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Abstract. Let M be a class of (possibly nondeterministic) language acceptors
with a one-way input tape. A system (A; A1, ..., Ar) of automata in M, is com-
posable if for every string w = a1...an of symbols accepted by A, there is an
assignment of each symbol in w to one of the Ai’s such that if wi is the sub-
sequence assigned to Ai, then wi is accepted by Ai. For a nonnegative integer
k, a k-lookahead delegator for (A; A1, ..., Ar) is a deterministic machine D in
M which, knowing (a) the current states of A, A1, ..., Ar and the accessible “lo-
cal” information of each machine (e.g., the top of the stack if each machine is a
pushdown automaton, whether a counter is zero on nonzero if each machine is a
multicounter automaton, etc.), and (b) the k lookahead symbols to the right of the
current input symbol being processed, can uniquely determine the Ai to assign
the current symbol. Moreover, every string w accepted by A is also accepted by
D, i.e., the subsequence of string w delegated by D to each Ai is accepted by Ai.
Thus, k-lookahead delegation is a stronger requirement than composability, since
the delegator D must be deterministic. A system that is composable may not have
a k-delegator for any k. We look at the decidability of composability and existence
of k-delegators for various classes of machines M. Our results have applications to
automated composition of e-services. When e-services are modeled by automata
whose alphabet represents a set of activities or tasks to be performed (namely,
activity automata), automated design is the problem of “delegating” activities of
the composite e-service to existing e-services so that each word accepted by the
composite e-service can be accepted by those e-services collectively with each ac-
cepting a subsequence of the word, under possibly some Presburger constraints on
the numbers and types of activities that can be delegated to the different e-services.
Our results generalize earlier ones (and resolve some open questions) concerning
composability of deterministic finite automata as e-services to finite automata that
are augmented with unbounded storage (e.g., counters and pushdown stacks) and
finite automata with discrete clocks (i.e., discrete timed automata).
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1 Introduction

In traditional automata theory, an automaton is a language acceptor that is equipped
with finite memory and possibly other unbounded storage devices such as a counter, a
stack, a queue, etc. The automaton “scans" a given input word in a one-way/two-way
and nondeterministic/deterministic manner while performing state transitions. As one of
the most fundamental concept in theoretical computer science, automata are also widely
used in many other areas of computer science, in particular, in modeling and analyzing
distributed and concurrent systems. For instance, one may view a symbol a in an input
word that is read by the automaton as an input/output signal (event). This view naturally
leads to automata-based formal models like I/O automata [18]. On the other hand, when
one views symbol a as an (observable) activity that a system performs, the automaton
can be used to specify the (observable) behavior model of the system; i.e., an activity
automaton of the system. For instance, activity automata have been used in defining
an event-based formal model of workflow [23]. Recently, activity (finite) automata are
used in [4] to model e-services, which are an emerging paradigm for discovery, flexible
interoperation, and dynamic composition of distributed and heterogeneous processes on
the web or the Internet. An important goal as well as an unsolved challenging problem
in service oriented computing [19] such as e-services is automated composition: how to
construct an “implementation” of a desired e-service in terms of existing e-services.

To approach the automated composition problem, the technique adopted in [4] has
two inputs. One input is a finite set of activity finite automata, each of which models
an “atomic” e-service. The second is a desired global behavior, also specified as an
activity finite automaton, that describes the possible sequences of activities of the e-
service to be composed. The output of the technique is a (deterministic) delegator that
will coordinate the activities of those atomic e-services through a form of delegation.
Finding a delegator, if it exists, was shown to be in EXPTIME. The framework was
extended in [12] by allowing “lookahead” of the delegator, i.e., to have the knowledge
of future incoming activities.A procedure was given which computes a sufficient amount
of lookahead needed to perform delegation; however, the procedure is not guaranteed to
terminate.

