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Abstract

We show that the information rate of the language accepted by a reversal-
bounded deterministic counter machine is computable. For the nondeterministic
case, we provide computable upper bounds. For the class of languages accepted
by multi-tape deterministic finite automata, the information rate is computable
as well.
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1. Introduction

A software system often interacts with its environment. The complexity of
an average observable event sequence, or behavior, can be a good indicator of
how difficult it is to understand its semantics, test its functionality, etc. This is
particularly true considering the fact that a modern software system is often too
complex to analyze algorithmically by looking at the source code, line by line.
Instead, the system is treated as a black-box whose behaviors can be observed
by running it (with provided inputs), i.e., testing. One source to obtain all of
the system’s intended behaviors is from the design, though whether an intended
behavior is the system’s actual behavior must still be confirmed through testing.
Despite this, the problem of computing the complexity of an average intended
behavior from the design is important; in particular, the complexity can be used
to estimate the cost of testing, even at the design stage where the code is not
available yet.

In principle, a behavior is a word and the design specifies a set of words,
i.e., a language L. There has already been a fundamental notion shown below,
proposed by Shannon [20] and later Chomsky and Miller [4], that we have
evaluated through experiments over C programs [23], fitting our need for the
aforementioned complexity. For a number n, we use Sn(L) to denote the number
of words in L whose length is n. The information rate λL of L is defined as

λL = lim
n→∞

logSn(L)

n
.
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When the limit does not exist, we take the upper limit, which always exists for
a finite alphabet. Throughout this paper, the logarithm is base 2. The rate is
closely related to data compression ratio [10] and hence has immediate practical
applications [6, 5, 13, 9]. Information rate is a real number. Hence, as usual,
when we say that the rate is computable, it means that we have an algorithm
to compute the rate up to any given precision (i.e., first n digits, for any n). A
fundamental result is in the following.

Theorem 1. The information rate of a regular language is computable [4].

The case when L is non-regular (e.g., L is the external behavior set of a soft-
ware system containing (unbounded) integer variables like counters and clocks)
is more interesting, considering the fact that a complex software system nowa-
days is almost always of infinite-state and the notion of information rate has
been used in software testing [23, 24]. However, in such a case, computing the
information rate is difficult (sometimes even not computable [14]) in general.
Existing results, such as unambiguous context-free languages [15], Lukasiewicz-
languages [21], and regular timed languages [2], are limited and mostly rely
on Mandelbrot generating functions and the theory of complex/real functions,
which are also difficult to generalize.

In this paper, instead of taking the path of Mandelbrot generating functions,
we use automata-theoretic approaches to compute the information rate for some
classes of non-regular languages, including languages accepted by machines e-
quipped with restricted counters. Our approaches make use of the rich body of
techniques in automata theory developed in the past several decades and, as we
believe, the approaches themselves can also be applied to more general classes
of languages.

We first investigate languages accepted by reversal-bounded nondeterminis-
tic counter machines [11]. A counter is a nonnegative integer variable that can be
incremented by 1, decremented by 1, or stay unchanged. In addition, a counter
can be tested against 0. Let k be a nonnegative integer. A nondeterministic
k-counter machine (NCM) is a one-way nondeterministic finite automaton, with
input alphabet Σ, augmented with k counters. For a nonnegative integer r, we
use NCM(k,r) to denote the class of k-counter machines where each counter is
r-reversal-bounded; i.e., it makes at most r alternations between nondecreasing
and nonincreasing modes in any computation; e.g., the following counter value
sequence

0 0 1 2 2 3 3 2 1 0 0 1 1

is of 2-reversal, where the reversals are underlined. For convenience, we some-
times refer to a machine M in the class as an NCM(k,r). In particular, when
k and r are implicitly given, we call M as a reversal-bounded NCM. When M
is deterministic, we use ‘D’ in place of ‘N’; e.g., DCM. As usual, L(M) denotes
the language that M accepts.

Reversal-bounded NCMs have been extensively studied since their introduc-
tion in 1978 [11]; many generalizations are identified; e.g., ones equipped with
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multiple tapes, with two-way tapes, with a stack, etc. In particular, reversal-
bounded NCMs have found applications in areas like Alur and Dill’s [1] time-
automata [8, 7], Paun’s [19] membrane computing systems [12], and Diophantine
equations [22].

