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Abstract. We introduce real-counter automata, which are two-way finite au-
tomata augmented with counters that take real values. In contrast to traditional
word automata that accept sequences of symbols, real-counter automata accept
real words that are bounded and closed real intervals delimited by a finite number
of markers. We study the membership and emptiness problems for one-way/two-
way real-counter automata as well as those automata further augmented with other
unbounded storage devices such as integer-counters and pushdown stacks.

1 Introduction

An automaton is a finite-state language acceptor, that is possibly augmented with other
unbounded storage devices like counters, stacks, and queues. Decision problems like
membership and emptiness have been extensively studied in automata theory in the past
50 years. The membership problem is to decide whether a given word is accepted by
an automaton, while the emptiness problem is to decide whether the language accepted
by an automaton is empty. Studies on the decision problems have been one of the fo-
cuses in automata theory and have already benefited almost every area in computer
science, including model-checking [7, 26] that seeks (semi-) automatic procedures to
check whether a system design satisfies its requirements. Algorithmic solutions to de-
cision problems like emptiness for various classes of automata (e.g., finite automata,
Buchi automata, tree automata, pushdown automata, etc.) have become part of the the-
oretical foundation of model-checking finite-state/infinite-state systems. For instance,
it is known that various model-checking problems such as LTL model-checking over
finite-state transition systems and reachability for some infinite-state transition systems
can be reduced to various emptiness problems (e.g., [26, 10]). Still, practitioners in
formal specification/verification keep challenging automata theorists with new models
emerging from verification applications. Some of the models, however, have not been
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well-studied in traditional automata theory. A typical example concerns the theory and
fundamental verification techniques for analyzing hybrid transition systems containing
both real variables (e.g., to model time, water level, etc.) and other unbounded discrete
data structures (e.g., to model the number of times a request is sent, the call stack of a
recursive process, etc.). To this end, in this paper, we study real-counter automata which
contain counters that take real values.

In contrast to a traditional word automaton, a two-way real-counter automaton works
on a real word provided on the input tape.A real word is a bounded and closed real interval
(like [0,10]), in which the two end points and a finite number of other given (intermediate)
points are called markers. Each marker as well as each segment between two consecutive
markers is labeled with a color drawn from a finite color set. The automaton scans through
the input real word in a two-way fashion, and can distinguish whether the current read
head is over a marker or within a segment. The automaton can also recognize the color of
the corresponding marker/segment. During the scan, each real-counter stays unchanged
or is incremented/decremented (according to the instruction that is being executed) for
an amount equal to the “distance” the head moves. The automaton can also test a real-
counter against 0.

In this paper, we focus on membership and emptiness problems for two-way real-
counter automata (R-2NCMs), In general, these problems are undecidable, since R-
2NCMs automata have Turing computing power. Therefore, we study some restrictions
that can be applied to the model to obtain decidable membership/emptiness problems.
For instance, we show decidability for R-2NFAs (i.e., R-2NCMs that do not have
real-counters). Another restriction is reversal-boundedness: a real-counter is reversal-
bounded (r.b. for short) if the counter changes modes between nondecreasing and non-
increasing for at most a fixed number of times during any computation. We use r.b.
R-2NCMs to denote R-2NCMs where each real-counter is reversal-bounded. We show
that the membership problem for r.b. R-2NCMs is decidable, while the emptiness prob-
lem is undecidable. The latter undecidability remains even when the input real-words
have only k markers, for a fixed k. We also study the decision problems for various
versions of one-way real-counter automata. In particular, we study one-way/two-way
real-counter automata that are further augmented with other unbounded discrete stor-
ages like integer-counters and/or a pushdown stack. Some of our decidability results
make use of mixed linear constraints over both integer variables and real variables and
the concept of mixed semilinearity over a language of real words. The concept gener-
alizes the traditional notion of semilinearity [23] over a language of words. This makes
it convenient for us to study various classes of one-way/two-way real-counter automata
that have a mixed accepting condition which is a Boolean combination of mixed linear
constraints over real-counters and integer-counters.