The models studied in [4, 12] have significant limitations:only regular activities are
considered since the underlying activity models are finite automata. In reality, more
complex and non-regular activity sequences are possible. For instance, activity se-
quences describing a session of activities releaseAs, allocateAs, releaseBs
and allocateBs satisfying the condition that the absolute difference between the
number of releaseAs and the number of allocateAs, as well as the absolute differ-
ence between the number of releaseBs and the number of allocateBs, is bounded
by 10 (the condition can be understood as some sort of fairness) are obviously non-
regular (not even context-free). Therefore, in this paper, we will use the composition
model of [12] but focus on, instead of finite automata, infinite-state (activity) automata.
Additionally, automata-theoretic techniques are used in our presentation, which are dif-
ferent from the techniques used in [4, 12]. Notice that the problem is not limited only to
e-services. In fact, similar automated design problems were also studied in the workflow
context [24, 17] and verification communities (e.g., [5, 1, 21, 16]). In the future, we will
also look at how our techniques and results can be applied to these latter problems.
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In this paper, we use A1, ..., Ar to denote r activity automata (not necessary finite-
state), which specify the activity behaviors of some r existing e-services. We use A
to denote an activity automaton (again, not necessary finite-state), which specifies the
desired activity behavior of the e-service to be composed from the existing e-services.

The first issue concerns composability. The system (A;A1, ..., Ar) is composable
if for every string (or sequence) w = a1...an of activities accepted by A, there is an
assignment (or delegation) of each symbol in w to one of the Ai’s such that if wi is the
subsequence assigned to Ai, then wi is accepted by Ai. The device that performs the
composition is nondeterministic, in general. We start our discussion with A,A1, ..., Ar

being restricted counter-machines (finite automata augmented with counters, each of
which can be incremented/decremented by 1 and can be tested against 0). One of the
restrictions we consider is when the counters are reversal-bounded [14]; i.e., for each
counter, the number of alternations between nondecreasing mode and nonincreasing
mode is bounded by a given constant, independent of the computation. As an exam-
ple, the above mentioned release-allocate sequences can be accepted by a deterministic
reversal-bounded counter-machine with 4 reversal-bounded counters. We use notations
like DFAs or NFAs (deterministic or nondeterministic finite automata) and DCMs or
NCMs (deterministic or nondeterministic reversal-bounded counter-machines). In [12],
it was shown that composability is decidable for a system (A;A1, .., Ar) of DFAs. We
generalize this result to the case when A is an NPCM (nondeterministic pushdown au-
tomaton with reversal-bounded counters) and the Ai’s are DFAs. In contrast, we show
that it is undecidable to determine, given DFAs A and A1 and a DCM A2 with only
one 1-reversal counter (i.e., once the counter decrements it can no longer increment),
whether (A;A1, A2) is composable. We also look at other situations where compos-
ability is decidable. Further, we propose alternative definitions of composition (e.g.,
T-composability) and investigate decidability with respect to these new definitions.

When a system is composable, a composer exists but, in general, it is nondetermin-
istic. The second issue we study concerns the existence of a deterministic delegator
(i.e., a deterministic composer) within some resource bound. We adopt the notion of
k-lookahead delegator (or simply k-delegator) from [12] but for infinite-state automata.
(We note that [4] only studied 0-lookahead delegators.) This special form of a delegator
is assumed to be efficient, since in its implementation, the delegator does not need to
look back to its delegation history to decide where the current activity shall be dele-
gated. For a nonnegative integer k, a k-delegator for (A;A1, ..., Ar) is a DCMD which,
knowing (1) the current states of A,A1, ..., Ar and the signs of their counters (i.e., zero
or non-zero), and (2) the k lookahead symbols (i.e., the k “future" activities) to the right
of the current input symbol being processed, can deterministically determine the Ai to
assign the current symbol. Moreover, every string w accepted by A is also accepted by
D, i.e., the subsequence of stringw delegated byD to eachAi is accepted byAi. Clearly,
if a system (A;A1, ..., Ar) has a k-delegator for some k, then it must be composable.
However, the converse is not true – a system may be composable but it may not have a
k-delegator for any k.

In [4], the decidability of the existence of a 0-lookahead delegator (i.e., no lookahead)
when the automata (i.e., A,A1, ..., Ar) are DFAs was shown to be is in EXPTIME.
The concept of lookahead was introduced in [12] where the focus was still on DFAs;
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algorithms for deciding composability and determining an approximate upper bound on
k (if it exists) were obtained. A question left open in [12] is whether there is a decision
procedure for determining for a given k, whether a system of DFAs has a k-lookahead
delegator. We answer this question positively in this paper, even for the more general
case when the automata are not necessarily finite-state (e.g., DCMs). Specifically, we
show that it is decidable to determine, given a system (A;A1, ..., Ar) of DCMs and a
nonnegative integer k, whether the system has a k-lookahead delegator.

