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Abstract. We show that the emptiness problem for two-way nondeterministic
finite automata augmented with one reversal-bounded counter (i.e., the counter
alternates between nondecreasing and nonincreasing modes a fixed number of
times) operating on bounded languages (i.e., subsets of 
������ 
��� for some non-
null words 
 ��� �� � 
 � ) is decidable, settling an open problem in [11, 12]. The
proof is a rather involved reduction to the solution of a special class of Diophan-
tine systems of degree 2 via a class of programs called two-phase programs. The
result has applications to verification of infinite state systems.

1 Introduction

Automata theory tries to answer questions concerning the relationship between formal
languages and automata that recognize the languages. A fundamental decision question
concerning any class of language recognizers is whether the emptiness problem (for
the class) is decidable, i.e., whether there exists an algorithm to decide the following
question: given an arbitrary machine

�
in the class, is the language accepted by

�

empty? Decidability of emptiness can lead to the decidability of other questions such
as containment, equivalence, etc.

The simplest recognizers are the finite automata. It is well-known that all the dif-
ferent varieties of finite automata (one-way, two-way, etc.) are effectively equivalent,
and the class has a decidable emptiness problem. When the two-way finite automaton
is augmented with a storage device, such as a counter, a pushdown stack or a Turing
machine tape, emptiness becomes undecidable (no algorithms exist). In fact, it follows
from a result in [19] that the emptiness problem is undecidable for two-way finite au-
tomata augmented with one counter (even on a unary input alphabet). If one restricts
�
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the machines to make only a finite number of turns on the input tape, the emptiness
problem is still undecidable, even for the case when the input head makes only one
turn [11]. However, for such machines with one-way input, the emptiness problem is
decidable, since they are simply pushdown automata with a unary stack alphabet.

Restricting the operation of the counter in a two-way one-counter machine makes
the emptiness problem decidable for some classes. For example, it has been shown
that emptiness is decidable for two-way counter machines whose input head is finite-
crossing (i.e., for all inputs, the number of times the input head crosses the boundary
between any two adjacent cells is bounded by a fixed number) and whose counter is
reversal-bounded (i.e., the number of alternations between nondecreasing mode and
nonincreasing mode is bounded by a fixed number, independent of the input) [11]. In-
terestingly, when the two-way input is unrestricted but the counter is reversal-bounded,
emptiness is decidable when the machine is deterministic and accepts a bounded lan-
guage (i.e., a subset of � �������� � �� for some nonnull words � ��� ����� � � � ) [10]. This result
was later shown to hold for the general case when the the input is not over a bounded
language [12]. These machines are quite powerful. They can accept fairly complex lan-
guages. For example, such a machine can recognize the language consisting of strings
of the form

	�
���
where � divides � . A question left open in [11, 12] is whether the

aforementioned decidability of emptiness holds for nondeterministic machines (over
bounded or unbounded languages). Our main result settles this question for the bounded
case. More precisely, we show that the emptiness problem for two-way nondeterminis-
tic finite automata augmented with a reversal-bounded counter over bounded languages
is decidable. At present, we are not able to generalize this result to the case when the
input to the machine does not come from a bounded language. We note that when the
machines are augmented with two reversal-bounded counters, emptiness is undecidable,
even when the machines are deterministic and accept only bounded languages [11].

We believe that our main theorem will find applications in the area of verification.
We note that the recent interest in counter machine models [4, 5, 7, 13, 6] is not moti-
vated by investigations of their formal language properties but by their applications to
model checking of infinite-state systems, motivated by the recent successes of model-
checking techniques for finite-state systems [2, 3, 21, 15, 22]. The main result in this
paper would be useful in establishing a number of new decidability results concerning
various verification problems for infinite-state systems containing integer counters and
parameterized constants.

The rest of this paper is organized as follows. In Section 2, we introduce some
known results on reversal-bounded counters and number theory. These results are used
in the proof of our main theorem. In Section 3, we show a decidable class of Diophan-
tine systems of degree 2. The Diophantine systems are used in Section 4 to establish
that a class of simple programs has a decidable emptiness problem. The main theorem
follows in Section 5 by reducing it to the simple programs. We conclude in Section 6
with a verification example. Due to space limitation, most of the proofs are not included
in the paper.



