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Abstract. We introduce a new model of membrane computing system (or P sys-
tem), called signaling P system. It turns out that signaling systems are a form of
P systems with promoters that have been studied earlier in the literature. How-
ever, unlike non-cooperative P systems with promoters, which are known to be
universal, non-cooperative signaling systems have decidable reachability proper-
ties. Our focus in this paper is on verification problems of signaling systems; i.e.,
algorithmic solutions to a verification query on whether a given signaling system
satisfies some desired behavioral property. Such solutions not only help us under-
stand the power of “maximal parallelism” in P systems but also would provide
a way to validate a (signaling) P system in vitro through digital computers when
the P system is intended to simulate living cells. We present decidable and unde-
cidable properties of the model of non-cooperative signaling systems using proof
techniques that we believe are new in the P system area. For the positive results,
we use a form of “upper-closed sets” to serve as a symbolic representation for
configuration sets of the system, and prove decidable symbolic model-checking
properties about them using backward reachability analysis. For the negative re-
sults, we use a reduction via the undecidability of Hilbert’s Tenth Problem. This
is in contrast to previous proofs of universality in P systems where almost al-
ways the reduction is via matrix grammar with appearance checking or through
Minsky’s two-counter machines. Here, we employ a new tool using Diophantine
equations, which facilitates elegant proofs of the undecidable results. With mul-
tiplication being easily implemented under maximal parallelism, we feel that our
new technique is of interest in its own right and might find additional applications
in P systems.

1 Introduction

P systems [18, 19] are abstracted from the way the living cells process chemical com-
pounds in their compartmental structure. A P system consists of a finite number of
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membranes, each of which contains a multiset of objects (symbols). The membranes
are organized as a Venn diagram or a tree structure where a membrane may contain
other membranes. The dynamics of the P system is governed by a set of rules associ-
ated with each membrane. Each rule specifies how objects evolve and move into neigh-
boring membranes. In particular, a key feature of the model of P systems is that rules
are applied in a nondeterministic and maximally parallel manner. Due to the key fea-
ture inherent in the model, P systems have a great potential for implementing massively
concurrent systems in an efficient way that would allow us to solve currently intractable
problems (in much the same way as the promise of quantum and DNA computing).
It turns out that P systems are a powerful model: even with only one membrane (i.e.,
1-region P systems) and without priority rules, P systems are already universal [18, 22].
In such a one-membrane P system, rules are in the form of u → v, which, in a maxi-
mally parallel manner, replaces multiset u (in current configuration which is a multiset
of symbol objects) with multiset v.

Signals are a key to initiate biochemical reactions between and inside living cells.
Many examples can be found in a standard cell biology textbook [3]. For instance, in
signal transduction, it is known that guanine-nucleotide binding proteins (G proteins)
play a key role. A large heterotrimeric G protein, one of the two classes of G proteins,
is a complex consisting of three subunits: Gα, Gβ , and Gγ . When a ligand binds to a
G protein-linked receptor, it serves as a signal to activate the G protein. More precisely,
the GDP, a guanine nucleotide, bound to the Gα subunit in the unactivated G protein is
now displaced with GTP. In particular, the G protein becomes activated by being disso-
ciated into a Gβ-Gγ complex and a Gα-GTP complex. Again, the latter complex also
serves as a signal by binding itself to the enzyme adenylyl cyclase. With this signal, the
enzyme becomes active and converts ATP to cyclic AMP. As another example, apop-
tosis (i.e., suicide committed by cells, which is different from necrosis, which is the
result from injury) is also controlled by death signals such as a CD95/Fas ligand. The
signal activates caspase-8 that initiates the apoptosis. Within the scope of Natural Com-
puting (which explores new models, ideas, paradigms from the way nature computes),
motivated by these biological facts, it is a natural idea to study P systems, a molecular
computing model, augmented with a signaling mechanism.

