
A Solvable Class of Quadratic Diophantine
Equations with Applications to Verification of

Infinite-State Systems

Gaoyan Xie1, Zhe Dang1�, and Oscar H. Ibarra2��

1 School of Electrical Engineering and Computer Science
Washington State University
Pullman, WA 99164, USA

2 Department of Computer Science
University of California

Santa Barbara, CA 93106, USA

Abstract. A k-system consists of k quadratic Diophantine equations
over nonnegative integer variables s1, ..., sm, t1, ..., tn of the form:∑

1≤j≤l

B1j(t1, ..., tn)A1j(s1, ..., sm) = C1(s1, ..., sm)

...∑

1≤j≤l

Bkj(t1, ..., tn)Akj(s1, ..., sm) = Ck(s1, ..., sm)

where l, n, m are positive integers, the B’s are nonnegative linear polyno-
mials over t1, ..., tn (i.e., they are of the form b0 + b1t1 + ...+ bntn, where
each bi is a nonnegative integer), and the A’s and C’s are nonnegative
linear polynomials over s1, ..., sm. We show that it is decidable to deter-
mine, given any 2-system, whether it has a solution in s1, ..., sm, t1, ..., tn,
and give applications of this result to some interesting problems in veri-
fication of infinite-state systems. The general problem is undecidable; in
fact, there is a fixed k > 2 for which the k-system problem is undecid-
able. However, certain special cases are decidable and these, too, have
applications to verification.

1 Introduction

During the past decade, there has been significant progress in automated verifi-
cation techniques for finite-state systems. One such technique is model-checking
[5,19] that explores the state space of a finite-state system and checks that a
desired temporal property is satisfied. Model-checkers like SMV [13] and SPIN
[10] have been successful in many industrial-level applications. The successes
have greatly inspired researchers to develop automatic techniques for analyzing
infinite-state systems (such as systems that contain integer variables and pa-
rameters). However, in general, it is not possible to develop such techniques,
� Corresponding author (zdang@eecs.wsu.edu).

�� The research of Oscar H. Ibarra has been supported in part by NSF Grants IIS-
0101134 and CCR02-08595.

J.C.M. Baeten et al. (Eds.): ICALP 2003, LNCS 2719, pp. 668–680, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

A Solvable Class of Quadratic Diophantine Equations 669

e.g., it is not possible to (automatically) verify whether an arithmetic program
with two integer variables is going to halt [17]. Therefore, an important aspect
of the research on infinite-state system verification is to identify what kinds of
practically useful infinite-state models are decidable with respect to a particular
form of properties (e.g., reachability).

In this paper, we look at a class of infinite-state systems that contain pa-
rameterized or unspecified constants. For instance, consider a nondeterministic
finite state machine M . Each transition in M is assigned a label. On firing the
transition s →a s′ from state s to state s′ with label a, an activity a is per-
formed. There are finitely many labels a1, . . ., al in M . M can be used to model,
among others, a finite state process where an execution of the process corre-
sponds to an execution path (e.g., s0 →a0

s1 →a1
. . . →ar

sr+1, for some r) in
M . On the path, a sequence of activities a0. . .ar are performed. Let Σ1, . . ., Σk

be any k sets (not necessarily disjoint) of labels. An activity a is of type i if
a ∈ Σi. An activity could have multiple types. Additionally, activities a1, . . ., al

are associated with weights w1, . . ., wl that are unspecified (or parameterized)
constants in N, respectively. Depending on the various application domains, the
weight of an activity can be interpreted as, e.g., the time in seconds, the bytes of
memory, or the budget in dollars, etc., needed to complete the activity. A type
of activities is useful to model a “cluster” of activities. When executing M , we
use nonnegative integer variables Wi to denote the accumulated weight of all
the activities of type i performed so far, 1 ≤ i ≤ k. One verification question
concerns reachability:

(*) whether, for some values of the parameterized constants w1, . . ., wl,
there is an execution path from a given state to another on which
w1, . . ., wl,W1, . . .,Wk satisfy a given Presburger formula P (a Boolean
combination of linear constraints and congruences).

One can easily find applications for the verification problem. For instance, con-
sider a packet-based network switch that uses a scheduling discipline to de-
cide the order in which the packets from different incoming connections c1, ..., cl
are serviced (visited). Suppose that each connection ci is assigned a weight wi,
1 ≤ i ≤ l, and each time when a connection is serviced (visited), the number
of packets serviced from that connection is in proportion to its weight. But in
this switch we have two outgoing connections (two servers in the “queue theory”
jargon) o1 and o2 each of which serves a set of incoming connections C1 and
C2 respectively (C1 ∪C2 = {c1, ..., cl}). The scheduling discipline for this switch
can be modeled as a finite state system. If we take the event that an incoming
connection is serviced by a specific server as an activity, then the weight of the
activity could be the number of packets served that is in proportion to the weight
of the incoming connection. Thus W1 and W2 could be used to denote the total
amount (accumulated weights) of packets served by the two servers respectively.
Later in the paper, we shall see how to model a fairness property using (*).