The rest of the paper is organized as follows. Section 2 defines basic notations and
introduces some known results on integer-counter automata. Section 3 studies the mem-
bership and emptiness problems for two-way real-counter automata. Section 4 presents
decidability results on one-way real-counter automata, also further augmented with
integer-counters and a pushdown stack. Section 5 is a brief conclusion, also outlining
possible applications of the real counter model to the verification of classes of hybrid
systems.
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2 Preliminaries

Letm andnbe nonnegative integers. Consider formulaΣ1≤i≤maixi+Σ1≤j≤nbjyj ∼ c,
where each xi is a real variable, each yj is an integer variable, each ai, each bj and c are
integers, 1 ≤ i ≤ m, 1 ≤ j ≤ n, and ∼ is =, >, or ≡d for some integer d > 0. The
formula is a mixed linear constraint if ∼ is = or >. The formula is called a real linear
constraint if ∼ is = or > and each bj = 0, 1 ≤ j ≤ n. The formula is called a discrete
linear constraint if ∼ is> and each ai = 0, 1 ≤ i ≤ m. The formula is called a discrete
mod constraint, if each ai = 0, 1 ≤ i ≤ m, and ∼ is ≡d for some integer d > 0.

A formula is a mixed (resp. real, Presburger) formula if it is the result of applying
quantification (∃) and Boolean operations (¬ and ∧) over mixed (resp. real, discrete)
linear constraints. It is decidable whether the formula is satisfiable. It is well-known
that a Presburger formula can be written (i.e., Skolemized) as a disjunctive normal form
of discrete linear constraints and discrete mod constraints. It is also known that a real
formula can be written as a disjunctive normal form of real linear constraints. >From the
results in [27], a mixed formula can also be written as a disjunctive normal form of real
linear constraints, discrete linear constraints, and discrete mod constraints, when a real
variable is separated into an integral part and a fractional part. We use N (resp. R) to
denote the set of nonnegative integers (resp. nonnegative reals). A subset S of Rm ×Nn

(resp. Rm, Nn) is definable by a mixed (resp. real, Presburger) formula P if S is exactly
the solution set of the formula (i.e., P (v) iff v ∈ S, for all v).

It is well-known that a finite automaton augmented with two integer-counters (each
integer-counter can store a nonnegative integer and can independently be incremented
or decremented by 1 and tested against 0), called a two-counter machine, is equivalent
to a Turing machine [20]. Therefore, in order to obtain some decidable results, we
need to restrict the behavior of an integer-counter. One such restriction is to make an
integer-counter reversal-bounded [17]: there is a nonnegative integer r such that in
any computation, each integer-counter can change mode between nondecreasing and
nonincreasing for at most r times.

We will use the following notations: a DFA (resp. NFA) is a deterministic (resp.
nondeterministic) finite automaton with a one-way input tape; a DCM (resp. NCM) is
a DFA (resp. NFA) augmented with multiple integer-counters; DPDA (resp. NPDA)
is a deterministic (resp. nondeterministic) pushdown automaton with a one-way input
tape; DPCM (resp. NPCM) is a DPDA (resp. NPDA) augmented with multiple integer-
counters. 2DFA, 2NFA, 2NCM, 2NPCM, ... will denote the variants with a two-way
input tape. A two-way model is finite-crossing if there is a nonnegative integer k such
that in any computation, the read head crosses the boundary between any two adjacent
cells of the input tape no more than k times.

We use reversal-bounded NCM (resp. NPCM, 2NCM, 2NPCM, etc) to denote an
NCM (resp. NPCM, 2NCM, 2NPCM, etc) where the integer-counters are reversal-
bounded. Many classes of machines with reversal-bounded integer-counters have nice
decidable properties (see, e.g., [17, 18, 13]), and the languages accepted by some of
the one-way variants have the so-called semilinear property, which have been useful in
showing that various verification problems concerning infinite-state systems are decid-
able [10, 9, 11, 14, 12, 24].
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Recall the definition of semilinear sets. A set S ⊆ Nn is a linear set if there exist
vectors v0, v1, . . . , vt in Nn such that S = {v | v = v0 + a1v1 + · · · + atvt, ai ∈ N}.
A set S ⊆ Nn is semilinear if it is a finite union of linear sets. It is known that S is
a semilinear set if and only if it is definable by a Presburger formula. Therefore, the
emptiness, containment, and equivalence problems for semilinear sets are decidable.