In this paper, we investigate one-membrane signaling P systems (signaling systems
in short) where the rules are further equipped with signals. More precisely, in a sig-
naling system M , we have two types of symbols: object symbols and signals. Each
configuration is a pair consisting of a set S of signals and a multiset α of objects. Each
rule in M is in the form of s, u → s′, v or s, u → Λ, where s, s′ are signals and u, v
are multisets of objects. The rule is enabled in the current configuration (S, α) if s is
present in the signal set S and u is a sub-multiset of the multiset α. All the rules are
fired in maximally parallel manner. In particular, in the configuration as a result of the
maximally parallel move, the new signal set is formed by collecting the set of signals
s′ that are emitted from all the rules actually fired during the move (and every signal
in the old signal set disappears). Hence, a signal may trigger an unbounded number of
rule instances in a maximally parallel move.

We focus on verification problems of signaling systems; i.e., algorithmic solutions
to a verification query on whether a given signaling system does satisfy some desired
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behavioral property. Such solutions not only help us understand the power of the maxi-
mally parallelism that is pervasive in P systems but also would provide a way to validate
a (signaling) P system in vitro through digital computers when the P system is intended
to simulate living cells. However, since one-membrane P systems are Turing-complete,
so are signaling systems. Therefore, to study the verification problems, we have to look
at restricted signaling systems. A signaling system is non-cooperative if each rule is in
the form of s, a → Λ or in the form of s, a → s′, bc, where a, b, c are object symbols.
All the results can be generalized to non-cooperative signaling systems augmented with
rules s, a → s′, v. We study various reachability queries for non-cooperative signaling
systems M ; i.e., given two formulas Init and Goal that define two sets of configura-
tions, are there configurations Cinit in Init and Cgoal in Goal such that Cinit can reach
Cgoal in zero or more maximally parallel moves in M? We show that, when Init is a
Presburger formula (roughly, in which one can compare integer linear constraints over
multiplicities of symbols against constants) and Goal is a region formula (roughly, in
which one can compare multiplicities of symbols against constants), the reachability
query is decidable. Notice that, in this case, common reachability queries like halting
and configuration reachability are expressible. We also show that introducing signals
into P systems indeed increases its computing power; e.g., non-cooperative signaling
systems are strictly stronger than non-cooperative P systems (without signals). On the
other hand, when Goal is a Presburger formula, the query becomes undecidable. Our
results generalize to queries expressible in a subclass of a CTL temporal logic and to
non-cooperative signaling systems with rules S, a → S′, v (i.e., the rule is triggered
with a set of signals in S). We also study the case when a signal has bounded strength
and, in this case, non-cooperative signaling systems become universal.

Non-cooperative signaling systems are also interesting for theoretical investigation,
since the signaling rules are context-sensitive and the systems are still nonuniversal as
we show. In contrast to this, rules a → v in a non-cooperative P system are essen-
tially context-free. It is difficult to identify a form of restricted context-sensitive rules
that are still nonuniversal. For instance, a communicating P system (CPS) with only
one membrane [21] is already universal, where rules are in the form of ab → axby or
ab → axbyccome in which a, b, c are objects (the c comes from the membrane’s external
environment), x, y (which indicate the directions of movements of a and b) can only be
here or out. Also one membrane catalytic systems with rules like Ca → Cv (where
C is a catalyst) are also universal. More examples including non-cooperative signaling
systems with promoters, which will be discussed further in this section, are also univer-
sal. Our non-cooperative signaling systems use rules in the form of s, a → s′, v, which
are in a form of context-sensitive rules, since the signals constitute part of the triggering
condition as well as the outcome of the rules.

At the heart of our decidability proof, we use a form of upper-closed sets to serve as
a symbolic representation for configuration sets and prove that the symbolic representa-
tion is invariant under the backward reachability relation of a non-cooperative signaling
system. From the studies in symbolic model-checking [7] for classic transition systems,
our symbolic representation also demonstrates a symbolic model-checking procedure
at least for reachability. In our undecidability proofs, we use the well-known result on
the Hilbert’s Tenth Problem: any r.e. set (of integer tuples) is also Diophantine. We
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note that, for P systems that deal with symbol objects, proofs for universality almost
always use the theoretical tool through matrix grammar with appearance checking [16]
or through Minsky’s two-counter machines. Here, we employ a new tool using Dio-
phantine equations, which facilitates elegant proofs of the undecidable results. With
multiplication being easily implemented under maximal parallelism, we feel that our
new technique is of interest in its own right and might find additional applications in P
systems.