In this paper, we show that the information rate of the language L accepted
by a reversal-bounded DCM is computable. The proof is quite complex. We
first, using automata-theoretic techniques, modify the language into essentially a
regular language, specified by an unambiguous regular expression that is without
nested Kleene stars, further constrained by a Presburger formula on the symbol
counts in the words of the regular language. We show that the information rate
of L can be computed through the information rate of the constrained language,
where the latter can be reduced to a simple and solvable convex minimization
problem. Unfortunately, we are not able to generalize the technique to reversal-
bounded NCM. However, it is known [3] that a reversal-bounded NCM can be
made to be one with counter values linearly bounded (in input size). Using
this fact, we are able to obtain a computable upper bound on the rate when
a reversal-bounded NCM is considered. We also consider the case when the
reversal-bounded NCM does not make a lot of nondeterministic choices (i.e.,
sublinear-choice). In this case, the rate is shown computable. The result leads
us to study a class of languages accepted by multi-tape DFAs. The information
rate of such a multi-tape language is computable as well.

2. Information rate of languages accepted by reversal-bounded counter
machines

We now recall a number of definitions that will be used later. Let N be the
set of nonnegative integers and k be a positive number. A subset S of Nk is a
linear set if there are vectors v0,v1, · · · ,vt, for some t, in Nk such that S =
{v|v = v0 + b1v1 + · · ·+ btvt, bi ∈ N}. S is a semilinear set if it is a finite union
of linear sets. Let Σ = {a1, · · · , ak} be an alphabet. For each word α ∈ Σ∗,
define the Parikh map [18] of α to be the vector #(α) = (#a1(α), · · · ,#ak(α)),
where each symbol count #ai(α) denotes the number of symbol ai’s in α. For a
language L ⊆ Σ∗, the Parikh map of L is the set #(L) = {#(α) : α ∈ L}. The
language L is semilinear if #(L) is a semilinear set. There is a classic result
needed in the paper:

Theorem 2. Let M be a reversal-bounded NCM. Then #(L(M)) is a semilin-
ear set effectively computable from M [11].

Let Y be a finite set of integer variables. An atomic Presburger formula on
Y is either a linear constraint

∑
y∈Y ayy < b, or a mod constraint x ≡d c, where

ay, b, c and d are integers with 0 ≤ c < d. A Presburger formula can always be
constructed from atomic Presburger formulas using ¬ and ∧. It is known that
Presburger formulas are closed under quantification. Let S be a set of k-tuples
in Nk. S is Presburger definable if there is a Presburger formula P (y1, · · · , yk)
such that the set of nonnegative integer solutions is exactly S. It is well-known
that S is a semilinear set iff S is Presburger definable.
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Let M be a reversal-bounded deterministic counter machine. The main re-
sult of this paper shows that the information rate of L(M) is computable. The
proof has four steps. First, we show that the information rate of L(M) can
be computed through the information rate of a counting language (defined in
a moment) effectively constructed from M . Second, we show that the infor-
mation rate of a counting language can be computed through the information
rate of a counting replacement language (also defined in a moment) effectively
constructed from the counting language. Third, we show that the information
rate of a counting replacement language can be computed through the informa-
tion rate of a simple counting replacement language. Finally, we show that the
information rate of a simple counting replacement language is computable.

A counting language L is specified by a regular language and a Presburger
formula such that L is exactly the set of all words w in the regular language
with the Parikh map #(w) satisfying the Presburger formula. For instance,
{anb2nc3n : n ≥ 0} and {w : #a(w) = 2#b(w) = 3#c(w), w ∈ (a+ b+ c)∗} are
counting languages.

Lemma 1. Suppose that M is a reversal-bounded deterministic counter ma-
chine. There is a counting language L, effectively constructed from M , such
that L and L(M) have the same information rate; i.e., λL = λL(M).

Proof. Suppose that M is a DCM(k,r), for some k and r. That is, the counters
in M are, say, x1, · · · , xk. Without loss of generality, we assume that M starts
and accepts with counter values being zero and every counter increments at
least once in between. Furthermore, we need only consider the case when r = 1
(and every counter makes exactly one reversal). This is because an r-reversal-
bounded counter can be easily simulated by d r2e 1-reversal-bounded counters
[11].