2 Preliminaries

Let � be a nonnegative integer. A � -counter machine is a two-way nondeterministic fi-
nite automaton with input endmarkers (two-way NFA) augmented with � counters, each
of which can be incremented by 1, decremented by 1, and tested for zero. We assume,
w.l.o.g., that each counter can only store a nonnegative integer, since the sign can be
stored in the states. If � is a nonnegative integer, let 2NCM( � , � ) denote the class of
� -counter machines where each counter is � reversal-bounded; i.e., it makes at most �
alternations between nondecreasing and nonincreasing modes in any computation; e.g.,
a counter whose values change according to the pattern

	 � ����������� � � 	 � � 	
is 3-reversal, where the reversals are underlined. For convenience, we sometimes refer
to a machine in the class as a 2NCM( � , � ). A 2NCM( � , � ) is finite-crossing if there is
a positive integer � such that in any computation, the input head crosses the bound-
ary between any two adjacent cells of the input no more than � times. Note that a
1-crossing 2NCM( � , � ) is a one-way nondeterministic finite automaton augmented with
�	� -reversal counters. 2NCM( � ) will denote the class of � -counter machines whose
counters are � -reversal bounded for some given � . For deterministic machines, we use
‘D’ in place of ‘N’. If

�
is a machine, 
�� �� denotes the language that

�
accepts.

A language is strictly bounded over � letters � � � � � � ����� � � � if it is a subset of
� �� � �� ����� � �� . A language is bounded over � nonnull words � � � � � � ����� � � � if it is a subset
of � �� � �� ����� � �� . A straightforward argument shows that a machine of any type studied
in this paper accepts a nonempty bounded language if and only if there is another ma-
chine of the same type that accepts a nonempty strictly bounded language. So when
dealing with the emptiness question for machines over bounded languages, we need
only handle the case when the machines accept strictly bounded languages. There are
other equivalent definitions of “boundedness” that we will use in the paper.

We will also need the following results.

Theorem 1. The emptiness problem is decidable for the following classes:
(a) 2DCM(1) [12].
(b) 2NCM( � ) over a unary alphabet (i.e., over a bounded language on 1 letter) [12].
(c) finite-crossing 2NCM( � ) for every � [11, 9].

Let � be the set of nonnegative integers. Let � be a finite set of nonnegative integer
variables. An atomic Presburger relation on � is either an atomic linear relation

������� � ������� �
or a mod constraint

� �"! � , where � � � � � � and � are integers with
	$# � � � . A

Presburger formula can always be constructed from atomic Presburger relations using% and & . Presburger formulas are closed under quantification. Let ' be a set of ( -
tuples � � � � ����� � �*)  in � ) . ' is Presburger-definable if there is a Presburger formula+ � � � � ����� � � )  such that the set of nonnegative integer solutions of + is exactly ' . It
is known that ' is a semilinear set iff ' is Presburger-definable [8]. One may already
notice that, for the purpose of this paper, we define a Presburger formula only over
nonnegative integer variables (instead of integer variables).



Let � ��� � �  be a Presburger formula in two nonnegative integer variables � and�
. � is unitary if � is a conjunction of atomic Presburger relations and each atomic

linear relation in � is in the form of � � ��� � � � � � with � �����
	 � � 	 � ��� . We say �
is 1-mod-free (resp. 2-mod-free) if � does not contain any mod constraints in the form
of � ��! � (resp.

� ��! �
) for any

� � � . We say � is mod-free if � is 1-mod-free and
2-mod-free. � is a point if � is

�� �"&��  � for some � � � � � . � is a line if � is�� ����� � , or � is �  � (called a vertical line), for some � � � � � . � is a sector if �
is
��� ����� � , or � is ����� � # � # ������� � � , for some � � ��� � � � � � � � . Observe that

if � is mod-free and unitary, then � can be written into a (finite) disjunction of points,
lines, and sectors. � is single if � is a point, a line, or a sector.

An atomic � -formula over nonnegative integer variables
� ��� ����� � � ) is either

� � � � � ����� � � ) � 	

or a divisibility � � � � � ����� � � ) �� � � � � � ����� � � ) 
where

�
and

�
are linear polynomials with integer coefficients. A � -formula can be

built from atomic � -formulas using & , � , and � . Notice that a Presburger formula is
also a � -formula. If a � -formula does not contain � -quantifiers, the formula is called a
ground formula. A set ' of ( -tuples � � � � ����� � � )  in � ) is � -definable if there is a � -
formula + � � � � ����� � � )  such that the set of nonnegative integer solutions of + is exactly
' . The following is Lipshitz’s Theorem [16].