Signaling mechanisms have also been noticed earlier in P system studies. For in-
stance, in a one-membrane P system with promoters [4], a rule is in the form of u → v|p
where p is a multiset called a promoter. The rule fires as usual in a maximally par-
allel manner but only when objects in the promoter all appear in the current config-
uration. Notice that, since p may not be even contained in u, a promoter, just as a
signal, may trigger an unbounded number of rule instances. Indeed, one can show
that a signaling system can be directly simulated by a one-membrane P system with
promoters. However, since one-membrane non-cooperative P systems with promot-
ers are known to be universal [4], our decidability results on non-cooperative signal-
ing systems have a nice implication: our signals are strictly weaker than promoters
(and hence have more decidable properties). The decidability results also imply that,
as shown in the paper, non-cooperative signaling systems and vector addition systems
(i.e., Petri nets) have incomparable computing power, though both models have a de-
cidable configuration-to-configuration reachability. This latter implication indicates that
the maximal parallelism in P systems and the “true concurrency” in Petri nets are differ-
ent parallel mechanisms. Other signaling mechanisms such as in [2] are also promoter-
based.

2 Preliminaries

We use N to denote the set of natural numbers (including 0) and use Z to denote the
set of integers. Let Σ = {a1, · · · , ak} be an alphabet, for some k, and α be a (finite)
multiset over the alphabet. In this paper, we do not distinguish between different repre-
sentations of the multiset. That is, α can be treated as a vector in Nk (the components
are the multiplicities of the symbols in Σ); α can be treated as a word on Σ where we
only care about the counts of symbols (i.e., its Parikh map). For a σ ⊆ Σ, we use σ∗ to
denote the set of all multisets on σ.

A set S ⊆ Nk is a linear set if there exist vectors v0, v1, . . . , vt in Nk such that
S = {v | v = v0 + a1v1 + · · · + atvt, ai ∈ N}. A set S ⊆ Nk is semilinear if it is a
finite union of linear sets. Let x1, · · · , xk be variables on N. A Presburger formula is a
Boolean combination of linear constraints in the following form:

∑
1≤i≤k ti · xi ∼ n,

where the ti’s and n are integers in Z, and ∼∈ {>,<,=,≥,≤,≡m} with 0 �= m ∈ N.
It is known that a set of multisets (treated as vectors) is semilinear iff the set is definable
by a Presburger formula. Also, Presburger formulas are closed under quantification.

A signaling system is simply a P system [18] augmented with signals. Formally,
a (1-membrane) signaling system M is specified by a tuple 〈Σ,Sig,R〉, where Σ =
{a1, · · · , ak} is the alphabet, Sig is a nonempty finite set of signals, and R is a finite
set of rules. Each rule is in the form of s, u → s′, v, where s, s′ ∈ Sig and u and v are
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multisets over alphabet Σ. (Notice that a rule like s, u → v (without emitting signal)
can be treated as a short hand of s, u → sgarbage, v where sgarbage is a “garbage” signal
that won’t trigger any rules.) A configuration C is a pair consisting of a set S of signals
and a multiset α on Σ. As with the standard semantics of P systems [18, 19, 20], each
evolution step, called a maximally parallel move, is a result of applying all the rules in
M in a maximally parallel manner. More precisely, let si, ui → s′i, vi, 1 ≤ i ≤ m, be
all the rules in M . We use R = (r1, · · · , rm) ∈ Nm to denote a multiset of rules, where
there are ri instances of rule si, ui → s′i, vi, for each 1 ≤ i ≤ m. Rule si, ui → s′i, vi

is actually fired in R if ri ≥ 1 (there is at least one instance of the rule in R). Let
C = (S, α) and C ′ = (S′, α′) be two configurations. The rule multiset R is enabled
under configuration C if

– multiset α contains multiset ∪1≤i≤mri · ui (i.e., the latter multiset is the multiset
union of ri copies of multiset ui, for all 1 ≤ i ≤ m), and

– set S ⊇ {si : ri > 0, 1 ≤ i ≤ m} (i.e., for every rule actually fired in R, the signal
si that triggers the rule must appear in the set S of the configuration C).

