton starts in its initial state with all the heads on the leftmost cells of their
tapes. Each transition is of the form �8	(� � 5%�$=7=7=$� �(>A���A� where 	 and � are states and
� 5,�7=$=7=7� �(> are symbols (in � �'�%!7#). On firing the transition, the automaton can, when
in state 	 , for each � , read ��� from the � -th tape, and enter state � . The automaton accepts
the tuple of 4 input strings if each head reaches the right end of its tape while entering a
designated final state. It is known that multitape finite automata are essentially different
from (one-tape) NFA; e.g., the equivalence problem (whether two automata accept the
same language) is undecidable for multitape finite automata.

A
�

-ary behavioral aspect � is of finite-state if there is a � ����� � -tape finite automa-
ton � such that � equals the � �	�
� � -tuple language accepted by � . In this case, we
sometimes abuse the � as the � .

Now let us go back to the simple banking system example. As the simple banking
system evolves, the requirement changes. Developers might be asked to add a new fea-
ture to the system: Every atomic access to an account should be logged by recording
the name of the accessing customer and the type of the access in a log file. This logging
feature is a typical example of a crosscutting concern, which can not be easily repre-
sented in an object-oriented design as it interleaves the same feature into every atomic
access in the original simple banking system. Adding such a feature is best supported
by aspect-oriented software development. In this example, we use a logging aspect
to implement this feature.

(� ,log)

� � � �

(getBalance,getBalance),

(withdraw.withdraw),
(deposit,deposit)

(open,open),

(close,close),
(login,login),
(logout,logout)

(,)

Fig. 2. The logging aspect modeled as a two-tape finite automaton

The logging aspect is quite simple. Figure 2 shows how the logging aspect
can be modeled as a deterministic two-tape automaton � . � has two states � � and � 5
and two transitions between them. For transition from � � to � 5 , the two tapes of � read
same input; for the transition from � 5 to � � , the first tape reads nothing and the second
tape reads log as input. As a result, whenever there is an atomic access in primary
behavior, there is a same atomic access appended by a log event in woven behavior.
It should be noticed that our logging aspect does not log the events open, close,
login, logout since they are not atomic accesses. Therefore, the aforementioned
primary behavior open � deposit � getBlance � logout �<B becomes the following
woven behavior after weaving the logging aspect and the simple banking system:
open � deposit � log � getBlance � log � logout ��B . Indeed, the logging aspect
defines a relationship between the behavior of a primary system and the behavior of a
woven system.

Let � be a
�

-ary finite-state behavioral aspect and � 5 �$=7=$=7�
� be finite-state sys-
tems. In this case, a woven system � � � � � � 5 �$=7=$=��
� � can be constructed as
follows (sketch). � is a finite automaton that simulates the multitape automaton � .
During the simulation, the tape contents of the first

�
tapes in � are guessed and also

run over the systems � 5 �$=7=7=7�
� , respectively. The content of the last tape in � is fed
by the input tape content of � itself. � accepts when � accepts. It can be shown that,
in worst case, the size (state number) of the woven system is ����� ��� =�� � 5 ��=7=$=�� � � � .
Apply the weaving process to the simple banking system in Figure 1 and the logging
aspect in Figure 2, the woven system is shown in Figure 3.

����� � � ����� � � ����� � �

� � � � �

����� � � close

� 	 � � �

login

deposit,
withdraw,
getBalancedepositopen � ��� � �

log

logout

Fig. 3. The simple banking system woven with the logging aspect

5 Safety Verification and Testing of Aspect-Oriented Systems

At the heart of aspect-oriented software development methodology, aspects are used
along with multiple primary systems to construct a final woven system through (nested)
weaving. One can raise the same safety verification problem for the woven system.
However, one of the difficulties now is how to deal with the case when some of the
primary systems are black-boxes (a white-box can also be marked as a black-box when
its behaviors are hard to analyze; e.g., some infinite-state systems.). Our solution is a
decompositional algorithm that combines model-checking with black-box testing. Be-

fore we proceed further, we first formally define aspect-oriented systems. To simplify
our presentation (but WLOG), we assume that a behavioral aspect is 2-ary.