Let Σ = {a1, a2, . . . , an} be an alphabet. For each word w in Σ∗, define the Parikh
map of w to be ψ(w) = (#a1(w), ...,#an

(w)), where each #ai
(x) is the number

of occurrences of ai in w. For a language L ⊆ Σ∗, the Parikh map of L is ψ(L) =
{ψ(w) | w ∈ L}. We say that a class L of languages over Σ is semilinear (or have the
semilinear property) if for every languageL in L, ψ(L) is a semilinear set. Many classes
of languages are known to be semilinear; e.g., regular languages, context-free languages,
etc. The following theorem summarizes what is known about language acceptors with
reversal-bounded integer-counters.

Theorem 1

1. Languages accepted by r.b. NCMs, r.b. NPCMs, and r.b. finite crossing 2NCMs are
effectively semilinear [17]. Hence, their emptiness problem is decidable.

2. The emptiness problem for r.b. 2DCMs is undecidable, even when there are only two
reversal-bounded integer-counters and the input comes from a bounded language
(i.e., from a∗

1...a
∗
n for some fixed n and distinct symbols a1, ..., an) [17].

3. The emptiness problem for r.b. 2DCMs with only one reversal-bounded integer-
counter is decidable [18].

4. The emptiness problem for r.b. 2NCMs with only one reversal-bounded integer-
counter and with the input coming from a bounded language is decidable [13]. (The
case when the input is unrestricted is open.)

The language acceptors mentioned so far work on words (i.e., sequences of symbols).
In this paper, we will study language acceptors that work on real words, where each
“symbol" is a real line segment.

3 Two-Way Real-Counter Automata

Let A0, · · · , Ak be k + 1 real numbers with 0 = A0 < · · · < Ak for some k. We use

W = 〈A0, · · · , Ak〉 (1)

to denote the real line between A0 and Ak (i.e., the set {x : A0 ≤ x ≤ Ak}) asso-
ciated with markers A0, · · · , Ak. In W , A0 (resp. Ak) is called the left (resp. right)
end marker, and each Ai (1 ≤ i < k) is called an internal marker. Each open in-
terval Si = (Ai, Ai+1), 0 ≤ i < k, is called a segment with length Ai+1 − Ai. Let
C = {c1, · · · , cm} be a nonempty and finite set of colors. W is a real word if each
segment and each marker is associated with a color in C, written

〈A0, c
0〉〈S0, d

0〉 · · · 〈Ak−1, c
k−1〉〈Sk−1, d

k−1〉〈Ak, c
k〉, (2)

where each ci (0 ≤ i ≤ k) is the color of markerAi, and each di (0 ≤ i < k) is the color
of segment Si. We use color(W ) ∈ C∗ to denote the sequence c0d0 · · · ck−1dk−1ck of
colors in W . For the real word W and a color c,
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– markerc(W ) is the number of markers in W with color c;
– segc(W ) is the number of segments in W with color c;
– lenc(W ) is the total length of segments in W with color c.

The Parikh map of W is the following vector Parikh(W ) in Nm × Nm × Rm:

(markerc1(W ), · · · , markercm(W ), segc1
(W ), · · · , segcm

(W ), lenc1(W ), · · · , lencm(W ))

A real language L is a set of real words. The Parikh map of L is defined to be
Parikh(L) = {Parikh(W ) : W ∈ L}. We say that L is a mixed semilinear language
if Parikh(L) is definable by a mixed formula.

Before we proceed further, some more definitions are needed. We use color(L) to
denote the set {color(W ) : W ∈ L}. Let L be a family of languages, e.g., regular,
context-free (accepted by NPDA), context-sensitive, 2NPDA languages, etc. L is an L
real language if color(L) is an L language over alphabet C and, for any real word W ,
only color(W ) decides the membership of W in L (the length of each segment in W
does not matter); i.e., W ∈ L iff color(W ) ∈ color(L). A homomorphism h is a pair
of mappings hmarker, hseg : C → C. We use h(W ) to denote the real word obtained
from W by modifying the color c of each marker (resp. segment) into hmarker(c) (resp.
hseg(c)). We use h(L) to denote the set {h(W ) : W ∈ L}. L is commutative if,
for any W , only Parikh(W ) decides the membership of W in L; i.e., W ∈ L iff
Parikh(W ) ∈ Parikh(L). A real word W is uniform if segments sharing the same
color have the same length. We use uniform(L) to denote all uniform W ∈ L. The
following results can be shown easily.