(We say that a rule is enabled under configuration C if the rule multiset that contains
exactly one instance of the rule is enabled under the configuration.) The result C ′ =
(S′, α′) of applying R over C = (S, α) is as follows: set S′ is obtained by replacing
the entire S by the new signal set formed by collecting all the signals s′i emitted from the
rules that are actually fired in R, and, multiset α′ is obtained by replacing, in parallel,
each of the ri copies of ui in α with vi. The rule multiset R is maximally enabled
under configuration C if it is enabled under C and, for any other rule multiset R′ that
properly contains R, R′ is not enabled under the configuration. Notice that, for the
same C, a maximally enabled rule multiset may not be unique (i.e., M is in general
nondeterministic). C can reach C ′ through a maximally parallel move, written C →M

C ′, if there is a maximally enabled rule multiset R such that C ′ is the result of applying
R over C. We use C �M C ′ to denote the fact that C ′ is reachable from C; i.e., for
some n and C0, · · · , Cn, we have C = C0 →M · · · →M Cn = C ′. We simply say that
C is reachable if the initial configuration C ′ is understood. We say that configuration C
is halting if there is no rule enabled in C.

When the signals are ignored in a signaling system, we obtain a 1-membrane P
system. Clearly, signaling systems are universal, since, as we have mentioned earlier,
1-membrane P systems are known to be universal. A non-cooperative signaling system
is a signaling system where each rule is either a split-rule in the form of s, a → s′, bc or
a die-rule in the form of s, a → Λ, where s, s′ ∈ Sig and symbols a, b, c ∈ Σ. The two
rules are called a-rules (since a appears at the LHS). Intuitively, the split-rule, when
receiving signal s, makes an a-object split into a b-object and a c-object with signal s′

emitted. On the other hand, the die-rule, when receiving signal s, makes an a-object die
(i.e., becomes null). In particular, for a configuration C, an a-object is enabled in C if
there is an enabled a-rule in C; in this case, we also call a to be an enabled symbol
in C. In the rest of the paper, we will focus on various reachability queries for non-
cooperative signaling systems.
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3 Configuration Reachability

We first investigate the configuration-reachability problem that decides whether one
configuration can reach another.

Given: a non-cooperative signaling system M and two configurations Cinit and Cgoal,
Question: Can Cinit reach Cgoal in M?
In this section, we are going to show that the problem is decidable. The proof performs
backward reachability analysis. That is, we first effectively compute (a symbolic repre-
sentation of) the set of all configurations C ′ such that C ′ �M Cgoal. Then, we decide
whether the initial configuration Cinit is in the set.

Before proceeding further, we first introduce the symbolic representation. Let C
be a set of configurations. We say that C is upper-closed if C = {(S, α) : α is the
multiset union of β and some multiset in σ∗}, for some S ⊆ Sig, multiset β and some
symbol-set σ ⊆ Σ. In this case, we use [S, β, σ∗] to denote the set C. We say that C is
m-bounded if |β| ≤ m. Let C be a finite union of upper-closed sets of configurations.
The pre-image of C is defined as PreM (C) = {C ′ : C ′ →M C ∈ C}. We use Pre∗M (C)
to denote the set of all configurations C ′ such that C ′ � C for some C ∈ C. The main
result of this section is as follows.

Theorem 1. Let C be a finite union of upper-closed sets of configurations in M . Then,
Pre∗M (C) can also be effectively represented as a finite union of upper-closed sets of
configurations in M .

The complex proof of Theorem 1 constructs an intermediate signaling system M̂ whose
Pre∗

M̂
is easier to compute. The theorem can be established after we prove that Pre∗M -

computation can be realized by Pre∗
M̂

-computation and that Pre∗
M̂

(C) can be effec-
tively represented as a finite union of upper-closed sets.