Let � 5 �$=7=7=7�
� > be some given primary systems, and � 5 �$=7=7=7� ��� be some given
(2-ary) behavioral aspects. An aspect-oriented system

�
is a binary tree

�
where each

node is either a leaf or a nonterminal node (with two children). There are 4 leaves in�
, which are labeled with � 5%�7=$=7=$�
� > , respectively. Each nonterminal node is labeled

with an aspect � � for some
��� � ���

. Notice that distinct nonterminal nodes could
have the same label. For a nonterminal node � , we use �	�
 	�� � and �� � ����� � to indicate its
left and right children, respectively. The semantics of the aspect-oriented system

�
is

defined recursively as follows. We associate a system ��� to each node � in
�

. When �
is a leaf, ��� is simply the system � � originally labeled on � . Then, recursively, when �
is a nonterminal node, ��� is the woven system � � ������� ����� �<������� ! ��"$# � � , where � is the
behavioral aspect originally labeled on � . The final woven system of

�
is then specified

by the woven system associated with the root node ��%�% � ; i.e., �&!(')'*� . Sometimes, we
simply use

�
itself to indicate the ��!(')'*� . Figure 4 (a) shows an

�
with four primary

systems and three aspects.

5.1 Safety Verification Algorithm for Aspect-Oriented Systems

The safety verification problem for aspect-oriented systems is to decide whether an
aspect-oriented system

�
has a bad transaction in a given regular set � ��� ; i.e., � � � � �

����� � ��+ . Suppose that all the primary systems � 5%�$=7=$=��
� > as well as all the be-
havioral aspects � 5 �$=7=$=7� �,� in

�
are of finite-state. To solve the problem, a naive

approach would be to construct the final woven system
�

(which is still a finite-state
system) directly and then use this

�
to check against the emptiness of � � � � � ����� .

However, there is an issue with this approach. Calculating the final woven system
�

is
expensive: in worst case, the size of the woven system is ���.- >�/ > � where - is a state
number bound for the primary systems � 5 �7=7=$=��
� > , and / is a state number bound for
the aspects � 5 �7=$=7=�� ��� . But the real issue is that one has to perform such an expensive
calculation before the verification result on the emptiness of � � � � � ����� could be ob-
tained (whose time complexity is ���0- >�/ > � ��132$4 � � where � ��132$4 � is the size of a finite
automaton accepting �����). Therefore, it is desirable to design a verification algorithm
where the verification result can be established earlier (e.g., before the entire woven
system

�
is calculated) whenever it is possible. To this end, we present a safety veri-

fication algorithm verifyAOS(
�

, �����). For each node � in the tree
�

, the algorithm

Algorithm 1 verifyAOS(
�

, �����)
1: initialize(5 , 687:9)
2: checkNode(; <=<=>)
3: return “no” // 5 does have 687:9 transactions

maintains and updates a set, denoted by �	� �������
	�� , which is always a regular set in ��2 .
Initially (line 1), only the set in the root node, �?%�% �@� �������
	�� , is set to be the given � ��� ;
the sets in other nodes are all � 2 . Then (line 2), the algorithm updates all the �������
	�� s

in the tree starting from the root, during which the main algorithm verifyAOS(
�

, �����)
could halt with “yes” (i.e.,

�
does not have � ��� transactions) returned (otherwise, as

in line 3, “no” is returned).
We now explain the procedure checkNode(��%�% �) in line 2 in a little more detail.

For each node � starting from the root, it “projects” its current �	� ������� 	 � down to its
left child; i.e., � ��
 	�� � �@� �������
	�� is set to be

�������	��
�
� ��� �<� 2 �)�	� �������
	�� � , where � is the

aspect that � is labeled with. 1 Similarly, � also projects �	� ������� 	 � down to its right
child. In case when � is a leaf, it intersects its current �� �������
	�� with the transaction
set of the system � that � is labeled with and obtains a new �	� �������
	�� . Then, for each
nonterminal node � (from the lowest level up to the root), the procedure will project the
new ������� 	 � s of � ’s children up to � itself; i.e.,

�� �������
	������ �������	��
�
� � � ��
 	�� � �@� ������� 	 �<�"� �� � ����� � �$� �������
	��<���(�

It shall be noticed that, during the procedure, once a ������� 	 � becomes empty (this could
happen at an earlier stage of the execution), we can conclude that

�
does not have � ���

transactions – no further execution of the algorithm is necessary. In the following, we
present the recursive procedure checkNode(NODE �):

Procedure 2 checkNode (NODE �)
1: if � is a leaf then
2: � be the primary system that � is labeled with
3: ��� � 7:9����(>�� !��� �)7 9����(>#"%$�&'�)(
4: if ��� �)7 9����(> is empty then
5: return “yes” // 5 does not have 687 9 transactions
6: exit // the main algorithm verifyAOS halts
7: end if
8: else
9: let * be the aspect that � is labeled with