In this paper, we study the verification problem in (*) and its variants. First,
we show that the problem is undecidable, in general. Then, we consider various
restricted as well as modified cases in which the problem becomes decidable.

670 G. Xie, Z. Dang, and O.H. Ibarra

For instance, if P in (*) has only one linear constraint that contains some of
W1, . . .,Wk, then the problem is decidable. Also, rather surprisingly, if in the
problem in (*) we assume that the weight of each activity ai can be nondeter-
ministically chosen as any value between a concrete constant (such as 5) and a
parameterized constant wi, then it becomes decidable. We also consider cases
when the transition system is augmented with other unbounded data structures,
such as a pushdown stack, dense clocks, and other restricted counters.

In the heart of our decidability proofs, we first show that some special classes
of systems of quadratic Diophantine equations/inequalities are decidable (though
in general, these systems are undecidable [16]). This nonlinear Diophantine ap-
proach towards verification problems is significantly different from many ex-
isting techniques for analyzing infinite-state systems (e.g., automata-theoretic
techniques in [14,3,7] , computing closures for Presburger transition systems [6,
4], etc.). Then, we study a more general version of the verification problem by
considering weighted semilinear languages in which a symbol is associated with
a weight. Using the decidability results on the restricted classes of quadratic
Diophantine systems, we show that various verification problems concerning
weighted semilinear languages are decidable. Finally, as applications, we “re-
interpret” the decidability results for weighted semilinear languages into the
results for some classes of machine models, whose behaviors (e.g., languages
accepted, reachability sets, etc) are known to be semilinear, augmented with
weighted activities.

Adding weighted activities to a transition system can be found, for instance,
in [15]. In that paper, a “price” is associated with a control state in a timed au-
tomaton [2]. The price may be very complex; e.g., linear in other clock values etc.
In general, the reachability problem for priced timed automata is undecidable
[15]. Here, we are mainly interested in the decidable cases of the problem: what
kind of “prices” (i.e., weights) can be placed such that some verification queries
are still decidable, for transition systems like pushdown automata, restricted
counter machines, etc., in addition to timed automata.

The paper is organized as follows. In the next section, we present the decid-
ability results for the satisfiability problem of two special classes of quadratic
Diophantine systems (Lemma 2 and Theorem 1). Then in Section 3, we gener-
alize the verification problem in (*) in terms of weighted semilinear languages,
and reduce the problem and its restricted versions to the classes of quadratic
Diophantine systems studied in Section 2. In Section 4, we discuss the applica-
tion aspects and extensions of the decidability results to other machine models.
Due to space limitation, some of the proofs are omitted in the paper. The full
version of the paper is accessible at www.eecs.wsu.edu/˜zdang.

2 Preliminaries

Let N be the set of nonnegative integers and let x1, . . ., xn be n variables over
N. A linear constraint is defined as a1x1 + . . . + anxn > b, where a1, . . ., an

and b are integers. A congruence is xi ≡b c, where 1 ≤ i ≤ n, and b �= 0, 0 ≤

A Solvable Class of Quadratic Diophantine Equations 671

c < b. A Presburger formula is a Boolean combination of linear constraints and
congruences using ∨ and ¬. Notice that, here, Presburger formulas are defined
over nonnegative integer variables (instead of integer variables). It is well known
that Presburger formulas are closed under quantifications (∀ and ∃).

A subset S of Nn is a linear set if there exist vectors v0, v1, . . ., vt in Nn such
that S = {v|v = v0 + b1v1 + . . . + btvt, bi ∈ N}. The set S is a semilinear set
if it is a finite union of linear sets. It is well known that S is semilinear iff S
is Presburger definable (i.e., there is a Presburger formula P such that P (v) iff
v ∈ S).

A linear polynomial is a polynomial of the form a0 + a1x1 + ...+ anxn where
each coefficient ai, 0 ≤ i ≤ n, is an integer. The polynomial is constant if each
ai = 0, 1 ≤ i ≤ n. The polynomial is nonnegative if each ai, 0 ≤ i ≤ n, is in N.
The polynomial is positive if it is nonnegative and a0 > 0. A variable appears in
a linear polynomial iff its coefficient in that polynomial is nonzero. The following
result is needed in the paper.