Theorem 2. The satisfiability of � -definable formulas is decidable.

We will also need two basic results in number theory.

Theorem 3. Let � ��� � � be positive integers and � ��� � � be nonnegative integers. The
following two items are equivalent:

(1) There is a nonnegative integer solution of ( to � � � � ( 	 � �  & � � � � ( 	 � �  ,
(2) !#"%$ �&� � � � � �� � �'	 � � . [17]

The following is a well-known theorem of Frobenius (cf. [1, 14, 20]).

Theorem 4. Let � � � ����� � � ) be positive integers. Then there exists a positive integer
��(

such that, for each integer
�)� �*(

with !#"%$ � � ��� ����� � � ) %� � , the linear equation

� � � � � ����� � � ) � )  �

has nonnegative integer solutions.

The main theorem of the paper is that the emptiness problem for 2NCM(1) over
bounded languages is decidable. The next three sections constitute the entire proof.
We first investigate a class of decidable Diophantine systems of degree 2 in Section 3.
Then, we show that the emptiness problem for so-called “two-phase programs” is de-
cidable in Section 4. The main theorem follows in Section 5 by reducing the emptiness
problem for 2NCM(1) over bounded languages to the emptiness problem for two-phase
programs.



3 A Decidable Class of Diophantine Systems of Degree 2

It is well-known that, in general, it is undecidable to determine if a Diophantine system
of degree 2 (i.e., a finite set of Diophantine equations of degree 2) has a nonnegative
integral solution, cf. [18]. In this section, we find a nontrivial decidable class of Dio-
phantine systems of degree 2. This result will be used in our later proof.

Let � ��� � � ����� ����� ��� � � ����� ��� ) � � � � ����� � � � be nonnegative integer variables. A posi-
tive linear polynomial over � ��� ����� � � � is in the form of � ( � � � � � � ����� � � � � � where
each � 
 , 	 # � # � , is a nonnegative integer. In this section, � � � 
 �	� ��� 
 ��
 ��
 � ������� �
(
��# � # � � �"# � # ( ) are positive linear polynomials over � � � ����� � � � . Consider the

following inequalities


��� 
 ��� �


 � 
 ��� # � # 
��� 
 ��� �


 � 
 ��� �


��� 
 ���
� 
 � 
 � � (1)

and 
��� � � )


 � � � � 
 # � # 
��� � � )


 � � � � 
 �

��� � � )

� � � � � � � (2)

�
is a predicate on nonnegative integer � -tuples such that, for all nonnegative integers

� � � ����� � � � ,
� � � � � ����� � � �  is true iff the conjunction of (1) and (2) has a nonnega-

tive integer solution for � ��� � � ����� ��� � ��� � � ����� �	� ) . The following lemma states that
�

is effectively � -definable; i.e., a � -formula defining
�

can be computed from the de-
scription of (1) and (2). The proof uses Theorem 4 and Theorem 3.

Lemma 1. The predicate
� ��� � � ����� � � �  defined above is effectively � -definable.

4 Two-Phase Programs

In this section, we introduce an intermediate machine model called simple programs. A
simple program is intended to model a class of nondeterministic programs with a single
nondecreasing counter and a number of parameterized constants. For instance, consider
the following simple program

Input ( � � � � ��� � �  ;
1:
���  	

;
2: Increment

�
by any amount (nondeterministically chosen)

between � � and
� � � ;

3: Nondeterministically goto 4, 5, or 7;
4: Increment

�
by � � ;

5: Increment
�

by � � ;
6: Goto 2;
7: Halt.

In the program, the input nonnegative integer variables remain unchanged during com-
putation; i.e., they are parameterized constants. Each increment made on the counter
satisfies some Presburger constraint in two variables; e.g., � � #�� # � � � holds for
the increment

�
made in step 2 above. A two-phase program is simply a pair of simple



programs � � and � � that share the same array of input variables � � � ����� � � � . We are
interested in the following question: is there an assignment for � � � ����� � � � such that
the counter in � � and the counter in � � have the same value when both � � and � �
halt? A decidable answer to this question will be given in this section. The reader might
have noticed that there is some inherent relationship between two-phase programs and
2NCM(1) over bounded languages. Indeed, this intermediate result will be used in the
next section to prove our main theorem. Before we proceed further, we need a formal
definition.