10: &+��� ,-�/.�>	(�� � 7:9����(>�� 10�2	3/46587�9�:;&+<>=�?A@B=C��� � 7:9����@>D(
11: &+��� ;�E+F�G�>D(�� � 7:9����@>H� 10I2	34C5�7�9 : &'? @ =D<>=	��� �)7 9����(>	(
12: checkNode(�J� ,K��.�>)
13: checkNode(�J� ;/E+F�G�>)
14: ��� � 7:9����(>�� 10�2	3/46587�9 : &D&+��� ,-�/.�>	(�� � 7:9����(>�=L&+��� ;/E+F�G�>	(�� � 7:9����(>�=6<M(
15: if ��� � 7:9����(> is empty then
16: return “yes” and exit
17: end if
18: end if

Due to space limitation, we omit the correctness proof of the algorithm. Notice that,
in our algorithm presentation, set operations, such as emptiness testing, intersection,
and

�������	��
L� � , are used. In fact, one can use finite automata to represent ������� 	 � s and
multitape finite automata to represent aspects � . It should be straightforward that all

1 For a 2-ary aspect * , and sets N and O , we define 0�2	3/46587�98:;&+<>=DNP=DOQ(to be the set of all RTS
such that there are UVSXWYN and Z>S[WYO satisfying UVS and Z>S can be woven into R\S using
* ; i.e., &+RTSQ=CU]SA=^Z>S_(`Wa* . Accordingly, 0I2	34C5�7�9 : &+NP=D<>=COA(and 0�2	3/46587�9 : &+NP=DOb=D<c(can be
defined.

these set operations can be implemented using the corresponding automata manipula-
tions. One can also prove that, in worst case, the time complexity of our algorithm is
��� � � 12=4 � = - > = / > = � � 12=4 � > = / >�� ��� > � , comparing to the naive algorithm’s time
complexity ��� � ��132$4 �:= - > = / > � mentioned earlier. Notice that - (the state number
in primary systems) is the dominate parameter which is usually � all the other param-
eters (specifications for � ��� and for aspects are typically simple and 4 is also small).
So, as long as -�� the slow down factor � ��12$4 � > = / >�� ���6> , our algorithm’s worst-case
time complexity is the same as the naive one, not to mention the additional benefit of
possible earlier termination when worst-cases do not happen.

5.2 Safety Testing Algorithm for Aspect-Oriented Systems

When some of the primary systems are black-boxes (whose state number could be in-
finite), the safety testing problem for

�
is exactly the safety verification problem for

�

in which each black-boxes � is replaced with a finite-state system � * whose trans-
actions are exactly those in �����������	���� ������� . We shall emphasize that, even though
�������������:�����<��� could return a huge set of tests (such as strings on � not longer
than 40), the safety testing problem is to seek a definite yes/no answer. In this case,
one would follow the naive approach by first testing each black-box � using the tests
generated from �������������:��������� and then replacing the � with a system whose be-
havior is exactly those successful tests. However, exhaustive testing of the entire test set
�������������:�����<��� is not feasible. It is desirable to have an algorithm using the tree

�

as well as the set ����� to trim the test set �����������	���;�����<��� before actual tests are run
on the � (i.e., tests on a black-box are tailored to the specific safety testing problem
of

�
). Furthermore, successful tests themselves are valuable information on the actual

behavior of � . This information should be used to further trim away unnecessary tests
performed over other black-boxes. To this end, we propose a safety testing algorithm
testAOS(

�
, �����) as follows:

Algorithm 3 testAOS(
�

, � ���)
1: initialize(5 , 687:9)
2: trim(;=< <$>)
3: for each leaf node � labeled with a black box do
4: propagate(; <=<$>)
5: test(�)
6: trim(;=< <$>)
7: end for
8: return “no”

Each node � in
�

is associated with �	� �������
	�� , �	� �
 ��� (which is 1,� � � 	 or �@
 �
	 �), and
Boolean value �� � � ����� 	 � . Initially (line 1), only the set in the root node, ��%�% �@� �������
	�� ,
is set to be the given ����� ; the sets in other nodes are all �32 . Also, for each leaf node
� , if it is labeled by a black-box then its flag is �@
 �
	 � else the flag is 1,� � � 	 . The rest of
initialize(

�
, � ���) in line 1 is to run init(��%�% �), which is defined recursively in Procedure

4.

