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Abstract. We look at 1-region membrane computing systems which only use
rules of the form ���	�
��� , where � is a catalyst, � is a noncatalyst, and � is a
(possibly null) string of noncatalysts. There are no rules of the form ���
� . Thus,
we can think of these systems as “purely” catalytic. We consider two types: (1)
when the initial configuration contains only one catalyst, and (2) when the initial
configuration contains multiple (not necessarily distinct) catalysts. We show that
systems of the first type are equivalent to communication-free Petri nets, which
are also equivalent to commutative context-free grammars. They define precisely
the semilinear sets. This partially answers an open question in [19]. Systems of
the second type define exactly the recursively enumerable sets of tuples (i.e.,
Turing machine computable). We also study an extended model where the rules
are of the form ��������������������� (where � and � are states), i.e., the application
of the rules is guided by a finite-state control. For this generalized model, type (1)
as well as type (2) with some restriction correspond to vector addition systems.

Keywords: membrane computing, catalytic system, semilinear set, vector addition sys-
tem, reachability problem.

1 Introduction

In recent years, there has been a burst of research in the area of membrane computing
[16], which identifies an unconventional computing model (namely a P system) from
natural phenomena of cell evolutions and chemical reactions [2]. Due to the built-in
nature of maximal parallelism inherent in the model, P systems have a great potential
for implementing massively concurrent systems in an efficient way, once future bio-
technology (or silicon-technology) gives way to a practical bio-realization (or a chip-
realization). In this sense, it is important to study the computing power of the model.
�
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Two fundamental questions one can ask of any computing device (such as a Tur-
ing machine) are: (1) What kinds of restrictions/variations can be placed on the device
without reducing its computing power? (2) What kinds of restrictions/variations can be
placed on the device which will reduce its computing power? For Turing machines, the
answer to (1) is that Turing machines (as well as variations like multitape, nondetermin-
istic, etc.) accept exactly the recursively enumerable (r.e.) languages. For (2), there is a
wide spectrum of well-known results concerning various sub-Turing computing mod-
els that have been introduced during the past half century – to list a few, there are finite
automata, pushdown automata, linearly bounded automata, various restricted counter
automata, etc. Undoubtedly, these sub-Turing models have enhanced our understanding
of the computing power of Turing machines and have provided important insights into
the analysis and complexity of many problems in various areas of computer science.
We believe that studying the computing power of P systems would lend itself to the
discovery of new results if a similar methodology is followed. Indeed, much research
work has shown that P systems and their many variants are universal (i.e., equivalent to
Turing machines) [4, 16, 17, 3, 6, 8, 19] (surveys are found in [12, 18]). However, there
is little work in addressing the sub-Turing computing power of restricted P systems. To
this end, we present some new results in this paper, specifically focusing on catalytic P
systems.

A P system � consists of a finite number of membranes, each of which contains a
multiset of objects (symbols). The membranes are organized as a Venn diagram or a
tree structure where one membrane may contain 0 or many membranes. The dynamics
of � is governed by a set of rules associated with each membrane. Each rule specifies
how objects evolve and move into neighboring membranes. The rule set can also be
associated with priority: a lower priority rule does not apply if one with a higher priority
is applicable. A precise definition of � can be found in [16]. Since, from a recent result
in [19], P systems with one membrane (i.e., 1-region P systems) and without priority
are already able to simulate two counter machines and hence universal [14], for the
purposes of this paper, we focus on catalytic 1-region P Systems, or simply catalytic
systems (CS’s) [16, 19].