We first show thatM can be “simulated” by a finite automatonM ′ as follows.
When M runs on an input, every 1-reversal counter xi in M is simulated by two
monotonic (i.e., 0-reversal) counters x+

i and x−i in M ′ that counts the number
of increments and the number of decrements, respectively, made to xi. During
the run, before the reversal of xi (M ′ “knows” the point of reversal), a counter
test of “xi = 0?” in M is simulated using M ′’s finite memory. After the reversal,
a counter test of “xi = 0?” in M is always simulated as “no” in M ′ until M ′

reads a special symbol ♣i from the input. After reading this special symbol,
the counter test is simulated as “yes” in M ′ and M ′ makes sure that there
are no further counter increments made to x−i . Hence, the special symbol ♣i
resembles the first “time” when xi decrements to 0 in M . At the end of input,
M ′ accepts when M accepts. Up to now, since the monotonic counters in M ′ do
not contribute to the state transitions in M ′, M ′ is indeed a finite automaton.
Notice that M ′ runs on input w′ obtained by inserting k (which is a constant)
special symbols ♣1, · · · ,♣k into w. Clearly, if w is accepted by M , then there
is a way to insert the k special symbols into w such that the resulting w′ is
accepted by M ′. However, the inverse is not necessarily true. This is because
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it requires the following Presburger test∧
1≤i≤k

x+
i = x−i (1)

to be successful when M ′ is at the end of w′. We now use a technique that
removes the monotonic counters from M ′.

When M ′ runs on an input, on every input symbol b, M ′ runs from a state
s, reading 0 or more ε symbols, and then actually reading the b and, after this,
entering a state s′. This is called a round. We use a round symbol [s, b, s′] to
denote the round and use P[s,b,s′] to denote the set of vectors of net increments
made to the monotonic counters during the round. The proof of the following
claim is an exercise which constructs a reversal-bounded NCM to accept unary
encoding of vectors in the set and uses Theorem 2:

(Claim 1) P[s,b,s′] is a Presburger definable set.

Consider an input word w′ = b0 · · · bn−1 in L(M ′) for some n. Suppose that,
when M ′ runs on the input, a sequence [w′] of rounds is as follows:

[s0, b0, s1][s1, b1, s2] · · · [sn−1, bn−1, sn] (2)

where s0 is the initial state and sn is an accepting state. The Presburger test
in (1), denoted by Q(Y ), where Y is the vector of the 2k monotonic counters in
M ′, is equivalent to Q(∆), for some

∆ = ∆[s0,b0,s1] + ∆[s1,b1,s2] · · ·+ ∆[sn−1,bn−1,sn], (3)

where each
∆[sj−1,bj−1,sj ] ∈ P[sj−1,bj−1,sj ]. (4)

That is, the counter values in (1) are the accumulated counter net increments
∆ in all the rounds as shown in (3) and hence, the Presburger test in (1) can
be performed directly over the ∆.

We now use #[s,b,s′] to denote the number of appearances of the round
symbol [s, b, s′] in (2) and introduce the notation #[s,b,s′] ·P[s,b,s′] to denote the
set of all the summations of #[s,b,s′] number of (not necessarily distinct) vectors
in P[s,b,s′]. Clearly, the ∆ in (3) can be re-written as

∆ =
∑

[s,b,s′] appearing in (2),
∆

[s,b,s′]∈#[s,b,s′]·P[s,b,s′]

∆[s,b,s′]. (5)

We now claim that
(Claim 2) The formula ∆[s,b,s′] ∈ #[s,b,s′] · P[s,b,s′] is Presburger in ∆[s,b,s′]

and #[s,b,s′].
The proof of the claim will be shown in a moment. We use # to denote the
vector of the counts #[s,b,s′], noticing that there are totally |S|× |Σ|× |S| round
symbols, where |S| is the number of states in M ′ and |Σ| is the size of its input
alphabet. From the claim, the equation in (5) and hence (3) is a Presburger
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formula in ∆ and #, after eliminating quantified variables ∆[s,b,s′]’s. We use

Q̂(∆,#) to denote the formula. Therefore, the Presburger test is equivalent to
the following Presburger formula

∃∆.Q(∆) ∧ Q̂(∆,#),

which is denoted by Q̇(#).
We now define a language L′ to be the set of all round symbol sequences [w′]

in (2) for all w′ accepted by M ′. L′ is regular. Let L′′ be the counting language
obtained from words [w′] in L′ satisfying Presburger formula Q̇(#([w′])).