A simple program � is a tuple
��� � � � � ����� � � � � � ��� ���	�

where

–
�

is a finite set of control states, with two special states designated as the initial
state and the final state.

– � � � ����� � � � are � input (nonnegative integer) variables,
–
�

is the nonnegative integer counter which is always nondecreasing,
– � is a finite set of Presburger formulas on two nonnegative integer variables,
– ��
 �� � � � ����� � � � � � ���

is a finite set of edges. Each edge
� ��� � � � ��� � � in

� denotes a transition from state � to state � � while incrementing the counter
�

according to the evolution pair � � � �  .
The semantics of � is defined as follows. A configuration � � ��� � � ����� ��� � � �  in ��� � � �
� is a tuple of a control state � , values � � � ����� ��� � for the input variables � � � ����� � � � ,
and value � for the counter

�
.

� ����� � � ����� ��� � � � ���� � � � ��� �� � ����� ��� �� � � � 
denotes a one-step transition satisfying the following conditions:

– There is an edge
� ��� � � � ��� � � in � connecting state � to state � � ,

– The value of each input variable does not change; i.e., � � � � ����� ��� � � � � �� � ����� ��� ��  ,
– The evolution pair � � � �  is satisfied; i.e., � � � 
 � � � 	 �  is true (hence, � # � � since
� is defined on nonnegative integers).

A path is a finite sequence

� � ( ��� � � ����� ��� � � � (  ����� � � 
 ��� � � ����� ��� � � � 
  ����� � � � ��� � � ����� ��� � � � � 
for some � � �

such that � � 
 ��� � � ����� ��� � � � 
 �� � � � 
�� � ��� � � ����� ��� � � � 
�� �  for each	 # � # � 	 �
. In particular, if � (  	

(the counter starts from 0), � ( is the initial state
and � � is the final state, then � accepts � � � � ����� ��� � � � �  .

A two-phase program � ��� consists of two simple programs � � and � � that share
the same

�
, input variables � � � ����� � � � and � . We shall use

� � (resp.
� � ) to denote

the counter in the positive (resp. negative) program � � (resp. � � ). A � -tuple of non-
negative integer values � � � ����� ��� � is accepted by the two-phase program � ��� if there
is a counter values � such that � � � � ����� ��� � � �  is accepted by both � � and � � . We
shall use 
���� ���  to denote all the � -tuples accepted by � ��� . 
 ��� ���  is called the



tuple language accepted by � ��� . A two-phase program models some one counter sys-
tem where the counter starts from 0 and, after a number of increments followed by a
number of decrements, moves back to 0. In � ��� , the positive program models the in-
creasing phase and the negative program models the decreasing phase (but the counter
in the negative program is always increasing). Therefore, we need further argue whether
the total increments made by the positive program equals the total increments made by
the negative program. The main result of this section is that the tuple language accepted
by a two-phase program � ��� is � -definable. The proof first shows that it suffices to
consider a special form of a two-phase program � ��� : each � � � is a point, a line, or
a sector. Then, the result follows by making use of Lemma 1.

Theorem 5. The tuple language accepted by a two-phase program is � -definable.

Consider a finite set of two-phase programs
�

, each of which has � -ary input � � � � � � �
� � . The Presburger emptiness problem for

�
is to decide, given a Presburger formula� ��� � � ����� � � �  , whether there is some input � � � ����� � � � accepted by each program in�

. Since
� � � � � ����� � � �  is � -definable and � -definability is closed under intersection,

we have

Theorem 6. The Presburger emptiness problem for a finite set of two-phase programs
is decidable.

5 2NCM(1) over Bounded Languages

Before we discuss 2NCM(1, � ), we first look at a property of a 2NCM(1,0)
�

over a
unary input (i.e., a two-way NFA with a unary input tape augmented with a nondecreas-
ing (i.e., monotonic) counter). The input is in the form of

¢ � ����� �� ��� �
�

$

of size � for some � , where ¢ and $ are the left and right endmarkers.
�

works
exactly as a two-way NFA except that, at some move (i.e., a left move, a right move,
or a stationary move),

�
can increment the counter by 1. Suppose the counter initially

starts from 0. When the input head is initially at the left endmarker, we use
�
	�	

(resp.��	�
) to denote the restricted version of

�
that

�
returns to the left (resp. right)

endmarker upon acceptance (during which
�

does not read the endmarkers). When
the input head is initially at the right endmarker,

���
and

���	
are defined similarly.