Now, we can show that the configuration-reachability problem for non-cooperative
signaling systems is decidable. This result implies that non-cooperative signaling sys-
tems are not universal (the set of reachable configurations is recursive). Notice that
C = {Cgoal} is an upper-closed set. Since, from Theorem 1, Pre∗M (C) is effectively
a finite union of upper-closed sets, one can also effectively answer the reachability at
the beginning of this Section by checking whether Cinit is an element in one of the
upper-closed sets. Hence,

Theorem 2. The configuration reachability problem for non-cooperative signaling sys-
tems is decidable.

Reachability considered so far is only one form of important verification queries. In
the rest of this section, we will focus on more general queries that are specified in the
computation tree logic (CTL) [6] interpreted on an infinite state transition system [5].
To proceed further, more definitions are needed.

Let M be a non-cooperative signaling system with symbols Σ and signals Sig. We
use variables #(a), a ∈ Σ, to indicate the number of a-objects in a configuration and
use variable S over 2Sig to indicate the signal set in the configuration. A region formula
F (the word “region” is borrowed from [1]) is a Boolean combination of formulas in the
following forms: #(a) > n, #(a) = n, #(a) < n, S = sig, where a ∈ Σ, n ∈ N,
and sig ⊆ Sig. Region-CTL formulas f are defined using the following grammar:
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f ::= F | f∧f | f∨f | ¬f | ∃◦f | ∀◦f | f ∃U f | f ∀U f , where F is a region formula.
In particular, the eventuality operator ∃ � f is the shorthand of true ∃U f , and, its dual
∀� f is simply ¬ ∃ � ¬f . We use Region-CTL� to denote a subset of the Region-CTL,
where formulas are defined with: f ::= F | f∧f | f∨f | ¬f | ∃◦f | ∀◦f | ∃� f | ∀� f ,
where F is a region formula. Each f is interpreted as a set [f ] of configurations that
satisfy f , as follows:

– [F ] is the set of configurations that satisfy the region formula F ;
– [f1 ∧ f2] is [f1] ∩ [f2]; [f1 ∨ f2] is [f1] ∪ [f2]; [¬f1] is the complement of [f1];
– [∃ ◦ f1] is the set of configurations C1 such that, for some execution C1 →M

C2 →M · · ·, we have C2 ∈ [f1];
– [∀◦f1] is the set of configurations C1 such that, for any execution C1 →M C2 →M

· · ·, we have C2 ∈ [f1];
– [f1 ∃U f2] is the set of configurations C1 such that, for some execution C1 →M

C2 →M · · ·, we have C1, · · · , Cn are all in [f1] and Cn+1 is in [f2], for some n;
– [f1 ∀U f2] is the set of configurations C1 such that, for any execution C1 →M

C2 →M · · ·, we have C1, · · · , Cn are all in [f1] and Cn+1 is in [f2], for some n.

Below, we use P to denote a Boolean combination of Presburger formulas over the
#(a)’s and formulas in the form of S = sig, where sig ⊆ Sig. The Region-CTL
model-checking problem for non-cooperative signaling systems is to answer the fol-
lowing question:

Given: a non-cooperative signaling system M , a Region-CTL formula f , and a Pres-
burger formula P ,

Question: Does every configuration satisfying P also satisfy f?
It is known that the Region-CTL model-checking problem for non-cooperative P sys-
tems with rules a → b is undecidable [8]. From this result, one can show that the
Region-CTL model-checking problem for non-cooperative signaling systems is unde-
cidable as well.

Theorem 3. The Region-CTL model-checking problem for non-cooperative signaling
systems is undecidable.

In contrast to Theorem 3, the subset, Region-CTL�, of Region-CTL is decidable for
non-cooperative signaling systems:

Theorem 4. The Region-CTL� model-checking problem for non-cooperative signaling
systems is decidable.

Using Theorem 4, the following example property can be automatically verified for a
non-cooperative signaling system M :

“From every configuration satisfying #a − #b < 6, M has some execution
that first reaches a configuration with #a > 15 and then reaches a halting
configuration containing the signal s1 and with #b < 16.”