A CS � operates on two types of symbols: catalytic symbols called catalysts (de-
noted by capital letters � , � , etc) and noncatalytic symbols called noncatalysts (de-
noted by lower case letters ��������	
��� , etc). An evolution rule in � is of the form �
���
��� , where � is a catalyst, � is a noncatalyst, and � is a (possibly null) string (an obvious
representation of a multiset) of noncatalysts. A CS � is specified by a finite set of rules
together with an initial multiset (configuration) ��� , which is a string of catalysts and
noncatalysts. As with the standard semantics of P systems [16], each evolution step of �
is a result of applying all the rules in � in a maximally parallel manner. More precisely,
starting from the initial configuration � � , the system goes through a sequence of config-
urations, where each configuration is derived from the directly preceding configuration
in one step by the application of a subset of rules, which are chosen nondeterministi-
cally. Note that a rule �
������� is applicable if there is a � and an � in the preceding
configuration. The result of applying this rule is the replacement of � by � . If there is
another occurrence of � and another occurrence of � , then the same rule or another
rule with �
� on the left hand side can be applied. We require that the chosen subset



of rules to apply must be maximally parallel in the sense that no other applicable rule
can be added to the subset. Configuration � is reachable if it appears in some execution
sequence. � is halting if none of the rules is applicable. The set of all reachable config-
urations is denoted by ��� ��� . The set of all halting reachable configurations (which is a
subset of ��� ��� ) is denoted by ����� ��� .

We show that CS’s, whose initial configuration contains only one catalyst, are equiv-
alent to communication-free Petri nets, which are also equivalent to commutative con-
text free grammars [5, 11]. They define precisely the semilinear sets. Hence ��� ��� and
�	��� ��� are semilinear. This partially answers an open problem in [19], where it was
shown that when the initial configuration contains six catalysts, � is universal, and [19]
raised the question of what is the optimal number of catalysts for universality. Our re-
sult shows that one catalyst is not enough. We also study an extended model where the
rules are of the form 
��
��� � �
� � ����� (where 
 and � are states), i.e., the application
of the rules is guided by a finite-state control. For this generalized model, systems with
one catalyst in its initial configuration as well as systems with multiple catalysts in its
initial configuration but with some restriction correspond to vector addition systems.

We conclude this section by recalling the definitions of semilinear sets and Parikh
maps [15].

Let � be the set of nonnegative integers and � be a positive integer. A set �������
is a linear set if there exist vectors � � � � � ������� ����� in ��� such that ���! �#" �$�
� �&% � � � � % ����� % �'� ����� �'(*)+��,-� The vectors � � (referred to as the constant vector)
and � � ��� � ������� � ��� (referred to as the periods) are called the generators of the linear set
� . A set �$�$��� is semilinear if it is a finite union of linear sets. The empty set is a
trivial (semi)linear set, where the set of generators is empty. Every finite subset of �*�
is semilinear – it is a finite union of linear sets whose generators are constant vectors.
Clearly, semilinear sets are closed under union and projection. It is also known that
semilinear sets are closed under intersection and complementation.

Let ./�! � � ��� � ������� ���102, be an alphabet. For each string � in .43 , define the
Parikh map of � to be 56� �6�7�8�9" ��" :�;��<" ��" :>= ������� �<" ��" :>?@� , where " ��" :>A is the number of
occurrences of � ( in � . For a language (set of strings) B��C.D3 , the Parikh map of B is
56�EBF���G <56� �6�H"��I)JB&, .

2 1-Region Catalytic Systems

In this section, we study 1-region membrane computing systems which use only rules
of the form �
� � ��� , where � is a catalyst, � is a noncatalyst, and � is a (possibly
null) string of noncatalysts. Note that we do not allow rules of the form � � � as in a P
System. Thus, we could think of these systems as “purely” catalytic. As defined earlier,
we denote such a system by CS.

Let � be a CS and � be an initial configuration (string) representing a multiset of
catalysts and noncatalysts. A configuration K is a reachable configuration if � can reach
K starting from the initial configuration � . Call K a halting configuration if no rule is
applicable on K . Unless otherwise specified, “reachable configuration” will mean any
reachable configuration, halting or not. Note that a non-halting reachable configuration
K is an intermediate configuration in a possibly infinite computation. We denote by



��� ��� the set of Parikh maps of reachable configurations with respect to noncatalysts
only. Since catalysts do not change in a computation, we do not include them in the
Parikh map. Also, for convenience, when we talk about configurations, we sometimes
do not include the catalysts. ��� ��� is called the reachability set of � . �
�@� ��� will denote
the set of all halting reachable configurations.