Procedure 4 init(Node �)
1: if ��� �)7 9����(> is empty then
2: return “yes” and exit //the main algorithm testAOS halts
3: end if
4: if � is a leaf with a R G E >D� flag then
5: let � be the primary system that � is labeled with
6: ��� � 7:9����(>�� !��� �)7 9����(>J" $�&'�)(
7: if ��� �)7 9����(> is empty then
8: return “yes” and exit
9: end if

10: set ��� ��� 9�7�>D�@9 to be � ;/�]�
11: else
12: let * be the aspect that � is labeled with
13: &+��� ,-�/.�>	(�� � 7:9����(>b� 0I2	34C587�9 : &+<�=�? @ =D��� � 7:9����(>	(
14: &+��� ;�E+F�G�>D(�� � 7:9����@>`� 0�2	34C587�9 : &'? @ =D<�=D��� � 7:9����(>	(
15: init(��� ,-�/.�>)
16: init(��� ;/E�F�G >)
17: set ��� ��� 9�7�>D�@9 to be � 7�,��L�
18: if each of � ’s two children has a R G E >D� flag then
19: set the flag of � to be R G E >D�
20: else
21: set the flag of � to be ��, 7��	�
22: end if
23: end if

Procedure 5 trim(Node �)
1: if � is not a leaf then
2: trim(��� ,-�/.�>)
3: trim(��� ;/E+F�G�>)
4: end if
5: if � has at least a child whose ��� 9�7�>C�$9 is � ;/�]� then
6: let * be the aspect that � is labeled with
7: ��� � 7:9����(>;� 0I2	34C587�98:;&D&+��� ,-�/.�>D(�� �)7:9��I�(>�=8&+��� ;/E�F�G >	(�� � 7:9����(>�=C<c(
8: if ��� �)7 9����(> is empty then
9: return “yes” and exit

10: end if
11: set ��� ��� 9�7�>D�@9 to be � ;/�]�
12: if each of � ’s two children has a R G E >D� flag then
13: delete these two children (so � is a leaf now)
14: end if
15: end if

Roughly speaking, init(��%�% �) recursively “projects down” the � ��� set to the ������
	��
of each nonterminal node and leaf, much the same as checkNode(��%�% �) does in veri-
fyAOS. When a leaf is a 1,� � � 	 primary system � , an updated ������� 	 � is calculated
by intersecting it with � ����� . Additionally, for a �@
 �
	 � node, all its ancestors are also
flagged �@
 �
	 � .

In line 2 of testAOS, trim(��%�% �) “projects up” all the “updated” �������
	�� s at leaf
nodes to all their ancestors by updating the ancestors’ ������� 	 � s. In the mean time, a
1,� � � 	 node becomes a 1,� � � 	 leaf (i.e., children are trimmed away) whenever the chil-
dren are also 1,� � � 	 nodes. The procedure is presented in Procedure 5.

Now, the for-loop of testAOS (lines 4,5,6) is to test each black-box primary system
one by one. Suppose that we are currently processing black-box � that is labeled on
some leaf node � . We first use propagate(��%�% �) in line 4 to “project down” the updated
�������
	�� of the root all the way to every black-box which then obtains a new (and smaller)
�������
	�� . Later in line 5, the black-box � at node � is tested using tests that are in both
�������������:�����<��� and the new �	� �������
	�� . All the successful tests are collected and
form the “updated” �	� �������
	�� now. At this time, the black-box node � is flagged 1,� � � 	
(the black-box � is finished processing). Finally in line 6, this newly added 1,� � � 	
node � and the test results (recorded in the “updated” �	� ������� 	 �) are used to “trim” the
tree (as well as update all the �������
	�� s of its ancestors). When the for-loop continues,
the next black-box picked will again first “propagate” the root’s updated �������
	�� (as a
result of the previous black-box’s test results), and so on. Details of propagate(��%�% �)
and test(�) are shown in Procedures 6 and 7.