Theorem 2. (1). Let L be a family of semilinear languages (e.g., regular, context-free,
languages accepted by NFAs augmented with reversal-bounded integer-counters, etc.).
Then L real languages are mixed semilinear languages. (2). Let h be a homomorphism.
If L is a mixed semilinear language, then so is h(L). (3). Let L1 and L2 be two mixed
semilinear languages. IfL2 is commutative, thenL1 ∩L2 is also a mixed semilinear lan-
guage. (4). IfL is a commutative and mixed semilinear language, then so is uniform(L).
In fact, both of them share the same Parikh map.

A two-way nondeterministic finite automaton over real words (R-2NFA), M, con-
sists of a finite number of states, a two-way read head, and an input tape that stores a
real word in (1). When M is about to make a move, it “knows" the current state. Addi-
tionally, even though M does not know the exact position of the head, it knows whether
the head is right over a marker or is located within a segment, as well as the color of the
corresponding marker or segment. A move makes use of what M knows and switches
M’s state, moves the head to the right or to the left (depending on the instruction of
the move) for some distance and stops at a neighboring marker or within the current
segment. Formally, an R-2NFA M is defined as a tuple 〈C,Q, q0, F, T 〉, where C is
the color set mentioned earlier, Q is the set of states in M, q0 is the initial state, and F
is the set of accepting states. The finite set T specifies the transitions or instructions in
M, where each transition is in the form 〈q, a, c,m, q′〉, where:

– q, q′ ∈ Q indicates that, after firing the transition, the state is switched from q to q′;
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– a ∈ {Marker, Segment} indicates whether the current position of the head is right
over a marker or within a segment;

– c ∈ C indicates the color of the corresponding marker or segment;
– m ∈ {Left Marker, Right Marker, Left Segment, Right Segment, Stay} in-

dicates how the head is going to move after firing the transition:
• when m = Stay, the head does not move;
• when a = Marker and m = Left Segment (resp. m = Right Segment), the

head moves into the closest segment to the left (resp. to the right);
• when a = Segment and m = Left Segment (resp. m = Right Segment),

the head moves within the current segment to the left (resp. to the right);
• when a = Segment and m = Left Marker (resp. m = Right Marker), the

head moves right over the closest marker to the left (resp. to the right).

At any moment when M is running, if M tries to move beyond the left end marker
or beyond the right end marker, M crashes.

The semantics of M is defined as follows. A configuration is a triple (W, q, x)
consisting of an (input) real word W , a state q, and a nonnegative real x indicating the
position of the head (i.e., the distance between the left end marker of W and the head).
Clearly, when the configuration is given, one can figure out, from the values of internal
markers given in W , whether the head is over a marker or located within a segment,
as well as the color (also given in W ) of the corresponding marker or segment. Let

t = 〈q, a, c,m, q′〉 be a transition in T . The one-step transition relation
t→ of t is defined

as follows: (W, q, x) t→ (W, q̂, x̂) iff all of the following conditions are satisfied:

– q̂ = q′;
– Suppose that W is in the form of (1) for some k. One of the following two items is

true:
• for some 0 ≤ i ≤ k, x = Ai (i.e., the current head is over the markerAi). Then
a = Marker and c is exactly the color of the marker. Additionally, one of the
following is true:

∗ m = Stay and x̂ = x (i.e., the head does not move);
∗ m = Left Segment. In this case, i > 0, and Ai−1 < x̂ < Ai. That is, the

current marker is not the left end marker and the new position of the head
is within the segment (Ai−1, Ai);

∗ m = Right Segment. In this case, i < k, and Ai < x̂ < Ai+1. That is,
the new position of the head is within the segment (Ai, Ai+1);

• for some 0 ≤ i < k, Ai < x < Ai+1 (i.e., the current head is within segment
(Ai, Ai+1)). Then a = Segment and c is exactly the color of the segment.
Additionally, one of the following is true:

∗ m = Stay and x̂ = x (i.e., the head does not move);
∗ m = Left Segment. In this case, Ai < x̂ < Ai+1 and x̂ < x. That is, the

head moves to the left but still within the same segment;
∗ m = Right Segment. In this case, Ai < x̂ < Ai+1 and x̂ > x. That is,

the head moves to the right but still within the same segment;
∗ m = Left Marker. In this case, x̂ = Ai. That is, the head moves to the

left marker of the segment;
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∗ m = Right Marker. In this case, x̂ = Ai+1. That is, the head moves to
the right marker of the segment.

A run τ on input real word W is a sequence of one-step transitions, for some n,

(W, q1, x1) t1→ (W, q2, x2) t2→ · · · tn−1

→ (W, qn, xn).