2.1 The Initial Configuration Has Only One Catalyst

In this subsection, we assume that the initial configuration of the CS has only one cata-
lyst � .

A noncatalyst � is evolutionary if there is a rule in the system of the form �
� � ��� ;
otherwise, � is non-evolutionary. Call a CS simple if each rule �
� � ��� has at most
one evolutionary noncatalyst in � . Our first result shows that semilinear sets and simple
CS’s are intimately related.

Theorem 1. 1. Let � � � � . If � is semilinear, then there is a simple CS � such that
� is definable by � , i.e., � is the projection of ����� ��� on � coordinates.

2. Let � be a simple CS. Then ����� ��� and ��� ��� are semilinear.

Later, in Section 4, we will see that, in fact, the above theorem holds for any CS whose
initial configuration has only one catalyst.

Suppose that we extend the model of a CS so that the rules are now of the form

4� ��� � �
� � ����� , i.e., the application of the rules is guided by a finite-state control.
The rule means that if the system is in state 
 , application of �
� � ��� will land the
system in state � . We call this system a CS with states or CSS. In addition, we allow the
rules to be prioritized, i.e., there is a partial order on the rules: A rule ��� of lower priority
than � cannot be applied if � is applicable. We refer to such a system as a CSSP. For
both systems, the computation starts at � 
 ��� �6� , where 
 � is a designated start state, and
� is the initial configuration consisting of catalyst � and noncatalysts. In Section 4, we
will see that a CSS can define only a recursive set of tuples. In contrast, the following
result shows that a CSSP can simulate a Turing machine.

Theorem 2. Let � be a CSSP with one catalyst and two noncatalysts. Then � can
simulate a Turing machine.

Directly from Theorem 2, we have:

Corollary 1. Let � be a CSSP with one catalyst and two noncatalysts. Then ��� �����
� � need not be a semilinear set.

We will see later that in contrast to the above result, when the rules are not prioritized,
i.e., we have a CSS � with one catalyst and two noncatalysts, ��� ��� is semilinear.

2.2 The Initial Configuration Has Multiple Catalysts

In this subsection, we assume that initial configuration of the CS can have multiple
catalysts.



In general, we say that a noncatalyst is � -bounded if it appears at most � times in
any reachable configuration. It is bounded if it is � -bounded for some � .

Consider a CSSP whose initial configuration has multiple catalysts. Assume that
except for one noncatalyst, all other noncatalysts are bounded or make at most � (for
some fixed � ) alternations between nondecreasing and nonincreasing multiplicity in any
computation. Call this a reversal-bounded CSSP.

Corollary 2. If � is a reversal-bounded CSSP, then � � � ��� and ��� ��� are semilinear.

Without the reversal-bounded restriction, a CSSP can simulate a TM. In fact, a CS
(with multiple catalysts in its initial configuration) can simulate a TM. It was shown in
[19] that a CS augmented with noncooperating rules of the form � � � , where � is a
noncatalyst and � is a (possibly null) string of noncatalysts is universal in the sense that
such an augmented system with 6 catalysts can define any recursively enumerable set of
tuples. A close analysis of the proof in [19] shows that all the rules can be made purely
catalytic (i.e., of the form �
� � ��� ) using at most 8 catalysts. Actually, this number 8
can be improved further using the newest results in [7]:

Corollary 3. A CS with 7 catalysts can define any recursively enumerable set of tuples.

There is another restriction on a CSSP � that makes it define only a semilinear set.
Let � be a sequence of configurations corresponding to some computation of � starting
from a given initial configuration � (which contains multiple catalysts). A noncatalyst
� is positive on � if the following holds: if � occurs in the initial configuration or does
not occur in the initial configuration but later appears as a result of some catalytic rule,
then the number of occurrences (multiplicity) of � in any configuration after the first
time it appears is at least 1. (There is no bound on the number of times the number of
� ’s alternate between nondecreasing and nonincreasing, as long there is at least 1.) We
say that � is negative on � if it is not positive on � , i.e., the number of occurrences of �
in configurations in � can be zero. Any sequence � of configurations for which every
noncatalyst is bounded or is positive is called a positive computation.