Notice that, above, “halting configurations” (i.e., none of the objects is enabled) form a
finite union of upper-closed sets.
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4 Presburger Reachability

Let M be a non-cooperative signaling system and Cinit be a given initial configuration.
In this section, we are going to investigate a stronger form of reachability problems. As
we have mentioned earlier, a multiset α (over alphabet Σ with k symbols) of objects
can be represented as a vector in Nk. Let P (x1, · · · , xk) be a Presburger formula over
k nonnegative integer variables x1, · · · , xk. The multiset α satisfies P if P (α) holds. A
configuration (S, α) of the non-cooperative signaling system M satisfies P if α satisfies
P . An equality is a Presburger formula in the form of xi = xj , for some 1 ≤ i, j ≤ k.
An equality formula, which is a special form of Presburger formulas, is a conjunction
of a number of equalities. The Presburger-reachability problem is to decide whether
a non-cooperative signaling system has a reachable configuration satisfying a given
Presburger formula:

Given: a non-cooperative signaling system M , an initial configuration Cinit, and a Pres-
burger formula P ,
Question: is there a reachable configuration satisfying P ?
In contrast to Theorem 2, we can show that the Presburger-reachability problem is un-
decidable. The undecidability holds even when M has only one signal (i.e., |Sig| = 1)
and P is an equality formula (i.e., the equality-reachability problem). In fact, what we
will show is a more general result that characterizes the set of reachable configurations
in M satisfying P exactly as r.e. sets. Notice that, for P systems that deal with symbol
objects, proofs for universality almost always use the theoretical tool through matrix
grammar with appearance checking [16]. Here, we employ a new tool using Diophan-
tine equations. Before we proceed further, we recall some known results on Diophantine
equations (the Hilbert’s Tenth Problem).

Let m ∈ N, Q ⊆ Nm be a set of natural number tuples, and E(z1, · · · , zm, y1, · · · ,
yn) be a Diophantine equation system. The set Q is definable by E if Q is exactly
the solution set of ∃y1, · · · , yn.E(z1, · · · , zm, y1, · · · , yn); i.e., Q = {(z1, · · · , zm) :
E(z1, · · · , zm, y1, · · · , yn) holds for some y1, · · · , yn}. An atomic Diophantine equa-
tion is in one of the following three forms: z = xy + 1

2x(x + 1), z = x + y, z = 1,
where x, y, z are three distinct variables over N. A conjunction of these atomic equa-
tions is called a Diophantine equation system of atomic Diophantine equations. It is
well known that Q is r.e. iff Q is definable by some Diophantine equation system [17].
From here, it is not hard to show the following:

Lemma 1. For any set Q ⊆ Nm, Q is r.e. iff Q is definable by a Diophantine equation
system of atomic Diophantine equations.

We now build a relationship between Diophantine equations and non-cooperative sig-
naling systems. Recall that Q is a subset of Nm. We say that Q is (M,Cinit, P )-
definable if there are designated symbols Z1, · · · , Zm in M such that, for any numbers
#(Z1), · · · ,#(Zm),

(#(Z1), · · · ,#(Zm)) is in Q iff there is a reachable configuration from Cinit

in M satisfying P and, for each i, the number of Zi-objects in the configuration
is #(Zi).
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When P is true and Cinit is understood, we simply say that Q is definable by M .
The non-cooperative signaling system M is lazy if, for any reachable configuration
and any number n, if the configuration is reachable from Cinit in n maximally parallel
moves, then it is reachable in t maximally parallel moves for any t ≥ n. We first show
that solutions to each atomic Diophantine equation can be defined with a lazy non-
cooperative signaling system M with only one signal.

Lemma 2. The solution set to each atomic Diophantine equation is definable by some
lazy non-cooperative signaling system M (starting from some Cinit) with only one sig-
nal.

Now, we can show the following characterization.

Theorem 5. For any set Q ⊆ Nm, Q is r.e. iff Q is (M,Cinit, P )-definable for some
non-cooperative signaling system M with one signal, some configuration Cinit, and
some equality formula P .