Our results generalize to composition and lookahead delegation when we impose
some linear constraints on the assignments/delegations of symbols. Doing this allows us
to further specify some fairness linear constraint on a delegator. For instance, suppose
that we impose a linear relationship, specified by a Presburger relationP , on the numbers
and types of symbols that can be assigned to A1, ..., Ar. We show that it is decidable to
determine for a given k, whether a system (A;A1, ..., Ar) of DCMs has a k-delegator
under constraintP . However, it is undecidable to determine, given a system (A;A1, A2),
whether it is composable under constraint P , even when A,A1, A2 are DFAs and P
involves only the symbols assigned to A2.

Composability and existence of k-lookahead delegators for systems consisting of
other types of automata can also be defined and we study them as well. In particular, we
show that composability is decidable for discrete timed automata [2].

The paper has four sections, in addition to this section. Section 2 defines (actually
generalizes) the notion of composability of activity automata and proves that it is un-
decidable for systems (A;A1, A2), where A,A1 are DFAs and A2 is a DCM with one
1-reversal counter. It is also undecidable when A,A1, A2 are DFAs when a Presburger
constraint is imposed on the numbers and types of symbols that can be delegated to
A1 and A2. In contrast, composability is decidable for systems (A;A1, ..., Ar) when
A1, ..., Ar are DFAs (even NFAs) and A is an NPCM. Decidability holds for other re-
stricted classes of automata as well. Section 3 introduces T -composability and shows
that T -composability is decidable for various automata. Section 4 looks at the decid-
ability of the existence for a given k of a k lookahead delegator and shows, in particular,
that it is decidable to determine, given a system (A;A1, ..., Ar) of NCMs and a non-
negative integer k, whether the system has a k-delegator (even when A is an NPCM).
The decidability holds, even if the delegation is under a Presburger constraint. Section
5 investigates composability of discrete timed automata. Because of space limitation,
no proofs are given in this extended abstract. They will be presented in a forthcoming
paper.

2 Composability

Recall that, throughout this paper, we will use the following notations: a DFA (NFA)
is a deterministic (nondeterministic) finite automaton; DCM (NCM) is a DFA (NFA) aug-
mented with reversal-bounded counters; NPCM (DPCM) is a nondeterministic
(deterministic) pushdown automaton augmented with reversal-bounded counters.

Machines with reversal-bounded counters have nice decidable properties (see, e.g.,
[14, 15, 10]), and the languages they accept have the so-called semilinear property. They
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have been useful in showing that various verification problems concerning infinite-state
systems are decidable [7, 6, 8, 11, 9, 20].

Assumption: For ease in exposition, we will assume that when we are investigating the
composability and k-delegability of a system (A;A1, ..., Ar) that the machines operate
in real-time (i.e., they process a new input symbol at every step). The results can be
generalized to machines with a one-way input tape with a right input end marker, where
the input head need not move right at every step, and acceptance is when the machine
eventually enters an accepting state at the right end marker. This more general model
can accept fairly complex languages. For example, the language consisting of all binary
strings where the number of 0’s is the same as the number of 1’s can be accepted by a
DCM which, when given a binary input, uses two counters: one to count the 0’s and the
other to count the 1’s. When the input head reaches the right end marker, the counters
are simultaneously decremented, and the machine accepts if the two counters reach zero
at the same time. Note that the DCM has two 1-reversal counters. In the constructions in
proofs of the theorems, we will freely use these non-real-time models with the input end
marker. It is known that nondeterministic such machines have decidable emptiness and
disjointness problems but undecidable equivalence problem; however, the deterministic
varieties have a decidable containment and equivalence problems [14].

Definition 1. Let (A;A1, ..., Ar) be a system of activity automata that are DCMs over
input (or activity) alphabet Σ. Assume that each DCM starts in its initial state with its
counters initially zero. We say that a word (or a sequence of activities) w = a1a2...an

is composable if there is an assignment of each symbol ai to one of the A1, ..., Ar such
that if the subsequence of symbols assigned to Ai is wi, then wi is accepted by Ai (for
1 ≤ i ≤ r). We say that the system (A;A1, ..., Ar) is composable if every word w
accepted by A is composable.