Corollary 4. Any semilinear set is definable by a CSSP where every computation path
is positive.

Conversely, we have,

Corollary 5. Let � be a CSSP. Suppose that every computation path of � is positive.
Then � � � ��� and ��� �7� are semilinear.

The previous corollary can further be strengthened.

Corollary 6. Let � be a CSSP. Suppose we allow one (and only one) noncatalyst, say
� , to be negative. This means that a configuration with a positive occurrence (multi-
plicity) of � can lead to a configuration with no occurrence of � . Suppose that every
computation path of � is positive, except for � . Then � � � ��� and ��� �7� are semilinear.



3 Characterizations in Terms of Vector Addition Systems

An � -dimensional vector addition system (VAS) is a pair
� ��� K ����� , where K�) � 0

is called the start point (or start vector) and � is a finite set of vectors in � 0 , where
� is the set of all integers (positive, negative, zero). The reachability set of the VAS
� K ����� is the set ��� � � �  
	 " for some � , 	�� K % � � % � � � % �
� � where, for all������� � , each � (�)�� and K % � � % � � � % � (�����, . The halting reachability set
�	��� � �7�I 
	�"
	�)J��� � � ��	 % ������ for every � in � , .

An � -dimensional vector addition system with states (VASS) is a VAS � K ����� to-
gether with a finite set � of transitions of the form � � � 
 � ��� , where 
 and � are states
and � is in � . The meaning is that such a transition can be applied at point � in state �
and yields the point � % � in state 
 , provided that � % ��� � . The VASS is specified by� �!� K � � � � � � , where � � is the starting state.

The reachability problem for a VASS (respectively, VAS)
�

is to determine, given
a vector � , whether � is in ��� � � . The equivalence problem is to determine given two
VASS (respectively, VAS)

�
and
� � , whether ��� � �7����� � � � . Similarly, one can define

the reachability problem and equivalence problem for halting configurations.
We summarize the following known results concerning VAS and VASS [20, 9, 1, 10,

13]:

Theorem 3. 1. Let
�

be an � -dimensional VASS. We can effectively construct an �"� %# � -dimensional VAS
� � that simulates

�
.

2. If
�

is a 2-dimensional VASS
�

, then ��� � � is an effectively computable semilinear
set.

3. There is a 3-dimensional VASS
�

such that ��� � � is not semilinear.
4. If

�
is a 5-dimensional VAS

�
, then ��� � � is an effectively computable semilinear

set.
5. There is a 6-dimensional VAS

�
such that ��� � � is not semilinear.

6. The reachability problem for VASS (and hence also for VAS) is decidable.
7. The equivalence problem for VAS (and hence also for VASS) is undecidable.

Clearly, it follows from part 6 of the theorem above that the halting reachability
problem for VASS (respectively, VAS) is decidable.

3.1 The Initial Configuration Has Only One Catalyst

We first consider CSS (i.e., CS with states) whose initial configuration has only one
catalyst. There is an example of a 3-dimensional VASS

�
in [10] such that ��� � � is not

semilinear:
� �%$ K � � � ��& , where K �8�"� ��� � � � , and the transitions in � are:

� �/� � ���'� � � �)( � � ��� � � 
 ���"� ��� ���-�9� 
 �/�E
 �<�"� �)( � ��* �9� 
 � � � �<� � ��� ���-�9� Thus,
there are only two states � and 
 . The following was shown in [10]:

1. � K � �9K � � K,+<� is reachable in state � if and only if �-$ K � % K,+ � */. ; .
2. � K � �9K � � K + � is reachable in state 
 if and only if �-$0*�K � % K + � */. ;21 � .