Procedure 6 propagate(Node �)
1: if ��� �)7 9����(> is empty then
2: return “yes” and exit
3: end if
4: set ��� ��� 9�7�>D�@9 to be � 7>, ��
5: if � is not a leaf and ��� ,-�/.�> has a ��, 7��	� flag then
6: &+��� ,-�/.�>	(�� �)7 9����(>;� 0I2	34C5�7�9 : &+<�=�? @ =D��� �)7 9����(>	("H&+�J� ,K��.�>D(�� � 7:9����@>
7: propagate(��� ,-�/.�>)
8: end if
9: if � is not a leaf and ��� ;�E+F�G�> has a �8,�7 � � flag then

10: &+��� ;�E+F�G�>D(�� � 7:9����@>`� 0�2	34C587�9 : &'? @ =D<�=D��� � 7:9����(>	("H&+��� ;/E�F�G >	(�� � 7:9����(>
11: propagate(��� ;�E+F�G�>)
12: end if

Figure 4 shows an example execution of the safety testing algorithm �����	� ����� over the
aspect-oriented system

�
shown in Figure 4 (a), where � 5%��� 9������,�
��� are primary

systems (in which ��9 and ��� are black-boxes), and � 5 , � 9 , �	� are behavioral aspects.
At any time when the algorithm ����� �
��� runs, if the ������� 	 � at some node be-

comes empty, then the algorithm halts and return a “yes” answer to the safety testing
problem. When this happens before any black-box primary system is tested, we simply
do not need test any black-box at all for the safety testing problem. When this happens
after some black-boxes have already been tested, all the remaining black-boxes are not

�

�

� �
� �

� � � �

� �

� �

� �

� �

� �

� �

� �
������	�
�

���
�

�	��
�	��� ����

�����

�	���

� �

� �
� �

� �
� �

� �
� �

� �
� �� �

� �

� �

� �

� � � �

� �
� �

� �
� �

� �

� �
� �

� �
� �

� �
� �

� �

� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �

� �
��

�

�

�
�

�
�

��

�
�

�
��

�

�

� �

�

�

� �

�

�

Fig. 4. An example run of safety testing algorithm �����������! over the aspect-oriented system in
(a). The black boxes �#" and �%$ are lightly shaded and (the root node labeled with aspect) *'& is
associated with a �)7:9��I�(> initially being the regular set 687:9 . In the sequel, each �)7:9��I�(> at a node
is simply denoted by a special symbol (in the figure. &+�8(the result of running init(* &) at line
1 of �)�*�������� . Each non-root node is associated with a (using Project operations. When the
node is a white-box node, i.e. �+& or �-, , its (is further ��� 9�7:>C�@9 by (�"P� , which is denoted
as (/. . The flag (i.e., in the figure, a shaded/clear circle corresponds to a ��, 7��	� / R G E >D� flag) of
each nonterminal node is set according to the flags of the two children. &��8(The result of running
trim(*0&) at line 2 of �����������! . The (of each node is updated to (1. using Project operations
if one of the children is associated with (2. . In our example, since �-, was associated with (1. in
(b), the (of the parent * , is therefore updated to (. . Similarly, the (of * " as well as * & is also
updated to (. . & 9�(The result of running propagate(* &) at line 4 of �����������! . From &��L(, a new
(is associated with the root *0& , then all shaded nodes (flagged with ��, 7��	�) are associated with
new (’s recursively using Project operations starting from the root *3& . In this step, ��� 9�7�>D�@9 is
reset to � 7�,��L� in all nodes; i.e., all updated (. is renamed as un-updated (. &��/(The result of
running test(� ") at line 5 of �����������! . Through testing, the black-box � " is associated with
an updated (. and its flag is set to R G E >D� (�4" , after testing, is a white-box now). &'.](trim(*0&)
again at line 6 of �����������! . Notice that the flags of *5, ’s children (�#" and �-,) are both R G E >D�
now. In this case, both children are deleted from the tree after (of * , is updated. &-F>(Repeat
procedures from 9 to . (i.e., the for-loop in �����������!) until all the black-boxes are tested.

Procedure 7 test(Node �)
1: let � be the black-box primary system labeled on leaf �
2: for each test R\S in GenTests(� =�?) "��J� �)7:9��I�(> do
3: run black-box testing BTest(� =CRTS)
4: end for
5: set ��� � 7:9����@> to be the set all successful tests R\S
6: set the flag of � to be R\G E >C�
7: set ��� ��� 9�7�>D�@9 to be � ;/�]�

needed to test. Also in the algorithm, procedures trim(��%�% �) and propagate(��%�% �) work
together to make sure that, after a black-box is tested, the test results (the successful
tests) are used to create a smaller test set for each of the remaining black-boxes yet to
be tested.