A

A1

r a

s
a

A2

a

a

c

r a

s|c
a

r|a|s

A3

Fig. 1. Four e-Services

Example 1. Consider an online club that offers its customers to first register (represented
by r), and then pay for their accesses (a) with either cash (s) or credit cards (c). The e-
Service is shown asA in Figure 1, which accepts the language (r|(aa∗(s|c)))∗. Assume
that there are three existing e-Services, A1, A2, and A3, where A1 handles registration,
cash payments for one or more accesses,A3 is similar toA1 except that some customers
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may use promotion for free accesses, and A2 can also handle accesses and make credit
card transactions. Clearly, the system (A;A1, A2) is composable where processing of
accesses will be done by whoever collects the payment, cash (A1) or credit card (A2).

The system (A;A2, A3) is also composable, but in this case, the delegator need only
know if the customer will make a credit card payment in the next activity; if so A2 will
perform a, otherwise A3 does it. Thus this system has a 1-lookahead delegator (to be
defined more precisely later).

It is known that it is decidable whether a system (A;A1, ..., Ar) of DFAs is compos-
able [12]. Somewhat unexpectedly, the following result says that it becomes undecidable
when one of the Ai’s is augmented with one 1-reversal counter.

Theorem 1. It is undecidable to determine, given a system (A;A1, A2), where A and
A1 are DFAs and A2 is a DCM with one 1-reversal counter, whether it is composable.

Remark 1. Obviously, if the machines are NCMs, composability is undecidable. In fact,
take A to be the trivial machine that accepts Σ∗ (the universe). Take A1 to be an an
arbitrary NCM with one 1-reversal counter. Then the system (A;A1) is composable
iff Σ∗ is contained in L(A1). But the latter problem is known to be undecidable [3].
However, unlike NCMs, equivalence of DCMs is decidable.

Theorem 2. If A is an NPCM and A1, ..., Ar are DFAs (or even NFAs), then compos-
ability of (A;A1, ..., Ar) is decidable.

It is of interest to determine the complexity of the composability problem. For exam-
ple, a careful analysis of the proof of the above theorem and the use of Savitch’s theorem
that a nondeterministic S(n) space-bounded TM can be converted to an equivalent de-
terministic S2(n) space-bounded TM [22], we can show the following:

Corollary 1. Composability of a system (A;A1, ..., Ar) of NFAs can be decided in
deterministic exponential space (in the sum of the sizes of the machines).

There are other cases when composability becomes decidable, if we apply more
restrictions to A,A1, . . . , Ar. A language L is bounded if L ⊆ w∗

1 ...w
∗
k for some given

k and strings w1, ..., wk (which may not be distinct).

Theorem 3. Composability is decidable for a system (A;A1, ..., Ar) of NCMs when A
accepts a bounded language. The result holds even ifA and one of theAi’s are NPCMs.

Another restriction on the Ai’s is the following. We assume that Σi is the input
alphabet of Ai. An input symbol a is shared if a ∈ Σi ∩ Σj for some i �= j. We say
that (A;A1, . . . , Ar) is n-composable if every word w accepted by A and containing at
most n appearances of shared symbols is composable. Then we have:

Theorem 4. The n-composability of (A;A1, ..., Ar) is decidable when A is an NPCM
and each Ai is a DCM.
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For our next result, we recall the definitions of semilinear set and Presburger relation
[13]. A set R ⊆ Nn is a linear set if there exist vectors v0, v1, . . . , vt in Nn such that
R = {v | v = v0 + a1v1 + . . . + atvt, ai ∈ N}. The vectors v0 (referred to as the
constant vector) and v1, v2, . . . , vt (referred to as the periods) are called the generators
of the linear set R. A set R ⊆ Nn is semilinear if it is a finite union of linear sets. It
is known that R is a semilinear set if and only if it is a Presburger relation (i.e., can be
specified by a Presburger formula).

Let Σ = {a1, a2, . . . , an} be an alphabet. For each string w in Σ∗, define the
Parikh map of w to be ψ(w) = (numa1(w), ..., numan

(w)), where numai
(x) is the

number of occurrences of ai in w. For a language L ⊆ Σ∗, the Parikh map of L is
ψ(L) = {ψ(w) | w ∈ L}.