In summary, we have the following: w is accepted by M iff there is a w′ (after
inserting the aforementioned k special symbols ♣i’s into w) accepted by M ′ and
the acceptance is witnessed by the round symbol sequence [w′] ∈ L′′ shown in
(2). Since M is deterministic, the mapping from w ∈ L(M) to [w′] ∈ L′′ is
one-to-one (while it is not necessarily true for the mapping from w ∈ L(M)
to [w′] ∈ L′). Notice also that the length of [w′] in (2) equals |w′| = |w| + k.
Because k is a constant, directly from definition, λL(M) = λL′′ . The result
follows.

To complete the proof, we still need show Claim 2. We first assume a unary
encoding [δ] for integers δ; e.g., 00000 for -5 and 11111 for +5, where the 0 and
1 are the basis. From Claim 1, P[s,b,s′] is therefore a semilinear set. It is known
that, for every semilinear set, one can construct a regular language whose Parikh
map is exactly the semilinear set. This can be shown directly using the definition
of semilinear set; e.g., the semilinear set {(1 + t, t) : t ≥ 0} ∪ {(2 + 2t, 3t) : t ≥
0} corresponds to the regular language a(ab)∗ + aa(aabbb)∗. Let L[s,b,s′] be a
regular language (on alphabet, say, {c1, · · · , c2k}), accepted by an NFA M[s,b,s′],
corresponding to the semilinear set P[s,b,s′]. We construct a reversal-bounded

NCM Ṁ as follows. Working on an input

[#[s,b,s′]]♦[δ1]♦[δ2]♦ · · · [δ2k], (6)

Ṁ uses reversal-bounded counters y0, · · · , y2k, initially being zero. Again, no-
tice that, on the input, the 2k + 1 unary encoding blocks use distinct basis. Ṁ
repeatedly simulates the NFA M[s,b,s′] from the NFA’s initial state to accepting

state. On each simulation, Ṁ guesses an input (one symbol by one symbol) for
the NFA. Along with the simulation, Ṁ uses monotonic counters y1, · · · , y2k

to count, respectively, the number of c1, · · · , c2k that the NFA has read so far.
When a simulation ends, Ṁ increments the counter y0. After a number of
rounds of simulations, Ṁ nondeterministically decides to shut down the simu-
lation. At this moment, Ṁ checks that the values #[s,b,s′], δ1, · · · , δ2k on the
input (6) are exactly the same as the values stored in counters y0, · · · , y2k, re-
spectively. The checking can be done by reading through each unary block of
the input while decrementing the counter corresponding to the block to zero.
In this case, Ṁ accepts the input in (6). Clearly, Ṁ is indeed reversal-bounded
and, ∆[s,b,s′] ∈ #[s,b,s′] · P[s,b,s′] iff the input in (6) is accepted by Ṁ with

∆[s,b,s′] = (δ1, · · · , δk). Since L(Ṁ) is a semilinear language (Theorem 2), there
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is a Presburger formula Q[s,b,s′] such that the input in (6) is accepted by Ṁ
iff Q[s,b,s′](#[s,b,s′], δ1, · · · , δ2k). The claim follows since the desired Presburger
formula is Q[s,b,s′](#[s,b,s′],∆[s,b,s′]). �

The proof of Lemma 1 cannot be generalized to the case where M is a
reversal-bounded NCM. This is because, in establishing the one-to-one corre-
spondence in the proof, one requires that M is deterministic.