The run is an accepting run if (W, q1, x1) is the initial configuration (i.e., q1 = q0
and x1 = A0 = 0) and (W, qn, xn) is an accepting configuration (i.e, qn ∈ F and the
head position xn is over the right end marker of W ). W is accepted by M if M has an
accepting run on input W . We use L(M) to denote all the real words accepted by M.
M is an R-NFA if the input tape is one-way; i.e, M does not move to the left during
any run. One can show,

Theorem 3. R-2NFAs as well as R-NFAs accept exactly regular real languages.

Similarly, one can generalize R-2NFAs and R-NFAs to R-2NPDAs and R-NPDAs
(where a pushdown stack is operated along the moves in R-2NFAs and R-NFAs).

Corollary 1. R-2NPDAs accept exactly 2NPDA real languages, and R-NPDAs accept
exactly context-free real languages.

Remark 1. Completely in parallel to NFAs, one can show that decision problems like
membership, emptiness, containment, complement, equivalence, universe, are all de-
cidable for R-2NFAs as well as R-NFAs. Similarly, membership and emptiness are
decidable for R-NPDAs.

A (free) real-counter is a nonnegative real variable that can be incremented, decre-
mented by some real amount and can be tested against zero. The counter is reversal-
bounded if it changes mode between nondecreasing and nonincreasing for a bounded
number of times. A two-way nondeterministic real-counter automaton with real input
(R-2NCM) M is an R-2NFA augmented with a number of real-counters. That is, each
instruction in the R-2NFA is augmented with an enabling condition and a flow. The en-
abling condition compares real-counters to 0; e.g., x1 > 0 ∧ x2 = 0. The flow specifies
whether a real-counter is incremented, decremented, or staying unchanged. The incre-
ment/decrement amount for each real-counter is exactly the same as the head position
change after running the instruction in the R-2NFA. M crashes whenever a real-counter
becomes negative. Without loss of generality, we assume that when M accepts on an
accepting state, the read head is at the right end marker and all the real-counters are zero.
One can show that,

Theorem 4. The membership problem as well as the emptiness problem for R-2NCMs
is undecidable. The undecidability remains even when the R-2NCMs contain 2 real-
counters and work on input real words with only one segment.

Remark 2. It is open whether the membership/emptiness problems become decidable
when the R-2NCMs contain only one real-counter. This is in contrast to the fact that
the membership problem for 2NCMs containing only one integer-counter is decidable
while the emptiness problem is undecidable.
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From Theorem 4 and Remark 2, it is necessary for us to restrict the behavior of an
R-2NCM M in order to obtain some decidable decision problems. One such restriction
is to consider r.b. R-2NCMs by making each real-counter in M reversal-bounded. We
say that the input real words are k-bounded if they contain at most k segments. One can
show,

Theorem 5. The emptiness problem for r.b. R-2NCMs is undecidable. The undecidabil-
ity remains even when the R-2NCMs work on k-bounded input real words for some fixed
k.

It is open whether the emptiness problem for r.b. R-2NCMs becomes decidable
when the R-2NCMs contain only one reversal-bounded real-counter. However, we can
show that the emptiness problem is decidable when the r.b. real-counter makes only one
reversal.

Theorem 6. The emptiness problem for r.b.R-2NCMs is decidable when theR-2NCMs
contain only one reversal-bounded real-counter that makes only one reversal.

Let L be a real language consisting of all the reals words with exactly two segments
such that: the length of the first segment divided by the length of the second segment
results in an integer. Clearly, L is not a mixed semilinear language. However, one can
easily construct an automaton in Theorem 6 accepting L. Therefore, the automata in the
theorem can accept languages that are not mixed semilinear.

Membership for R-2NCM is decidable, while emptiness is not. We say that a r.b.
R-2NCM is with mixed accepting condition if at the end of an accepting run, the r.b.
real-counters satisfy a given mixed formula (instead of returning to 0).

Theorem 7. The membership problem for r.b. R-2NCMs is decidable, even for r.b. R-
2NCMs with a mixed accepting condition.

While by Theorem 5, emptiness is in general undecidable for r.b. R-2NCMs, using
Theorem 7, one can show that the emptiness problem for r.b. R-2NCMs is decidable
when the R-2NCMs work on input real words with only one segment.