Let A,A1, ..., Ar is a system of DFAs over input alphabet Σ, and P be a Presburger
relation (semilinear set). Suppose that we want to check whether the system is compos-
able under constraintP on the numbers and types of symbols that are assigned/delegated
to the Ai’s. The constraint is useful in specifying a fairness constraint over the delega-
tions (e.g., it is never true that the absolute value of the difference between the number
of activities a assigned to A1 and the number of activities a assigned to A2 is larger
than 10). Let Σ = {a1, ..., an} and P be a Presburger relation (formula) over (r + 1)n
nonnegative integer variables (note that n is the cardinality ofΣ and r+1 is the number
of the DFAs, including A). The P -composability problem might take the the following
form:

Presburger-Constrained Composability Problem: Given a system (A;A1, ..., Ar) of
DFAs, is the system composable subject to the constraint that for every stringw ∈ L(A),
there is an assignment of the symbols in w such that if w1, ..., wr are the subsequences
assigned to A1, ..., Ar, respectively,

(1) Ai accepts wi (1 ≤ i ≤ r).
(2) (ψ(w), ψ(w1), ..., ψ(wr)) satisfies the Presburger relation P .

Unfortunately, because of Theorem 1, the above problem is undecidable:

Corollary 2. The Presburger-constrained composability problem is undecidable for
systems (A; A1, A2) of DFAs and a Presburger formula P (even if the formula only
involves symbols assigned to A2).

3 T-Composability

From the above results, it seems difficult to obtain decidable composability for a system
(A;A1, ..., Ar) when one or more ofA1, . . . , Ar are beyond DFAs. Below, we will apply
more restrictions on how A1, . . . , Ar are going to be composed such that a decidable
composability can be obtained. We define a mapping T : Σ → 2{1,...,r} such that each
symbol a ∈ Σ is associated with a type T (a) ⊆ {1, . . . , r}. For a ∈ Σ and 1 ≤ i ≤ r,
let (a)i = a if i ∈ T (a) and (a)i = ε (the null string) if i �∈ T (a). For a string
w = a1 . . . an, we use (w)i to denote the result of (a1)i . . . (an)i. For each Ai, its input
alphabet Σi consists of all a’s with i ∈ T (a). Therefore, (w)i is the result of projecting
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w under the alphabet of Ai. We now modify the definition of composability as follows.
(A;A1, . . . , Ar) is T -composable if, for every string w accepted by A, each (w)i is
accepted by Ai. Notice that this definition is different from the original one in the sense
that every symbol a in w is assigned to each Ai with i ∈ T (a). Therefore, assignments
of symbols in w is deterministic in the new definition (there is a unique way to assign
every symbol). One can show:

Theorem 5. The T -composability of (A;A1, . . . , Ar) is decidable in the following
cases:

– A is an NPCM and each Ai is a DCM;
– A is an NCM and each Ai is a DPCM.

Theorem 5 does not generalize to the case when one of the Ai’s is an NCM, for the
same reason as we stated in Remark 1.

We may take another view of the composition ofA1, . . . , Ar. As we have mentioned
earlier, each activity automaton Ai is understood as the behavior specification of an
e-service. Each sequence wi of activities accepted by Ai is an allowable behavior of
the service. In the original definition of composability, the activity automataA1, . . . , Ar

are composed through interleavings between the activities in the sequences w1, . . . , wr.
Clearly, if activities between two services are disjoint, the original definition of com-
posability becomes T -composability with T (a) being a singleton set for every symbol a
(i.e., each activity a belongs to a unique activity automaton). When the activity automata
share some common activities (e.g., a belongs to both A1 and A2; i.e., T (a) = {1, 2}),
the T -composability definition implies that an a-activity in A1 must be synchronized
with an a-activity in A2. This is why in T -composability, such a symbol a must be
assigned to bothA1 andA2. Notice that the assignments of each symbol (activity) is de-
terministic in T -composability. The determinism helps us generalize the above theorem
as follows.

A reset-NCM M is an NCM that is equipped with a number of reset states and is
further augmented with a number of reset counters (in addition to the reversal-bounded
counters). The reset counters are all reset to 0 wheneverM enters a reset state. (As usual,
we assume that initially the counters start with 0, i.e., with a reset state) We further require
that on any execution, the reset counters are reversal-bounded between any two resets.
One may similarly define a reset-NPCM. Notice that an NCM (resp. NPCM) is a special
case of a reset-NCM (resp. reset-NPCM) where there is no reset counter.

Theorem 6. The emptiness problem for reset-NCMs is decidable.

We use reset-NPM to denote a reset-NPCM that contains only reset counters and a
stack. One can show that the emptiness of reset-NPMs is undecidable.

Theorem 7. The emptiness problem for reset-NPMs and hence reset-NPCMs is unde-
cidable.

Now, we generalize Theorem 5 as follows.