Again, due to space limitation, the correctness prove of the algorithm is omitted.
Similarly, in the algorithm, all the set operations can be implemented through automata
manipulations. It is hard to conduct a precise complexity analysis for the safety testing
algorithm, since the test results for a black-box affect the test sets that will be run over
the other black-boxes. At least when there is no black-box, ����� �
��� does not perform
worse than � ��� ����� �
��� . It is reasonable to assume that black-box testing is expensive,
in particular when one exhaustively runs every test from a huge (e.g.,

�	� 9 � in [6]) test
set generated from ������������� . The saved testing time resulted from eliminating a large
number of unnecessary tests from the test set would well make up the overhead of cal-
culating the unnecessary tests using our algorithm ������ �
��� . For instance, concurrent
composition (through interleaving) can be considered as a concurrency aspect (though
it is very special). The case-study performed in [6] is a very special case of our safety
testing algorithm that runs over one white-box and three black-boxes and with only one
4-ary concurrency aspect (which is the root). The case-study shows that a huge test set
with

�	� 9 � tests is reduced into a set with
�
���

tests after removing all unnecessary tests.
On the other hand, state-space explosion seems unavoidable when a even larger test set
is selected. In that case-study, automata manipulations (for the concurrency aspect and
tests results) failed to complete. We would anticipate similar experimental results for
our safety testing algorithm ����	� �
��� .

6 Conclusions

In this paper, we use multitape automata to model aspects and study verification and
testing algorithms for an aspect-oriented system specified by a number of primary la-
beled transition systems (some of them are black-boxes) and aspects. Our algorithms
combine automata manipulations with black-box testing over each individual black-
box, but without generating the woven system.

In a forthcoming paper, we are going to implement the algorithms and perform case-
studies in order to justify the real-world efficiency of the algorithms. The authors thank
Anneliese Andrews and Curtis Dyreson for discussions.

References

1. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented Programming. In ECOOP’97, LNCS 1241, pages 220–242, Springer, 1997.

2. R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming. Manning Publica-
tions Co., 2003.

3. E. Barra, G. Gnova, and J. Llorens. An Approach to Aspect Modeling with UML 2.0. In 5th
AOSD Modeling With UML Workshop, San Francisco, California, USA, October 2004.

4. K. Cooper, L. Dai and Y. Deng. Modeling Performance as an Aspect: a UML Based Ap-
proach. In 4th AOSD Modeling With UML Workshop, San Francisco, California, USA, Oc-
tober 2003.

5. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 1999.
6. G. Xie and Z. Dang. Testing Systems of Concurrent Black-boxes: a Decompositional Ap-

proach. In FATES’05, LNCS 3997, pages 170–189, Springer, 2006.
7. D. Giannakopoulou, C. Pasareanu, and H. Barringer. Assumption Generation for Software

Component Verification. In ASE’02, IEEE Computer Society, 2002.
8. M. E. Fayad and A. Ranganath. Modeling Aspects using Software Stability and UML. In

4th AOSD Modeling With UML Workshop, San Francisco, California, USA, October 2003.
9. R. France, I. Ray, G. Georg, and S. Ghosh. An Aspect-Oriented Approach to Early Design

Modeling. IEE Proceedings - Software, 151(4):173–185, 2004.
10. I. Hammouda, M. Pussinen, M. Katara, and T. Mikkonen. UML-based Approach for Doc-

umenting and Specializing Frameworks Using Patterns and Concern Architectures, In 4th
AOSD Modeling With UML Workshop, San Francisco, California, USA, October 2003.

11. L. Alfaro and T. A. Henzinger. Interface Automata. In FSE’01, pages 109–120, ACM Press,
2001.

12. M. M. Kande, J. Kienzle, and A. Strohmeier. From AOP to UML - a Bottom-up Approach. In
3rd AOSD Modeling With UML Workshop, San Francisco, California, USA, October 2002.

13. D. Lee, M. Yannakakis. Principles and Methods of Testing Finite State Machines - a Survey.
Proceedings of the IEEE 84(8):1090-1126, 1996.

14. http://www.globalfuture.com/mit-trends2001.htm
15. http://pavg.stanford.edu/rapide/rapide-pubs.html
16. M. Sihman and S. Katz. Model Checking Applications of Aspects and Superimpositions. In

FOAL’03, Boston, Massachusetts, USA, March 2003.
17. S. Nakajima and T. Tamai. Lightweight Formal Analysis of Aspect-Oriented Models. In 5th

AOSD Modeling With UML Workshop, San Francisco, California, USA, October 2004.
18. N. Ubayashi and T. Tamai. Aspect-oriented Programming with Model Checking. In

AOSD’02, Enschede, The Netherlands, April 2002.