We use � 	�	 ��� � �  (resp. � 	� � � � �  � � � ��� � �  � � �	 ��� � �  ) to stand for the fact that� 	�	
(resp.

� 	�
,
� �

,
� �	

) accepts the input of size � and upon acceptance, the
counter has value

�
.

If we allow the input head to return to the endmarkers for multiple times, � � � � � 
can not be characterized by a Presburger formula. For instance, let

�
be such as ma-

chine.
�

keeps scanning the input (of size � � �
) from ¢ to $ and back, while

incrementing the counter.
�

nondeterministically accepts when $ is reached. Obvi-
ously, � 	� ��� � �  now is exactly � ( � � ( � � � � �  that is not Presburger. However, with
the restrictions of

��	�
, � ��� � �  is Presburger. The proof uses a complex loop analysis

technique.



Lemma 2. � 	�	 � � � �  , � 	� ��� � �  � � � � � � �  , and � �	 ��� � �  are Presburger for any�
specified above.

Lemma 2 also works for a stronger version of
�

. We assume the counter in
�

is � -reversal-bounded for some � (instead of increasing only). Notice that the counter
when decreasing can have negative values. We may similarly define restricted machines� 	�	 � � 	� � � �	 � � � . We shall use � �	�	 ��� � �  (resp. � �	�	 ��� � �  ) to denote that

���
	

and
�

(resp. 	 � ) is the final value of the reversal-bounded counter in
� 	�	

on input
of size � . Similarly, we may define � �	� � � � �  � � �	� ��� � �  etc.

Lemma 3. � �	�	 � � � �  , � �	�	 � � � �  , � �	� � � � �  , � �	� � � � �  , � �� � � � �  , � �� � � � �  ,
� ��	 ��� � �  , and � ��	 � � � �  are Presburger for any

�
specified above and the counter

in
�

is reversal-bounded.

In the rest of this section, we focus on the emptiness problem for 2NCM(1, � ) on
bounded languages. A slightly different definition of boundedness, but equivalent to the
one we gave in Section 2 with respect to decidability of emptiness is the following. A
� -bounded language is a subset of

� � � �� � � � �� ����� � � � �� � � � �
where

� 
 , � # � # � � �
, is the � -th delimiter, and each block � �
 between the two

delimiters
� 
 and

� 
�� � is the � -th block. A bounded language is a � -bounded language
for some � . Recall that a 2NCM(1, � ) is a two-way NFA augmented with an � -reversal-
bounded counter. When the input language of a 2NCM(1, � ) � is restricted to a bounded
language,

�
is called a 2NCM(1, � ) over a bounded language.

Let
�

be a 2NCM(1,1) working on a � -bounded language. Let

�  � � � ��� ����� � � � ��� � � � �
be an input word where

� ���
is the � -th block of symbol 1’s with length � 
 . Sometimes,

we simply call the input as � � � � ����� � � �  . Without loss of generality, we assume that
the counter

�
in

�
, when

�
accepts the input, returns to 0 and the input head is on

delimiter
� � � � with

�
being at the final state. An accepting computation

�
of

�
can be

divided into a number of segments. Each segment is associated with a state pair � ����� � 
and a block

� � �
. In the sequel, we shall use � �	��� ����� to denote a segment. We have the

following four cases:
(1). (a LL-segment)

�
, at state � , reads the � � �

-th delimiter and
�

returns to the
� � �

-th delimiter with state � � , during which
�

only reads symbols in
� � �

.
(2). (a LR-segment)

�
, at state � , reads the � -th delimiter and

�
returns to the

� � �
-th delimiter with state � � , during which

�
only reads symbols in

� ���
.

(3). (a RR-segment)
�

, at state � , reads the � -th delimiter and
�

returns to the � -th
delimiter with state � � , during which

�
only reads symbols in

� ���
.

(4). (a RL-segment)
�

, at state � , reads the � � �
-th delimiter and

�
returns to the

� -th delimiter with state � � , during which
�

only reads symbols in
� ���

.
A segment is positive (resp. negative) if the net counter change is

� 	
(resp.