From Theorem 5, we immediately have

Theorem 6. The equality-reachability problem for non-cooperative signaling systems
with only one signal is undecidable. Therefore, the Presburger-reachability problem for
non-cooperative signaling systems is undecidable as well.

All the decidable/undecidable results presented so far can be generalized to the
case when non-cooperative signaling systems are augmented with rules in the follow-
ing forms: s, a → s′, v, where v is a multiset. From now on, we let non-cooperative
signaling systems contain these rules by default.

The results in Theorem 5 and Theorem 6 can be used to obtain a new result on non-
cooperative P systems M̂ where M̂ has only one membrane and each rule is in the form
of a → v, where v is a multiset. Notice that M̂ is very similar to a non-cooperative
signaling system M with only one signal. Indeed, one can easily show that they are
effectively equivalent in the following sense:

Lemma 3. For any set Q ⊆ Nm, Q is definable by some non-cooperative P system M̂
iff Q is definable by some non-cooperative signaling system M with only one signal.

It is known that M̂ is not a universal P system model; multisets generated from M̂
form the Parikh map of an ET0L language [15]. We now augment M̂ with a Presburger
tester that, nondeterministically at some maximally parallel move during a run of M̂ ,
tests (for only once) whether the current multiset satisfies a given Presburger formula P .
When P is an equality formula, the tester is called an equality tester. If yes, the tester
outputs the multiset and M̂ shuts down. Otherwise, M̂ crashes (with no output). Let
X1, · · · ,Xm be designated symbols in M̂ . We say that Q ⊆ Nm is output-definable
by M̂ if Q is exactly the set of tuples (#(X1), · · · ,#(Xm)) in the output multisets.
Directly from Lemma 3 and Theorem 5, one can show that non-cooperative P systems
(as well as non-cooperative signaling systems with only one signal) with an equality
tester are universal:

Theorem 7. For any set Q ⊆ Nm, Q is r.e. iff Q is the output-definable by a non-
cooperative P system (as well as a non-cooperative signaling system with only one
signal) with an equality (and hence Presburger) tester.



Signaling P Systems and Verification Problems 1471

Hence,

Corollary 1. The equality-reachability problem for non-cooperative P systems is un-
decidable. Therefore, the Presburger-reachability problem is undecidable as well.

With the current technology, it might be difficult to implement the equality tester de-
vice to achieve the universality, which requires, e.g., external multiset evaluation during
an almost instantaneous chemical reaction process. As we already know, a more natu-
ral way to perform the evaluation is to wait until the system halts; i.e., none of the
objects in the current configuration is enabled. In this way, one can similarly formu-
late the halting-definability and the Presburger/equality-halting-reachability problems
for non-cooperative signaling systems as well as for non-cooperative P systems, which
concern halting and reachable configurations (instead of reachable configurations). We
first show that non-cooperative signaling systems with only one signal has semilinear
halting-definable reachability sets. This result essentially tells us that the number of
signals matters, as far as halting configurations are considered: non-cooperative signal-
ing systems with multiple signals are strictly stronger than non-cooperative signaling
systems with only one signal (as well as non-cooperative P systems). This is because
a non-semilinear set like {(n, 2n) : n ≥ 0} can be easily halting-definable by a non-
cooperative signaling system.

Theorem 8. For any Q ⊆ Nm, Q is a semilinear set iff Q is halting-definable by a
non-cooperative signaling system with only one signal (as well as by a non-cooperative
P system).

One can similarly augment M̂ as well as M̂ with a Presburger tester but only test and
output when a halting configuration is reached; i.e., a Presburger halting tester. The
following result shows that non-cooperative signaling systems with only one signal
and with a Presburger halting tester are not universal, while non-cooperative signaling
systems with two signals and with an equality halting tester are universal. That is, again,
the number of signals matters.

Theorem 9. For any Q ⊆ Nm, (1). Q is a semilinear set iff Q is output-definable by a
non-cooperative signaling system with only one signal (as well as a non-cooperative P
system) and with a Presburger halting tester. (2). Q is r.e. iff Q is output-definable by
a non-cooperative signaling system with two signals and with an equality (and hence
Presburger) halting tester.