The second step of the proof for the main theorem is to establish that a
counting language can be “converted” into a counting replacement language,
which is defined as follows. A replacement system G is specified by k levels, for
some k > 0, where

• for each 1 ≤ i ≤ k, the i-level has a distinct alphabet Σi (i.e., Σi ∩Σj = ∅
if i 6= j);

• the first level contains a finite set of base words w on alphabet Σ1;

• for each 1 < i ≤ k, the i-level contains a finite set of replacement rules in
the form of

a← awa, (7)

where a ∈ Σi−1 and w is a word on alphabet Σi;

• all of the words w’s mentioned above satisfy the following property: there
is no symbol appearing simultaneously in any two such words and, for any
symbol, if it appears in w, it appears only once.

When a replacement rule in (7) is applied on a word u, the result is to replace
an appearance a in u with awa. A word u is generated by G if it is the result
of the following sequence of replacements (in this order): starting from a basic
word in the first level, we apply replacement rules in the second level for zero
or more times, replacement rules in the third level for zero or more times, · · · ,
replacement rules in the k-level for zero or more times. We use L(G) to denote
the set of all u’s generated by G. Clearly, L(G) is a regular language. A regular
replacement language is L(G) for some replacement system G.

For instance, consider a replacement system G with basic word abc, and the
second level replacement rules a← adea, a← afa, b← bgb, and the third level
replacement rules e← ehe. After applying the second level replacement rules for
zero or more times, we obtain words in a(dea+fa)∗b(gb)∗c. Subsequently, after
applying the third level replacement rules, we finally get L(G) = a(de(he)∗a+
fa)∗b(gb)∗c.

A counting replacement language is a counting language specified by a regular
replacement language and a Presburger formula.

The proof of Lemma 2 is intuitively not difficult. Suppose that the counting
language L is specified by a regular language LR and a Presburger formula P .
The proof works on the set of accepting runs (i.e., state-symbol sequences) of a
DFA M accepting the regular language LR. The runs have an unambiguous way
to decompose back to loops, as specified in a replacement system G. This idea
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is actually classic, e.g., in the textbook construction from finite automata to
regular expressions. Consequently, the Presburger formula needs to be modified
after the decomposition.

Lemma 2. Suppose that L is a counting language. There is a counting replace-
ment language L′, effectively constructed from the specification of L, such that
λL = 2λL′ .

Proof. Let L be a counting language specified by a regular language LR and
a Presburger formula P . By definition, for every w, w ∈ L iff w ∈ LR and
P (#(w)) holds. Suppose that LR is accepted by a DFA M (without ε-moves)
and consider a word w = a0 · · · an−1, for some n. A run of M is a sequence

s0a0s1 · · · sn−1an−1sn (8)

such that each siaisi+1 is a transition of M that moves from si to si+1 while
reading ai. The run is accepting if s0 is the initial state and sn is an accepting
state of M (without loss of generality, we assume that the two states are dis-
tinct.). Since M is deterministic, there is a unique accepting run Run(w) for
w ∈ L(M). We use Run(M) = {Run(w) : w ∈ L(M)} to denote the set of all
accepting runs of M . Define RunP (M) = {Run(w) : P (#(w)) and w ∈ L(M)}.
Consequently, the information rate of RunP (M) is exactly half of the informa-
tion rate of L. We now convert RunP (M) into the desired counting replacement
language L′.

We first fix an arbitrary ordering of all the states in M , say, q1, q2, · · · , qk
and consider the run α specified in (8). The run starts with s0 and ends with sn
and sometimes is simply written as s0  sn. We say that α passes q internally
if at least one of s1, · · · , sn−1 is q. Two runs q  q′ and q′  q′′ can be
concatenated as q  q′  q′′. Two sets R1 and R2 of runs are concatenated as
R1R2 = {q  q′  q′′ : q  q′ ∈ R1, q

′  q′′ ∈ R2}. For a set of runs R, we use

R−Qqq′ to denote all the runs q  q′ in R that does not pass any q′′ ∈ Q internally.
Let R be the set of all runs in M . Inspired by the textbook algorithm of
computing a regular expression from a DFA, we observe the following equation,
where qinit and qaccept are the initial state and an accepting state, respectively:

Run(M) =
⋃

qaccept

R−∅qinitqaccept , (9)

where each

R−∅qinitqaccept
= R−{q1}qinitqaccept ∪R

−{q1}
qinitq1(R−{q1}q1q1 )∗R−{q1}q1qaccept . (10)