Theorem 8. T -composability of (A;A1, . . . , Ar) is decidable when A is an NCM and
each Ai is a reset-DCM.
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Let NPDA (DPDA) denote a nondeterministic (deterministic) pushdown automaton.
Thus, an NPDA is a special case of a reset-NPM, one that does not have reset counters.
Using Theorem 7, one can show,

Theorem 9. T -composability of (A;A1, ..., Ar) is undecidable whenA is a DPDA and
each Ai is a reset-DCM, even for the case when r = 1.

4 Lookahead Delegator

Given k, a k-lookahead delegator (or simply k-delegator) for the system of NCMs
(A;A1, ..., Ar) is a DCM D which, knowing the current states of A,A1, ..., Ar and the
statuses (i.e., signs) of their counters (i.e., zero or non-zero), and thek lookahead symbols
to the right of the current input symbol being processed, D can uniquely determine the
transition of A, the assignment of the current symbol to one of A1, ..., Ar, and the
transition of the assigned machine. Moreover, for every string x accepted by A, D also
accepts, i.e., the subsequence of string x delegated by D to each Ai is accepted by
Ai. Clearly, if a system has a k-delegator (for some k), then it must be composable.
However, the converse is not true, in general. For example, the system in Figure 1(a) is
composable, but it does not have a k-delegator for any k.

Example 2. Consider again Example 1 and in particular the system (A;A1, A2). It is
easy to see that all a activities immediately preceding an s or c has to be delegated toA1
or A2, respectively. Without knowing which letter, s or c, will be coming, the delegator
cannot correctly determine whether A1 or A2 should perform the activities a. Thus, the
system has no k-delegator for any k. On the other hand, the system (A;A2, A3) has a
1-delegator. It is straightforward to generalize this example (by adding additional states)
to show that for every k, there exists a system that has a (k + 1)-delegator but not a
k-delegator.

So that we can always have k lookahead, let $ be a new symbol and f be a new state.
Extend the transition function of A by defining the transition from any state, including
f , on symbol $ to f . Then make f the only (unique) accepting state. Thus the new NCM
accepts the language L(A)$+ and it has only one accepting state f . We can do the same
thing for A1, ..., Ar with f1, ..., fr their unique accepting states. For convenience, call
the new machines also A,A1, ..., Ar.

For ease in exposition, in what follows, we assume that r = 2, and each ofA,A1, A2
has only one reversal-bounded counter. Generalizations to any r ≥ 2 and machines
having multiple reversal-bounded counters is straightforward. Note that the transition
of A has the form: δA(q, a, s) = {..., (p, d), ...}, which means that if A in in state q and
the input is a and the sign of its counter is s (zero or non-zero), then A can change state
to p and increment the counter by d where d = 0, + 1, − 1, with the constraint that
if s = 0, then d = 0, + 1. The same holds for transitions δ1 and δ2 of A1 and A2. We
assume that the counters are initially zero.

Let k be a nonnegative integer. We can construct a candidate k-delegator DCMD as
follows: each state ofD is a tuple (q, p1, p2, u), where q is a state ofA, pi is a state ofAi,
and u is a string of length k. However, in the case (q0, p0

1, p
0
2, u), where q0 is the initial
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state of A and p0
i the initial state of Ai, the length of u can be less that k, including zero

length, in which case u = ε. Then the initial state of D is (q0, p0
1, p

0
2, ε). The transition

δ of D is defined as follows:

1. δ((q0, p0
1, p

0
2, ε), 0, 0, 0, a) = ((q0, p0

1, p
0
2, a), 0, 0, 0) for all symbol a.

2. δ((q0, p0
1, p

0
2, v), 0, 0, 0, a) = ((q0, p0

1, p
0
2, va), 0, 0, 0) for all string v such that |v| <

k and symbol a.
3. δ((q, p1, p2, av), s, s1, s2, b) = ((q′, p′

1, p
′
2, vb), d, d1, d2) for all q, p1, p2, s, s1, s2,

all string v such that |v| = k and symbols a, b, where:

(a) (q′, d) ∈ δA(q, a, s);
(b) either p′

1 = p1, d1 = 0, and (p′
2, d2) ∈ δ2(p2, a, s2)

or p′
2 = p2, d2 = 0, and (p′

1, d1) ∈ δ1(p1, a, s1).

Moreover, the choice ((q′, p′
1, p

′
2), d, d1, d2) once made is unique for the parameters

((q, p1, p2, av), s, s1, s2). (Note that, in general, there are many choices that can be
made for the given parameters.)