Hence ��� � � is not semilinear. From this example, we can show:



Corollary 7. There is CSS � with 1 catalyst, 3 noncatalysts, and two states such that
��� ��� is not semilinear.

In fact, as shown below, each CSS corresponds to a VASS and vice versa.

Lemma 1. 1. Let � be a CSS. We can effectively construct a VASS
�

such that ��� � ���
��� ��� . 2. Every VASS can be simulated by a CSS.

From Theorem 3 part 6, we have:

Corollary 8. The reachability problem for CSS is decidable.

Clearly a reachable configuration is halting if no rule is applicable on the configu-
ration. It follows from the above result that the halting reachability problem (i.e., deter-
mining if a configuration is in ����� ��� ) is also decidable.

A VASS is communication-free if for each transition 
 � ��� ��� � � ��� � � � � � � � in the
VASS, at most one � ( is negative, and if negative its value is ( � . From Lemma 1
and the observation that the VASS constructed for the proof of Lemma 1 can be made
communication-free, we have:

Theorem 4. The following systems are equivalent in the sense that each system can
simulate the others: CSS, VASS, communication-free VASS.

Now consider a communication-free VASS without states, i.e., a VAS where in
every transition, at most one component is negative, and if negative, its value is -
1. Call this a communication-free VAS. Communication-free VAS’s are equivalent to
communication-free Petri nets, which are also equivalent to commutative context-free
grammars [5, 11]. It is known that they have effectively computable semilinear reacha-
bility sets [5]. It turns out that communication-free VAS’s characterize CS’s.

Theorem 5. Every communication-free VAS
�

can be simulated by a CS, and vice
versa.

Corollary 9. If � is a CS, then ��� �7� and � � � ��� are effectively computable semilinear
sets.

The following is obvious, as we can easily construct a VAS from the specification
of the linear set.

Corollary 10. If � is a linear set, then we can effectively construct a communication-
free VAS

�
such that ��� � �F� � . Hence, every semilinear set is a union of the reacha-

bility sets of communication-free VAS’s.

From the NP-completeness of the reachability problem for communication-free
Petri nets (which are equivalent to commutative context-free grammars) [11, 5], we
have:

Corollary 11. The reachability problem for CS is NP-complete.



We have already seen that a CSS � with prioritized rules (CSSP) and with two
noncatalysts can simulate a TM (Theorem 2); hence ��� ��� need not be semilinear. In-
terestingly, if we drop the requirement that the rules are prioritized, such a system has
a semilinear reachable set.

Corollary 12. Let � be a CSS with two noncatalysts. Then ��� �7� and � � � ��� are effec-
tively computable semilinear sets.

Open Problem: Suppose � has only rules of the form �
��� ��� whose initial config-
uration has exactly one catalyst. Suppose the rules are prioritized. How is ��� ��� related
to VASS?

3.2 The Initial Configuration Has Multiple Catalysts

We have seen that a CS with multiple catalysts can simulate a TM. Consider the follow-
ing restricted version: Instead of “maximal parallelism” in the application of the rules
at each step of the computation, we only allow “limited parallelism” by organizing the
rules to apply in one step to be in the following form (called a matrix rule):

� � � � � � � � � � ��� � � ��� � � � � � � � � �
where the � ( ’s are catalysts (need not be distinct), the � ( ’s are noncatalysts (need not be
distinct), the � ( ’s are strings of noncatalysts (need not be distinct), and � is the degree of
the matrix. The matrix rules in a given system may have different degrees. The meaning
of a matrix rule is that it is applicable if and only if each component of the matrix is
applicable. The system halts if no matrix rule is applicable. Call this system a matrix
CS, or MCS for short. We shall also consider MCS with states (called MCSS), where
now the matrix rules have states and are of the form:
� ���E
 �<� � � � � � � � � � ��� � � ��� � � � � � � � � � �

Now the matrix is applicable if the system is in state � and all the matrix components
are applicable. After the application of the matrix, the system enters state 
 .