Theorem 8. The emptiness problem for r.b.R-2NCMs is decidable when theR-2NCMs
work on input real words with only one segment.

Remark 3. According to Remark 2, we do not know whether Theorem 7 still holds when
the r.b. R-2NCMs are further augmented with a free real-counter that is not necessarily
reversal-bounded.

4 One-Way Real-Counter Automata

The real-counter automata discussed in Section 3 are equipped with a two-way input
tape. Studies in classic automata theory have shown that many decision problems be-
come decidable when a one-way (instead of two-way) input tape is considered. In this
section, we use R-NCM to denote an R-2NCM M that does not move to the left dur-
ing any computation (i.e., the input tape is one-way). We first show that in general the
membership/emptiness problems for R-NCMs are undecidable.
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Theorem 9. The membership problem as well as the emptiness problem for R-NCMs
is undecidable. The undecidability remains even when the R-NCMs contain four real-
counters and work on input real words with only one segment.

From Theorem 9, it is necessary to consider whether the emptiness problem becomes
decidable when the real-counters in the R-NCMs are reversal-bounded.

Theorem 10. Languages accepted by r.b. R-NCMs augmented with a free real-counter
are mixed semilinear. Hence, the emptiness problem for the R-NCMs is decidable. The
decidability remains even when the R-NCMs are with a mixed accepting condition.

A R-2NCM M is finite-crossing if there is a fixed constant k such that during any
run of M on any input, the read head never crosses a point within the input real word
for more than k times.

Theorem 11. Languages accepted by finite-crossing r.b. R-2NCMs are mixed semilin-
ear. Hence, the emptiness problem for finite-crossing r.b. R-2NCMs is decidable. The
decidability remains even when the R-NCMs are with a mixed accepting condition.

Remark 4. We do not know whether Theorem 11 still holds when the R-2NCMs are
further augmented with a free real-counter. Additionally, the results in Theorems 10 and
11 become undecidable when the input real words are uniform (segments with the same
color share the same length). The proof can be easily obtained following the proof of
Theorem 5.

A real-counter automaton can be further augmented with unbounded discrete stor-
age devices such as integer-counters, a pushdown stack, etc. In such an augmented
automaton, instructions can be added, each of which performs a state transition and an
integer-counter/stack operation while keeping other real-counters and the read head un-
changed. However, decidable results are hard to obtain for two-way automata equipped
with integer-counters.

Theorem 12. (1). The emptiness problem for R-2NFAs augmented with one integer-
counter is undecidable. The undecidability therefore remains if one replaces the integer-
counter with a pushdown stack. (2). The emptiness problem for R-2NFAs augmented
with two reversal-bounded integer-counters is undecidable.

By restricting the input real word to the R-2NFAs to be bounded, we can show:

Theorem 13. The emptiness problem for R-2NFAs augmented with a pushdown stack
and a number of reversal-bounded integer-counters is decidable when the R-2NFAs
operate on a bounded language.

Currently, we do not know whether the decidability remains in Theorem 13 when
the R-2NFAs are further augmented with a (reversal-bounded) real-counter. Turning to
the case of one-way input, we can generalize Theorem 10 as follows.

Theorem 14. (1). Languages accepted by r.b. R-NCMs augmented with r.b. integer-
counters are mixed semilinear. Hence, the emptiness problem for R-NCMs is decidable.
The decidability remains when the R-NCMs are with a mixed accepting condition over
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Table 1. Main decidability results (U=undecidable, D = decidable, Emp. = Emptiness, Mem.=
Membership)

r.b.R-2NCM r.b.R-NCM R-2NFA R-2NCM R-NCM

Emp.

U (also with bounded
input words). D with
one-segment words or
with finite-crossing or
with only 1 rb counter
making at most one
reversal

D (also with one
free real counter
and a mixed
accepting
condition)

D. U with one free
integer-counter or with 2
rb integer counters, but
D on bounded languages
also with a stack and rb
integer counters

U
(already
with 2
free
counters
and one-
segment
words)

U
(already
with 4
free
counters
and one-
segment
words)

Mem.
D (also with a mixed
accepting condition)

D also with r.b.
integer counters
and one
pushdown stack

D

the real-counters and the integer-counters. (2). The membership problem for r.b. R-
2NCMs augmented with reversal-bounded integer-counters and a pushdown stack is
decidable. The decidability remains when the R-2NCMs are with a mixed accepting
condition over the real-counters and the integer-counters. (3). The emptiness problem
for r.b. R-NCMs augmented with a free real-counter, reversal-bounded integer-counters
and a pushdown stack is decidable.