Lemma 1. It is decidable whether an equation of the following form has a so-
lution in nonnegative integer variables s1, . . ., sm, t1, . . ., tn:

L0 + L1t1 + . . .+ Lntn = 0 (1)

where L0, L1, . . ., Ln are linear polynomials over s1, . . ., sm. The decidability re-
mains even when the solution is restricted to satisfy a given Presburger formula
P over s1, . . ., sm.

Proof. The first part of the lemma has already been proved in [8], while the
second part is shown below using a “semilinear transform”. As we mentioned
earlier, the set of all (s1, . . ., sm) ∈ Nm satisfying P is a semilinear set (i.e.,
a finite union of linear sets). For each linear set of P , one can find nonnega-
tive integer variables u1, . . ., uk for some k and a nonnegative linear polynomial
pi(u1, . . ., uk) for each 1 ≤ i ≤ m such that (s1, . . ., sm) is in the linear set iff
each si = pi(u1, . . ., uk), for some u1, . . ., uk. The second part follows from the
first part by substituting pi(u1, . . ., uk) for si in L0, L1, . . ., Ln.

Let I, J andK be three pairwise disjoint subsets of {1, . . ., n}. An n-inequality
is an inequality over n nonnegative integer variables t1, . . ., tn and m (for some
m) nonnegative integer variables s1, . . ., sm of the following form:

D1 + a(
∑
i∈I

L1iti +
∑
j∈J

L1jtj) ≤ D2 +
∑
i∈I

L2iti +
∑
k∈K

L2ktk

≤ D′
1 + a′(

∑
i∈I

L1iti +
∑
j∈J

L1jtj), (2)

where a < a′ ∈ N, the D’s (resp. the L’s) are nonnegative (resp. positive)
linear polynomials over s1, . . ., sm, and D1 ≤ D′

1 is always true (i.e., true for all
s1, . . ., sm ∈ N).

672 G. Xie, Z. Dang, and O.H. Ibarra

Lemma 2. For any n, it is decidable whether an n-inequality in (2) has a so-
lution in nonnegative integer variables s1, . . ., sm, t1, . . ., tn. The decidability re-
mains even when the solution is restricted to satisfy a given Presburger formula
P over s1, . . ., sm.

Theorem 1. It is decidable whether a system in the following form has
a solution in nonnegative integer variables s1, . . ., sm, t1, . . ., tn: P (D1 +∑

1≤i≤n L1iti, D2 +
∑

1≤i≤n L2iti), where P is a Presburger formula over two
nonnegative integer variables and the D’s and the L’s are nonnegative linear
polynomials over s1, . . ., sm.

3 Semilinear Languages with Weights

We first recall the definition of semilinear languages. Let Σ = {a1, . . ., al} be
an alphabet. For each word α in Σ∗, the Parikh map of α is defined to be
φ(α) = (φa1(α), . . ., φal

(α)) where φai
(α) denotes the number of occurrences of

symbol ai in word α, 1 ≤ i ≤ l. For a language L ∈ Σ∗, the Parikh map of L is
φ(L) = {φ(α)|α ∈ L}. The language L is semilinear iff φ(L) is a semilinear set.
L is effectively semilinear if the semilinear set φ(L) can be computed from the
description of L.

Now, we add “weights” to a language L. A weight measure is a mapping that
maps a symbol in Σ to a weight in N. We shall use w1, . . ., wl to denote the
weights for a1, . . ., al, respectively, under the measure. Let Σ1, . . ., Σk be any k
fixed subsets of Σ. For each 1 ≤ i ≤ k, we use Wi(α) to denote the total weight
of all the occurrences for symbols a ∈ Σi in word α; i.e.,

Wi(α) =
∑

aj∈Σi

wj · φaj (α). (3)

Wi(α) is called the accumulated weight of α wrt Σi. We are interested in the
following k-accumulated weight problem:

– Given: An effectively semilinear language L, k subsets Σ1, . . ., Σk of Σ, and
a Presburger formula P over l + k variables.

– Question: Is there a word α in L such that, for some w1, . . ., wl ∈ N,

P (w1, . . ., wl,W1(α), . . .,Wk(α)) (4)

holds?

In a later section, we shall look at the application side of the problem. The rest
of this section investigates the decidability issues of the problem by transforming
the problem and its restricted versions to a class of Diophantine equations.