Lemma 2. Given a VAS (VASS)
�

, we can effectively construct an MCS (MCSS) �
such that ��� ��������� � ���  � , .

Lemma 3. Given an MCSS � over � noncatalysts, we can effectively construct an �"� %� � -dimensional VASS
�

such that ��� �����+� ��� � 0 �E��� � �����E� 0 �  � ,�� � .

The VASS in Lemma 3 can be converted to a VAS. It was shown in [10] that if�
is an � -dimensional VASS with states 
 � ��� � � � 
 � , then we can construct an �"� % # � -

dimensional VAS
� � with the following property: If the VASS

�
is at � � � ��� � � � � 0 � in

state 
 � , then the VAS
� � will be at � � � ��� � � � � 0 ��� � � ��� ���-� , where � � � � for � � � to � ,

� � � � %
�

and ���H� ��� 1 � % � % � for ��� � to � ( � . The last three coordinates keep track
of the state changes, and

� � has additional transitions for updating these coordinates.
However, these additional transitions only modify the last three coordinates. Define the
finite set of tuples � � �  1� � ��� � ( � % � � � � % � �9��" �+� � ��� � � � �2, (note that � is the
number of states of

�
). Then we have:



Corollary 13. Given an MCSS � over � noncatalysts, we can effectively construct an
� � %�� � -dimensional VAS

� � such that ��� �7��� � ��� �<0 �E��� � � � ���E� 0 �� � , � � � �� 
��, �9� ,
for some effectively computable � (which depends only on the number of states and
number of rules in

�
).

From Theorem 4, Lemmas 2 and 3, and the above corollary, we have:

Theorem 6. The following systems are equivalent in the sense that each system can
simulate the others: CSS, MCS, MCSS, VAS, VASS, communication-free VASS.

Corollary 14. It is decidable to determine, given an MCSS � and a configuration � ,
whether � is a reachable configuration (halting or not).

Corollary 15. It is decidable to determine, given an MCSS � and a configuration � ,
whether � is a halting reachable configuration.

From Lemma 2 and Theorem 3 part 7, we have:

Corollary 16. The equivalence and containment problems for MCSS are undecidable.

4 Closure Properties

Let � be a catalytic system of any type introduced in the previous sections. For the
purposes of investigating closure properties, we will say that � defines a set � �G� �
(or � is definable by � ) if � � � ����� � �  
��,�� for some given � . Thus, the last �
coordinates of the � � % ��� -tuples in � � � ��� are zero, and the first � -components are
exactly the tuples in � .

Fixed the noncatalysts to be � � ��� � ��� + ��� � � . Thus, any system � has noncatalysts
� � ��� � � ���'� for some � . We say that a class of catalytic systems of a given type is closed
under:

1. Intersection if given two systems � � and � � , which define sets � � � ��� and
� � � � � , respectively, there exists a system � which defines �I� � � � � � .

2. Union if given two systems � � and � � , which define sets � � ����� and � � � ��� ,
respectively, there exists a system � which defines �G� � ��� � �

3. Complementation if given a system � which defines a set � �I�H� , there exists a
system � � which defines � ���C��� ( � .

4. Concatenation if given two systems � � and � � , which define sets � � �#��� and
� � �G��� , respectively, there exists a system � which defines � � � � � � , where
� � � � �G 1� � � % � � ��� � � � � � % � � �F"'�

� � ��� � � � � � �F) � � �<� � � ��� � � � � � �F) � � , .
5. Kleene + if given a system � which defines a set � ���H� , there exists a system � �

which defines � ���	� 0�
 � � 0 .
6. Kleene * if given a system � which defines a set �$� �H� , there exists a system � �

which defines � ���	� 0�
 � � 0 .
Other unary and binary operations can be defined similarly.

Theorem 7. The class CS with only one catalyst in the initial configuration is closed
under intersection, union, complementation, concatenation, and Kleene 1 (or Kleene 3 ).



Investigation of closure properties of other types of catalytic systems is a subject for
future research.
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