4. Note that in (q, p1, p2, u), any suffix of u may be a string of $’s.
5. Then (f, f1, f2, $k) is the accepting state of D, where f, f1, f2 are the unique ac-

cepting states of A,A1, A2.

Now D is a DCM. Since the class of languages accepted by DCMs is effectively closed
under complementation, we can construct a DCME accepting the complement ofL(D).
Then D is a k-delegator of (A;A1, A2) iff L(A) ∩ L(E) = ∅. We can construct from
NCM A and DCM E an NCM F accepting L(A) ∩ L(E). We can then check the
emptiness of L(F ) since the emptiness problem for NCMs is decidable. Now D is just
one candidate for a k-delegator. There are finitely many such candidates. Every choice
that can be made in item 3) above corresponds to one such candidate. By exhaustively
checking all candidates, we either find a desired k-delegator or determine that no such
k-delegator exists. Thus, we have shown the following:

Theorem 10. It is decidable to determine, given a system of NCMs (A;A1, ..., Ar) and
a nonnegative integer k, whether the system has a k-delegator.

Since the emptiness problem for NPCMs is also decidable, we can generalize the
above result to:

Corollary 3. It is decidable to determine, given a system (A;A1, ..., Ar), where A is
an NPCM and A1, ..., Ar are NCMs, and a nonnegative integer k, whether the system
has a k-delegator.

Corollary 4. If we impose some Presburger constraint P on the delegation of symbols
by the k-delegator (e.g., some linear relationships on the number of symbols delegated
toA1, ..., Ar), then the existence of such a P -constrained k-delegator is also decidable.

Open Question: Is it decidable to determine, given a system of DCMs (A,A1, ..., Ar),
whether it has a k-delegator for some k?
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Corollary 5. It is decidable to determine, given a system (A;A1, ..., Ar) and a nonneg-
ative integer k, where A is a DPDA (deterministic pushdown automaton), A1 is a PDA
(nondeterministic pushdown automaton) and A2, ..., Ar are NFAs, whether the system
has a DPDAk-delegator. (Here, the delegation depends also on the top of the stack ofA1.)

For the special case when the machines are NFAs, we can prove the following (from
the proof of Theorem 10 and Savitch’s theorem):

Corollary 6. We can decide, given a system (A;A1, ..., Ar) of NFAs and a nonnegative
integer k, whether the system has a k-delegator in nondeterministic exponential time (in
k and the sum of the sizes of the machines) and hence, also, in deterministic exponential
space.

5 Composability of Timed Automata

In this section, we study composability of discrete timed automata (DTA) A, which are
NFAs augmented with discrete-valued clocks [2]. We say that a word w is accepted by
Awhenw is provided on the input tape, ifA is able to enter a designated accepting state.
We use L(A) to denote the set of words accepted by A. For DTAs, one may develop
a similar definition of composability as in Section 2. However, the definition does not
justify the intended meaning of composability. For instance, letA1 andA2 be two DTAs,
and suppose ac (resp. bd) are accepted by A1 (resp. A2). Observe that an interleaving
like abcd of the two words is not necessarily accepted by the DTA composed from A1
and A2. This is because, when composing, A1 and A2 share the same global clock. To
devise a proper definition of composability for DTAs, we introduce timed words [2]. A
timed word is a sequence of pairs

(a1, t1) . . . (an, tn) (1)

such that each ai ∈ Σ, ti ∈ N+, and t1 ≤ . . . ≤ tn. We say that the timed word
is accepted by A if w = a1 . . . an is accepted by A and this fact is witnessed by
some accepting run of A such that each ti is the timestamp (the value of the global
clock) when symbol ai is read in the run. Thus, the timed word not only records the
sequence of symbols a1 . . . an accepted by A but also remembers the timestamp when
each symbol is read. Let A,A1, . . . , Ar be DTAs. A timed word in the form of (1) is
timed composable if there is an assignment of each pair (aj , tj) to one of the A1, ..., Ar

such that, for 1 ≤ i ≤ r, the subsequence (also a timed word) of pairs assigned to Ai is
accepted by Ai. We say that (A;A1, . . . , Ar) is timed composable if every timed word
accepted by A is timed composable. The main result of this section is the following:

Theorem 11. The timed composability of discrete timed automata (A;A1, . . . , Ar) is
decidable.
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