A k-system is a quadratic Diophantine equation system that consists of k
equations over nonnegative integer variables s1, ..., sm, t1, ..., tn (for some m,n)
in the following form:

A Solvable Class of Quadratic Diophantine Equations 673

∑
1≤j≤l

B1j(t1, ..., tn)A1j(s1, ..., sm) = C1(s1, ..., sm)

...∑
1≤j≤l

Bkj(t1, ..., tn)Akj(s1, ..., sm) = Ck(s1, ..., sm)
(5)

where the A’s, B’s and C’s are nonnegative linear polynomials, and l, n,m are
positive integers.

Theorem 2. For each k, the k-accumulated weight problem is decidable iff it is
decidable whether a k-system has a solution.

It is known [12] that there is a fixed k such that there is no algorithm to
solve Diophantine systems in the following form: t1F1 = G1, t1H1 = I1, . . .,
tkFk = Gk, tkHk = Ik, where the F ’s, G’s, H’s, I’s are nonnegative linear
polynomials over nonnegative integer variables s1, . . ., sm, for some m. Observe
that the above systems are 2k-systems. Therefore, from Theorem 2,

Theorem 3. There is a fixed k such that the k-accumulated weight problem is
undecidable.

Currently, it is an open problem to find the maximal k such that the k-
accumulated weight problem is decidable. Clearly, when k = 1, the problem
is decidable. This is because 1-systems are decidable (Lemma 1). Below, using
Theorem 1, we show that the problem is decidable when k = 2. Interestingly, it
is still open whether the decidability remains for k = 3.

Theorem 4. The 2-accumulated weight problem is decidable.

In some restricted cases, the accumulated weight problem is decidable for a
general k. We are now going to elaborate these cases. Consider a k-accumulated
weight problem such that (4) is a disjunction of formulas in the following special
form:

Q(w1, . . ., wl) ∧ a1W1(α) + . . .+ akWk(α) + b1w1 + . . .+ blwl ∼ a0 (6)

where Q is a Presburger formula over l variables, the a’s and b’s are integers,
and ∼∈ {=, �=, >,<,≥,≤}. Under this restriction, the k-accumulated weight
problem is decidable.

Theorem 5. For each k, the k-accumulated weight problem, in which (4) is a
disjunction of formulas in the form of (6), is decidable.

Currently we do not know whether Theorem 5 still holds if (6) is conjuncted
with one additional inequality: a′

1W1(α)+ . . .+a′
kWk(α)+b′1w1+ . . .+b′lwl ∼ a′

0.
As in the statement of the problem at the beginning of this section, a weight

measure assigns numbers w1, . . ., wl to symbols a1, . . ., al respectively. Instead of
a fixed one, suppose that the weight of a symbol ai can take any value between
a given number qi and wi. That is, the weight measure defines a possible weight

674 G. Xie, Z. Dang, and O.H. Ibarra

range that a symbol can have, with the given number qi being the lowest possible
weight. Thus, in contrast to (3), Wi(α), 1 ≤ i ≤ l, will be a set:

{Ŵi :
∑

aj∈Σi

qj · φaj (α) ≤ Ŵi ≤
∑

aj∈Σi

wj · φaj (α)}. (7)

For instance, suppose Σ1 = {a1}, q1 = 2, w1 = 7, and a word α = a1a1a1.
Clearly, 12 is a weight in W1(α) according to (7).

With the new definition of Wi(α), the following loose k-accumulated weight
problem can be formulated:

– Given: An effectively semilinear language L, numbers q1, . . ., ql ∈ N, k
subsets Σ1, . . ., Σk of Σ, and a Presburger formula P over l + k variables.

– Question: Is there a word α in L such that, for some w1, . . ., wl ∈ N, and
for some Ŵ1, . . ., Ŵk,

Ŵ1 ∈W1(α) ∧ . . . ∧ Ŵk ∈Wk(α) ∧ P (w1, . . ., wl, Ŵ1, . . ., Ŵk) (8)

holds?

Notice that the lower weight bounds q1, . . ., ql are in the Given-part, hence
they are constants; while the upper bounds w1, . . ., wl in the Question-part,
are essentially unspecified parameters. (Otherwise, if the lower bounds q1, . . ., ql
are moved into the Question-part; i.e., both the lower and the upper bounds
are parameterized constants, then the k-accumulated weight problem is a special
case of the loose k-accumulated weight problem under this definition, by letting
the lower bound and the upper bound be the same parameterized constant for
each activity.)

The following result shows that the loose k-accumulated weight problem is
decidable for each k. It is in contrast to Theorem 3 that the k-accumulated
weight problem is undecidable for some large k.

Theorem 6. For each k, the loose k-accumulated weight problem is decidable.

4 Applications

In this section, we will apply the results presented in the previous section to
some verification problems concerning infinite systems containing parameterized
constants. We start with a general definition.