� 	
) on

the segment. Therefore, since the counter is one reversal-bounded,
�

can be treated as



a sequence
� � of positive segments followed by a sequence

� � of negative segments.
Obviously, since

�
is accepting, the total increments � � � �  of the counter on

� �
equals the total decrements � � � �  of the counter on

� � .
We use a segment symbol ����� ����� ! � 
 (resp. 	 ��� ���	� ! � 
 ) to abstract a positive (resp. neg-

ative) segment associated with state pair � � ��� �  , � � � LL,LR,RR,RL
�
, and � -th block� ���

. According to Lemma 2 and Lemma 3, on a segment, the relationship between
the absolute values of counter changes and the length of the block associated with the
segment can be characterized by a Presburger formula (i.e., the formula of the segment
symbol). Now, a two-phase program � ��� can be constructed such that each segment
symbol � ��� ����� ! � 
 corresponds to a transition in � � as follows (in below, � is the formula
of the segment symbol):

– If �  LL, then the transition is � � ��� � � �  � � � � � � � � � � � �  
.

– If �  LR, then the transition is � � ��� �  � � � � � � � � � � � �  
.

– If �  RR, then the transition is � � ��� �  � � � � � � � � � �   .
– If �  RL, then the transition is � � ��� � � �  � � � � � � � � � � � �  

.

Similarly, transitions in � � can be constructed from symbols 	 ��� � � � ! � 
 . Let � ��� 
�
��� be a
two-phase program consisting of � � and � � such that

– the initial state of � � is � � ( � �  � 
where � ( is the initial state of

�
,

– the final state of � � � is � ��� � (  ,
– the initial state of � � is � ��� � (  ,
– the final state of � � is � �� � �  � � � 

where ��� is the final state of
�

.

It is noticed that the final state of � � equals the initial state of � � . It is observed that
� � � � ����� � � �  is accepted by

�
iff there are some state � and some

��# � ( # � � �
such that,

� � � � ����� � � �  is accepted by � ��� 
 
��� .

Since there are only finitely many choices of � and � ( , from Theorem 5, we obtain that
the bounded language accepted by 2NCM(1,1) is effectively � -definable.

Lemma 4. The bounded language accepted by a 2NCM(1,1) is effectively � -definable.

Next, we show that the bounded language accepted by 2NCM(1, � ) for any � is
� -definable. 2NCM(1, � ), when ��� �

, is more complex than 2NCM(1,1). However,
we will show that we can effectively reduce the emptiness of 2NCM(1, � ) ���

into the
emptiness of the “intersection” of finitely many 2NCM(1,1)’s. We may assume w.l.o.g
that, on a � -bounded input word

� � � � � ����� � � � ��� � � � ���
���

makes a counter reversal only when it is reading one of the delimiters
� � � ����� � � � � � .

(Otherwise, we may insert up to � many new delimiters � � � ����� � � � to an input word of���
and construct a new 2NCM(1, � ) � �� working on the new � � � -bounded word.

� ��
simulates

���
properly and makes sure that, whenever

���
makes the � -th reversal,

� ��



is reading the delimiter � 
 . It is not difficult to show that, if the the bounded language
accepted by

� �� is � -definable, then so is the bounded language accepted by
���

.)
The � -reversal-bounded counter

�
behaves like this:

� ��� � ����� � � ���
(each

�
stands for a nondecreasing phase; each � stands for a nonincreasing phase).

Two consecutive phases of
�

and � are called a round. Without loss of generality,
we assume that � is odd and

�
makes exactly � reversals, so

�
has precisely � 

� �
� � �
� rounds. We also assume that the machine starts with zero counter and ac-

cepts with zero counter. If �  � � � � ����� � � �  is an input to
���

, ����� � �  is a string
� � � � ����� � � � ��� � � ����� ��� � � �  . That is, ����� � �  is ��� � � ����� � � �  padded with some
�&� 	 � 

-bounded word � � ��� ����� ��� � � �  . Note that a given � -bounded word � has
many ����� � �  ’s.