From Theorem 9, we immediately have:

Theorem 10. (1). The halting Presburger reachability problem for non-cooperative
signaling systems with two signals is undecidable. (2). The halting Presburger reacha-
bility problem for non-cooperative signaling systems with only one signal is decidable.

5 Discussions and Future Work

In our set-up, a signal in a non-cooperative signaling system M has unbounded strength;
i.e., it can trigger an unbounded number of instances of an enabled rule. If we restrict the
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strength of each signal in M to be B (where B is a constant), the resulting M is called
a B-bounded non-cooperative signaling system. A move in such M is still maximally
parallel. However, each signal can fire at most B instances of rules. From Theorem
2, we know that (unbounded) non-cooperative signaling systems are not universal. In
contrast to this fact, we can show that bounded non-cooperative signaling systems are
universal. The universality holds even when B = 2. The case for B = 1 is open.

There is an intimate relationship between some classes of P systems and VAS (vec-
tor addition systems, or, equivalently, Petri nets)[13, 14]. Though non-cooperative sig-
naling systems as well as VAS are not universal, they are incomparable in terms of
the computing power. This is because, the Presburger-reachability problem of VAS is
decidable [9] while, as we have shown, the same problem for non-cooperative signal-
ing systems is undecidable. On the other hand, the Pre∗-image of a non-cooperative
signaling system is always upper-closed while this is not true for VAS.

In the definition of a non-cooperative signaling system, a rule is in the form of
s, a → s′, v, where s and s′ are signals. Now, we generalize the definition by allowing
rules in the form of S, a → S′, v where S and S′ are sets of signals (instead of signals).
The maximally parallel semantics of the rules can be defined similarly. The differences
are that the rule is enabled when every signal in S is in the current configuration and,
after the rule is fired, every signal in S′ is emitted. Hence, the rule now is triggered
by exactly all of the signals in S. Such a rule is called a multi-signal rule. Let M be
such a non-cooperative signaling system with multi-signal rules. The proof of Theorem
1 can be adapted easily for such an M . Therefore, Theorem 2 and Theorem 4 still hold
for non-cooperative signaling system with multi-signal rules. In fact, the results can be
further generalized as follows.

Our study of non-cooperative signaling system was restricted to one membrane. We
can generalize the model to work on multiple membranes (as in the P system), where
each membrane has a set of rules, and in each rule S, a → S′, v (we are using multi-
signal rules) we specify the “target” membranes where each object in v as well as each
signal in S′ are transported to. Notice that we do not use priority rules nor membrane
dissolving rules. We call this generalized model as a multimembrane non-cooperative
signaling system with multi-signal rules. Observe that multimembranes can be equiv-
alently collapsed into one membrane through properly renaming (signal and object)
symbols in a membrane. That is, each membrane is associated with a distinguished set
of symbols. Of course, in doing so, the number of distinct symbols and signals in the
reduced one-membrane system will increase as a function of the number of membranes
in the original system. Therefore, Theorem 2 and Theorem 4 can be further generalized
to multimembranes non-cooperative signaling systems with multi-signal rules.

It is known that there are nonuniversal P systems where the number of membranes
induces an infinite hierarchy in terms of computing power [12]. However, the above
generalization says that the hierarchy collapses for non-cooperative signaling systems.
Is there a hierarchy in terms of the number of membranes for a restricted and nonuni-
versal form of signaling systems (which is stronger than non-cooperative signaling sys-
tems)? We might also ask whether for one-membrane signaling systems, there is a hi-
erarchy in terms of the numbers of symbols and signals used (since the conversion
described above from multimembrane to one membrane increases the number of sym-
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bols and signals). As defined, a non-cooperative signaling system is a “generator” of
multisets. For a given configuration C, there may be many configurations C ′ that sat-
isfy C →M C ′. Hence, a (maximally parallel) move is nondeterministic. Can we define
an appropriate model of non-cooperative signaling system e.g., an “acceptor” of mul-
tisets (rather than a generator) such that the next move is unique (i.e., deterministic)?
Deterministic P systems have been found to have some nice properties [11].
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