A transition systemM can be described as a relation T ⊆ S×Γ ∗×Σ×S×Γ ∗,
where S is a finite set of states, Γ is the configuration alphabet, and Σ is the
activity alphabet. Obviously, we always assume that M can be effectively de-
scribed; i.e., T is recursive. A configuration 〈s, β〉 of M is a pair of a state s in
S and a word β in Γ ∗. In the description of M , an initial configuration is also
designated. According to the definition of T , an activity in Σ transforms one con-
figuration to another. More precisely, we write 〈s, β〉 a→〈s′, β′〉 if T (s, β, a, s′, β′).

A Solvable Class of Quadratic Diophantine Equations 675

Let α ∈ Σ∗ with α = a1. . .am for some m. We say that 〈s, β, α〉 is reachable if,
for some configurations 〈s0, β0〉, . . ., 〈sm, βm〉, the following is satisfied

〈s0, β0〉a1

→. . .a
m

→〈sm, βm〉, (9)

where 〈s0, β0〉 is the initial configuration, sm = s and βm = β. We use Ls to
denote the set {(β, α) : 〈s, β, α〉 is reachable}. M is a semilinear system if Ls is
an effectively semilinear language for each s ∈ S (i.e., the semilinear set of Ls is
computable from the description of M). As before, we use w1, . . ., wl to denote
a weight measure of Σ = {a1, . . ., al}, and use Σ1, . . ., Σk to denote k subsets
of Σ. We may introduce weight counters W1, . . .,Wk into M to indicate that
the accumulated weight on each Σi is incremented by wi whenever an activity
aj ∈ Σi is performed. That is, on a transition 〈s, β〉aj→〈s′, β′〉 in M , the counters
are updated as follows, for each 1 ≤ i ≤ k, if aj ∈ Σi then Wi := Wi + wj

else Wi := Wi. Similarly, for a loose weight measure (q1, w1), . . ., (ql, wl), the
counters are updated on the transition as follows: for each 1 ≤ i ≤ k, if aj ∈ Σi

then Wi := Wi + pj else Wi := Wi, for some qj ≤ pj ≤ wj (i.e., pj is nonde-
terministically chosen between qj and wj). Starting with 0, the weight counters
are updated along an execution path in (9). We say that 〈s, β, α,W1, . . .,Wk〉
is reachable (under the weight measure w1, . . ., wl) if the weight counters have
valuesW1, . . .,Wk at the end of an execution path in (9) witnessing that 〈s, β, α〉
is reachable.

Let y1, . . ., yu and z1, . . ., zv be distinct variables. A (u, v)-formula, denoted by
P ([y1, . . ., yu]; [z1, . . ., zv]), is a Presburger formula that is a Boolean combination
(using ∧ and ¬) of Presburger formulas over y1, . . ., yu and Presburger formulas
over z1, . . ., zv. For theM specified in above, we let u = |Γ |+l and v = l+k. Now,
we consider the k-reachability problem forM : given a state s and a (u, v)-formula
P , are there w1, . . ., wl ∈ N such that

P ([φ(α), φ(β)]; [w1, . . ., wl,W1, . . .,Wk]) (10)

holds for some reachable 〈s, β, α,W1, . . .,Wk〉 (under the weight measure
w1, . . ., wl)? The loose k-reachability problem for M can be defined similarly
where the lower weights q1, . . ., ql are given. Directly from Theorems 4, 5 and 6,
one can show the following results.

Theorem 7. The 2-reachability problem is decidable for semilinear systems.

Theorem 8. For each k, the k-reachability problem is decidable for semilinear
systems, when P in (10) is a disjunction of formulas in the following form:

Q([φ(α), φ(β)]; [w1, . . ., wl]) ∧ c1W1 + . . .+ ckWk + d1w1 + . . .+ dlwl ∼ c0,

where Q is a (u, l)-formula, the c’s and d’s are integers, and ∼∈ {=, �=, >,<,≥,
≤}.

676 G. Xie, Z. Dang, and O.H. Ibarra

Theorem 9. For each k, the loose k-reachability problem for semilinear systems
is decidable.

Many machine models are semilinear systems. We start with a simple model.
Consider a nondeterministic finite state machineM , which is specified in Section
1 with a designated initial state. Notice that, in this case, Γ = ∅. Let s be a state.
Clearly, Ls, the set of all the activity sequences when M moves from the initial
state to s is a regular (and hence semilinear) language. Therefore, Theorems
7 and 8 hold for such M . Conversely, for any semilinear language L, one can
construct, from the semilinear set of L, a regular language whose semilinear set
is the same as the semilinear set of L [18]. From the regular language, one can
easily construct a M and a state s such that the regular language is exactly Ls.
It is routine to establish the fact that the k-reachability problem is decidable
(for the M) iff the k-accumulated weight problem is decidable (for the L). From
Theorem 3, one can show

Theorem 10. There is a fixed k such that the k-reachability problem is unde-
cidable for finite state machines M .