Remark 5. Theorem 14(1) can be generalized to finite-crossing R-2NCMs. Also, as in
Remark 4, the results in Theorem 14 become undecidable when the input real words are
uniform. The proof can also be easily followed from the proof of Theorem 5.

Theorem 14 (2) is interesting, since it entails the decidability of emptiness for R-
NFAs augmented with a free real-counter and a free integer-counter. This is in contrast
to the undecidability result when the real-counter is replaced with an integer-counter.

5 Conclusions

In this paper, we introduced real-counter automata, which are two-way finite automata
augmented with counters that take real values. In contrast to traditional word automata
that accept sequences of symbols, real-counter automata accept real words that are
bounded and closed real intervals delimited by a finite number of markers. We studied
the membership and emptiness problems for one-way/two-way real-counter automata as
well as those automata further augmented with other unbounded storage devices such as
integer-counters and pushdown stacks. The main results are summarized in the following
table.

Results obtained in the previous sections can be useful in the area of formal ver-
ification, in particular for hybrid systems that contain operations on both continuous
variables and discrete variables. The model itself may not be suitable for directly mod-
eling hybrid systems. However, a different approach may be followed, by using the real
counter model to study properties of hybrid systems.
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Our results on real-counter automata may be used to investigate reachability prob-
lems for a class of finite-state programs augmented with real-counters. Such a program
is capable of incrementing/decrementing the real-counters synchronously (for the same
amount that is nondeterministically chosen) and comparing a real-counter with an in-
teger constant. For instance, let P be a finite-state program containing a real-counter
x and an integer-counter y. An instruction in P , besides its state transition, can incre-
ment/decrement x by some (nondeterministically chosen) amount. An instruction can
also increment/decrement y by 1. Additionally, both x and y can be tested against a
given integer constant. This program may model a discrete controller regulating one
continuous, bounded physical variable (such as the water level in a reservoir) monitored
only at discrete steps and measured with finite precision. The exact law governing the
real variable may not be known. The difference between the measured value and the
actual value may be considered as a noise, potentially disrupting system behavior.

The following reachability problem may be shown to be decidable: starting from a
given state in P with both counters are 0, can P reach a designated state during which x
is always bounded between two constants (e.g., 0 and 10), and when the designated state
is reached, a linear constraint such as 2x−3y+4z > 5∧3x+y > 6z is satisfied? Here
z denotes the total amount of increments made to the real-counter x. The decidability
derives immediately from one of the results in the paper, namely the decidability of
the membership problem for r.b. R-2NCMs, with a mixed linear accepting condition,
augmented with additional reversal-bounded integer-counters and a pushdown stack.

Our model of real-counter automata and the decidability results are new and are
related to but disjoint with the existing results on hybrid automata. The above decidability
result cannot be obtained from existing results on computing transitive closures for a
restricted class of hybrid systems (e.g., [25, 5, 15, 8]). The decidability does not follow
from decidable models of hybrid automata [1, 16] either. For instance, some decidable
results exist for restricted hybrid automata (see, e.g., timed automata [2], some multirate
automata [1, 21], initialized rectangular automata [22], etc.). However, modeling the
amount z in the above reachability problem (recall that the z stands for the total amount
of increments made to the real-counter x) would require a stop-watch like variable. But
even under a simple set-up, it is known that timed automata augmented with one stop-
watch [22] is already undecidable. The decidable reachability cannot be derived from our
recent results [28] on a different model, called dense-counter machines, of real-counter
programs. In a dense-counter machine, each counter can be incremented/decremented
by 1 or some amount between 0 and 1. Additionally, the counter can be tested against 0.
The main result in [28] shows a decidable case of a dense-counter machine, which is not
strong enough to show the decidable reachability in the above mentioned example: the
real-counter x in the example can be compared to an integer constant (while in a dense-
counter machine, only comparisons to 0 are possible), and moreover the integer-counter
y is not allowed in a dense-counter machine.

Future work will be devoted to better understanding the applicability of real-counter
automata, and their relation with more established timed models, such as the timed
languages of [4] (also in the two-way version of [3]) and the data languages of [6], and
with decidable classes of hybrid systems, such as the Integration Graphs of [19].
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