A “trace” of the computation of
���

can be represented by a
� � � 	 � 

-tuple � � � � �
	 � � � � ��	 � � � � � � � � � � �
	 � � � � , where at the end of round �  � � � � � � � 	 �
,
���

is at
delimiter � 
 (since

���
is about to reverse) in state 	 
 . Clearly, there are only a finite

number of such � ’s. We will construct � 2NCM(1,1)’s �� � � � � � � �� � such that:

(*) a � -bounded word � is in 
 � � � 
iff ������ � �  is in 
����� � �� � � � � 
����� �  for

some � and ����� � �  .
If � is an input to

���
, the input to each �� 
 is a string of the form ������ � �  . For

�  � � � � � � � 	 �
, �� 
 carries out the following two phases:

1. Restores the value of the counter to � 
 � � , then moves it’s input head to delimiter
� 
�� � , and then simulates

� �
starting in state 	 
�� � . In the simulation, �� 
 ignores �

and the paddings.
2. When

���
completes a round and starts to reverse (i.e., increments) the counter, �� 


“remembers” the delimiter � 
 and state � 
 (when the reversal occurs), and goes to
block � 
 and verifies that the current value of the counter is � 
 (note that if such is
the case, the counter would be zero after checking). Then �� 
 moves its input head
to the leftmost symbol and accepts if � 
  � 
 and 	 
  � 
 .

For �  �
, �� � does not need the restoration phase, but simulates

� �
starting in state

	 ( (the initial state of
� �

). It also executes phase 2. For �  � , �� � executes the
restoration phase only and accepts if

� �
, after completing a round, accepts. Notice that,

in the above construction, each � 
 is used to denote the counter value of
� �

at the end of
each round. It is easy to verify that (*) above holds and each �� 
 is indeed a 2NCM(1,1).
Hence, from Lemma 4 noticing that � -definability is closed under intersection, union
(over the � ’s) and � -quantification (for eliminating the padding � 
 ’s), we have finally
proved the main theorem of the paper that settles the open problem in [11, 12].

Theorem 7. The bounded language accepted by 2NCM(1, � ) is effectively � -definable.
Therefore, the emptiness problem for 2NCM(1, � ) over bounded languages is decidable.

6 Conclusion

We showed that the emptiness problem for two-way nondeterministic finite automata
augmented with one reversal-bounded counter operating on bounded languages is de-



cidable, settling an open problem in [11, 12]. The proof was a rather involved reduction
to the solution of a special class of Diophantine systems of degree 2 via a class of pro-
grams called two-phase programs. The result has applications to verification of infinite
state systems.

For instance, consider a nondeterministic transition system
�

containing nonneg-
ative integer parameterized constants � � � � � ����� � � � and a nonnegative integer counter�

, which starts at 0.
�

’s transition involves nondeterministically changing the state
(from among a finite number of control states) and updating the counter by performing
one of the instructions

� � 	� � � 
 , � # � # � . � terminates if,
�

reaches some
control state � with

� # � , and any further execution of an updating instruction from �
will make

� � � . In practice,
�

can be used to model a buffer controller design that
handles � types

� � � ����� � � � of blocks. Every block of type
� 
 is with size � 
 . The use of

parameterized constants is common at the design stage; the constants are concretized
in specific implementations. An instruction of the form

� � $� ��� 
 on the edge from
� to � � means that a block of type

� 
 is put into the buffer. Notice that, the graph of�
makes the controller select blocks of various types according to some regular order-

ing.
�

and � in the controller represent the “used” and maximal capacity of the buffer,
respectively. Hence,

�
terminates at the moment when the buffer does not overflow

(
� � � ) and putting any additional block according to the ordering into the buffer will

make the buffer overflow. Consider the following “efficiency problem” for
�

: for any
� � � � � ����� � � � that satisfy a Presburger formula � � � � � � � ����� � � �  (e.g., a design con-
straint like � � � � � ����� � � � ), when

�
terminates, the unused buffer size is less

than each � 
 (i.e., the buffer is maximally used). From the main result in this paper, the
efficiency problem is decidable. To see this, we formulate the negation of the problem
as follows: Are there values for � � � ��� ����� � � � satisfying � such that there is a value

�
and

�
terminates with � 	 � � � 
 for some � ? Let 
 be the bounded language rep-

resenting the nonnegative integer tuples of � � � � � � ����� � � �  that satisfy the negation. It
is not hard to construct a two-way nondeterministic finite automaton augmented with
one reversal-bounded counter to accept bounded language 
 . We leave the details to the
reader.

Thanks go to WSU PhD student Gaoyan Xie for discussions on the above example.
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