In the definition of the k-reachability problem, the Presburger formula P
in (10) is to specify the undesired values for the w’s and the W ’s. When M is
understood as a design of some system, a positive answer to the instance of the k-
reachability problem indicates a design bug. In software engineering, it is highly
desirable that a design bug is found as early as possible, since it is very costly
to fix a bug once a system has already been implemented. It is noticed that in a
specific implementation of the design, the parameterized constants are concrete,
though the values differ from one implementation to another. Of course, one
may test the specification by plugging in a particular choice for the concrete
values. However, it is important to guarantee that for any concrete values for
the parameterized constants, the design M is bug-free.

For instance, consider again the packet-based network switch example, where
as we mentioned in Section 1, the switch is modeled as a finite state machine.
Suppose the scheduling discipline is required to achieve such fairness property
that no matter how the weights are assigned, the total packets serviced by o1
must be greater than that of o2 only if the summation of weights of connections
in C1 is greater than that of C2 (we assume that all connections are nonempty
at any time); i.e.,

∑
ci∈C1

wi −
∑

ci∈C2

wi ≥ 0 →W1 −W2 ≥ 0.

From Theorem 7, we know this fairness property can be automatically verified.
When there are k servers involved in the example switch, a fairness property can
be similarly formulated as a conjunction of the fairness between any two servers.
In this case, the fairness property over k-servers is hard to be automatically
verified, because of Theorem 10.

One may consider other variations on the model of M . For instance, an
activity ai is associated with, instead of one parameterized weight wi, but two

A Solvable Class of Quadratic Diophantine Equations 677

(or any fixed number of) parameterized weights w1
i and w2

i , from which an
instance of the activity can nondeterministically choose during execution. But
this variation does not increase the expressive power of M , since “performing
activity ai” can be simulated by “performing activity a1i ” or “performing activity
a2i ” (nondeterministically chosen) where activity a1i (resp. a2i) has weight w1

i

(resp. w2
i). One may consider another variation on the model of M where an

instance of activity ai has a weight nondeterministically chosen in between some
given number (such as 2) in N and a parameterized constant wi. Clearly, from
Theorem 9, the loose k-reachability problem is decidable for this model of M .

M can be further generalized; e.g., M is augmented with a pushdown stack.
Each transition inM now is in the following form: s→a,b,γ s′, indicating thatM
moves from state s to state s′ while performing an activity a and also updating
the stack (replacing the top symbol b in the stack by a stack word γ). There
are only finitely many transitions in the description of M . Initially, the stack
contains a designated initial symbol (i.e., an initialized stack) and the machines
stays at an initial state. Notice that, for this model of M , Ls is a permutation
of a context-free (hence semilinear) language. Therefore, M is still a semilinear
system. The results of Theorems 7, 8 and 9 apply for pushdown systems.

M can be further augmented with a finite number of reversal-bounded coun-
ters. A nonnegative integer counter is reversal-bounded [11] if it alternates be-
tween a nondecreasing mode and a nonincreasing mode (and vice versa) for a
given finite number of times, independent of the computations. Hence, a transi-
tion inM , in addition to the stack operation, can increment/decrement a counter
by one and test a counter against zero. When the counter values are encoded
as unary strings, it is not hard to show that the language of Ls is a semilinear
language [11]. Hence, this model of M is still a semilinear system, and hence,
Theorems 7, 8 and 9 can be applied.

M can be further generalized by adding a number of dense clocks. A clock is
a nonnegative real variable. Clock behavior in M includes progresses and resets.
A clock progress makes all the clocks advance with the same rate for a nondeter-
ministically chosen amount in positive reals. A clock reset brings a clock value
to 0 while keeping all the other clocks unchanged. In M , a transition is either
a stay transition or a reset transition. A stay transition makes M stay in the
current state and not perform any stack and counter operations, but the clocks
progress. A reset transition makes M move from a state to another while per-
forming an activity, a stack operation, and/or a counter operation. In addition,
the transition resets some clocks. A clock constraint is a Boolean combination
of formulas x ∼ c and x − y ∼ c where x, y are clocks, and c is an integer,
∼∈ {>,<,=,≥,≤}. A (stay/reset) transition in M is also associated with a
clock constraint that must be satisfied in order for the transition to fire. The
reader may have already noticed that, when M does not have reversal-bounded
counters and the pushdown stack, and when each activity is understood as an
“input symbol”, M is simply equivalent to a timed automaton [2] that has been
well studied in recent years for modeling and verifying real-time systems (see [1]
for a survey). Here in this paper, an activity on a transition in M is associated

678 G. Xie, Z. Dang, and O.H. Ibarra

with a weight. This weight can be understood as a special form of “prices” in the
sense of [15] that tries to model some (e.g., linearly) time-dependent variables
in a complex real-time systems. Though, in general, priced timed automata are
undecidable for reachability [15], some restricted forms of prices should be de-
cidable, as shown in below, when one understands a weight as a special form of
prices.

Consider an execution of M that starts from the initial state and ends with
state s. Initially, all the clocks and counters are 0 and the stack is initialized.
At the end of the execution, we require that the clock values (x1, . . ., xt), the
counter values (y1, . . ., yu), and the stack content (γ) satisfy a given formula
Q(x1, . . ., xt, y1, . . ., yu, z1, . . ., zm) where zi is the number of occurrences of stack
symbol bi in stack word γ. The form of the formula Q is a Boolean combina-
tion of l(x1, . . ., xt, y1, . . ., yu, z1, . . ., zm) ∼ 0 where l is a linear polynomial and
∼∈ {>,<,=,≥,≤}. Notice that Q contains both dense variables and discrete
variables. Here, we use L to denote the set of all activity sequences on all such
executions. If M does not have counters and the stack, L is a regular language
and Q is a clock constraint (i.e., as we defined earlier, comparing one clock or the
difference of two clocks against a constant). The regularity can be shown using
the classic region technique in [2]. In general, however, L is not regular. Using the
main theorem in [9], one can show that L can be accepted by a nondeterministic
pushdown automaton with reversal-bounded counters. Hence, L is still a semi-
linear language according to [11]. Associating an activity with a parameterized
constant, one can formulate a k-reachability problem for M (similar to (10)): Is
there an execution of M from the initial state to state s such that, at the end of
the execution, the parameterized constants w1, . . ., wl, the accumulated weights
W1, . . .,Wk, the clocks values x1, . . ., xt, the counter values y1, . . ., yu, and the
stack word counts z1, . . ., zm, satisfy

P (w1, . . ., wl,W1, . . .,Wk) ∧ Q(x1, . . ., xt, y1, . . ., yu, z1, . . ., zm)?

Following the same proof ideas, one can show that the results of Theorems 7, 8
and 9 still hold for the M augmented with dense clocks, a pushdown stack and
reversal-bounded counters.

As a final example, we use the decidability of 2-systems to strengthen recent
results in [12]. Consider the model of a two-way deterministic finite automaton
augmented with monotonic (i.e., nondecreasing) counters C1, ..., Ck operating on
an input of the form ai1

1 ...a
in
n (for some fixed n), with left and right endmarkers.

M starts in its initial state on the left end of the input with all counters initially
zero. At each step, a counter can be incremented by 0 or 1, but the counters do
not participate in the dynamics of the machine. An m-equality relation E over
the counter values is a conjunction of m atomic relations of the form ci = cj .
The m-equality relation problem is that of deciding, given a machine M , a state
q, and an m-equality relation E, whether there is (i1, . . ., in) such that M , on
input ai1

1 . . .a
in
n , reaches some configuration where the state is q and the counter

values satisfy E. Note that in dealing with the m-equality relation problem, we
need only consider machines with at most 2m monotonic counters. It is open

A Solvable Class of Quadratic Diophantine Equations 679

whether the m-equality relation problem is decidable. However, when m = 1, it
was recently shown in [12] that the 1-equality relation problem is decidable. The
proof of the decidability for m = 1 in [12] does not generalize to the case when
the two counter values must satisfy an arbitrary Presburger formula E. We give
a proof of this generalization below.

First we generalize the m-equality relation problem by allowing E to be
an arbitrary Presburger relation E(c1, ..., ck) over the counter values c1, ..., ck.
Call this the Presburger relation problem. Note that the m-equality relation
problem is a very special case of the Presburger relation problem. We can use
the decidability of 2-systems to show that the Presburger relation problem for
machines with only 2 monotonic counters is decidable. The idea is as follows. In
[12], it was shown that the values c1 and c2 of the two counters at any time can
effectively be represented by equations of the form:

c1 = A1 + yB1 + C1, c2 = A2 + yB2 + C2,

where y is a nonnegative integer variable, and A1, B1, C1, A2, B2, C2 are non-
negative linear polynomials in some nonnegative integer variables x1, ..., xm.
(Even though C1 and C2 can be absorbed by A1 and A2, we use the formu-
lation above to be consistent with the formulation in [12].) Since E (subset of
N2) is Presburger, it is semilinear. First assume that E is a linear set. Then
the two components of E can be represented by nonnegative linear polynomials
p1(z1, ..., zr) and p2(z1, ..., zr) for some nonnegative integer variables z1, ..., zr.
Thus, using the two equations above, we get: A1 + yB1 + C1 = p1(z1, ..., zr),
A2 + yB2 + C2 = p2(z2, ..., zr). Rearranging terms, these two equations can be
written as: yB1 = p1 − A1 − C1 and yB2 = p2 − A2 − C2. By semilinear trans-
formation, we can reduce these equations to yB1 = D1 and yB2 = D2, where
B1, B2, D1, D2 are nonnegative linear polynomials in some nonnegative integer
variables w1, ..., wt. Since the above equations constitute a 2-system, it is solv-
able in y, w1, ..., wt. When E is a semilinear set, we just need to check if at least
one of a finite number of equations of the form above has a solution.

It is open whether the Presburger relation problem is decidable when there
are more than 2 monotonic counters (since the m-equality relation problem,
which is a special case, is open). But suppose the Presburger relation E takes the
following special form: p1(c1, ..., ck) ∼ d1∧p2(c1, ..., ck) ∼ d2∧...∧pm(c1, ..., ck) ∼
dm, where d1, ..., dm are integers (positive, negative, zero) and each pi(c1, ..., ck) is
a linear polynomial (not necessarily nonnegative), and each ∼ in {>,<,=,≥,≤}.
It is easy to see that when m = 2, i.e., there are only two linear polynomials p1
and p2 involved in the conjunction above, then by adding “slack” variables and
doing semilinear transformation, we can again reduce the problem to solving a
system of the form: yB1 = D1, yB2 = D2, and, therefore, solvable. However, the
case when m > 2 is open.

Acknowledgement. The authors would like to thank the anonymous referees
for many valuable comments and suggestions.

680 G. Xie, Z. Dang, and O.H. Ibarra

References

1. R. Alur. Timed automata. In CAV’99, volume 1633 of LNCS, pages 8–22. Springer,
1999.

2. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, April 1994.

3. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: application to model-checking. In CONCUR’97, volume 1243 of LNCS,
pages 135–150. Springer, 1997.

4. T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with
unbounded integer variables: symbolic representations, approximations, and ex-
perimental results. ACM Transactions on Programming Languages and Systems,
21(4):747–789, July 1999.

5. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244–263, April 1986.

6. H. Comon and Y. Jurski. Multiple counters automata, safety analysis and Pres-
burger arithmetic. In CAV’98, volume 1427 of LNCS, pages 268–279. Springer,
1998.

7. Z. Dang. Verifying and debugging real-time infinite state systems (PhD. Disserta-
tion). Department of Computer Science, University of California at Santa Barbara,
2000.

8. Z. Dang, O. Ibarra, and Z. Sun. On the emptiness problems for two-way nondeter-
ministic finite automata with one reversal-bounded counter. In ISAAC’02, volume
2518 of LNCS, pages 103–114. Springer, 2002.

9. Zhe Dang. Binary reachability analysis of pushdown timed automata with dense
clocks. In CAV’01, volume 2102 of LNCS, pages 506–517. Springer, 2001.

10. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software En-
gineering, 23(5):279–295, May 1997. Special Issue: Formal Methods in Software
Practice.

11. O. H. Ibarra. Reversal-bounded multicounter machines and their decision prob-
lems. Journal of the ACM, 25(1):116–133, January 1978.

12. O. H. Ibarra and Z. Dang. Deterministic two-way finite automata augmented with
monotonic counters. 2002 (submitted).

13. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell
Massachusetts, 1993.

14. O. Kupferman and M.Y. Vardi. An automata-theoretic approach to reasoning
about infinite-state systems. In CAV’00, volume 1855 of LNCS, pages 36–52.
Springer, 2000.

15. K. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson, and
J. Romijn. As cheap as possible: Efficient cost-optimal reachability for priced timed
automata. In CAV’01, volume 2102 of LNCS, pages 493–505. Springer, 2001.

16. Y. V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, 1993.
17. M. Minsky. Recursive unsolvability of Post’s problem of Tag and other topics in

the theory of Turing machines. Ann. of Math., 74:437–455, 1961.
18. R. Parikh. On context-free languages. Journal of the ACM, 13:570–581, 1966.
19. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification. In LICS’86, pages 332–344. IEEE Computer Society Press, 1986.

	Introduction
	Preliminaries
	Semilinear Languages with Weights
	Applications