Equation (9) repeats the definition Run(M) of accepting runs, while equation
(10) says that either an accepting run does not pass q1 internally, or, it can
be decomposed into the concatenation of the following segments: qinit  q1,
zero or more loops on q1, and q1  qaccept, where each segment does not pass q1

internally. The equation in (10) can be further generalized to, for each 0 ≤ i < k,

R−Qiqq′ = R−Qi+1

qq′ ∪R−Qi+1
qqi+1

(R−Qi+1
qi+1qi+1

)∗R−Qi+1

qi+1q′
, (11)
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where Qi = {q1, · · · , qi} and Q0 = ∅. Notice that R−Qkqq′ is the set of (one-

step) transitions from q to q′. Also notice that, for every run α ∈ R−Qiqq′ , the

way that the α is, exclusively, in either R−Qi+1

qq′ or R−Qi+1
qqi+1 (R−Qi+1

qi+1qi+1)∗R−Qi+1

qi+1q′
.

When it is the latter case, the way that the α is decomposed into the following

concatenation is unique: R−Qi+1
qqi+1 , zero or more loops with each in the form

R−Qi+1
qi+1qi+1 , and followed by R−Qi+1

qi+1q′
.

We now delete some loops internally in α ∈ R−Qiqq′ as follows (in this order):
(deletion procedure)

• all the loops in R−Qi+1
qi+1qi+1 ; i.e., loops at qi+1 that do not internally pass

q1, · · · , qi+1,

• all the loops in R−Qi+2
qi+2qi+2 ; i.e., loops at qi+2 that do not internally pass

q1, · · · , qi+2,

• · · · .

After the deletions, we derive a unique basic run β for the given α. We use
[β] to denote the set of all α’s in R−Qiqq′ that derive the basic run β. Clearly,
[β] ∩ [β′] = ∅ when β 6= β′. The set of all such basic runs obtained from all α’s

in R−Qiqq′ is denoted by B−Qiqq′ . We then have

R−Qiqq′ =
⋃

β∈B−Qi
qq′

[β], (12)

where the union is disjoint. The set B−Qiqq′ is finite, for every 0 ≤ i ≤ k. This

is because the length of a basic run in B−Qiqq′ is at most 1 + 2 · 2k−i. We shall
emphasize that a basic run can still contain a loop.

Conversely, every α can be generated in a unique way from a basic run β in
B−Qiqq′ by the following insertion procedure (which is the result of reversing the
aforementioned deletion procedure):

(insertion procedure)

• for each appearance (there is at most one) of qi+1 in the original β, we

insert zero or more loops in R−Qi+1
qi+1qi+1 , where each such loop is generated,

recursively, from a basic run in B
−Qi+1
qi+1qi+1 ;

• for each appearance (there are at most two) of qi+2 in the original β, we

insert zero or more loops in R−Qi+2
qi+2qi+2 , where each such loop is generated,

recursively, from a basic run in B
−Qi+2
qi+2qi+2 ;

• for each appearance (there are at most four) of qi+3 in the original β, we

insert zero or more loops in R−Qi+3
qi+3qi+3 , where each such loop is generated,

recursively, from a basic run in B
−Qi+3
qi+3qi+3 ;
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• · · · .

Clearly, two distinct ways A and B that the β uses will generate two distinct
runs. For instance, in the first round, if A inserts two qi+1-loops while B inserts
one qi+1-loop, no matter what is in the remaining rounds, A (resp. B) will
generate a run internally with three (resp. two) qi+1’s. In the first round,
suppose that both A and B insert only one loop. However, the qi+1-loop inserted
by A is different than the one by B. Clearly, no matter what is in the remaining
rounds, both A and B will generate a run that internally has exactly two qi+1’s.
However, the two runs generated by A and B respectively are distinct. This
is because, between the two qi+1’s, the run generated by A (resp. B) is the
qi+1-loop inserted by A (resp. by B). The idea can be similarly used when
A and B are distinct in the subsequent runs. In summary, combining the fact
in (12), we are safe to conclude that every α ∈ R−Qiqq′ can be unambiguously

generated from a basic run β in B−Qiqq′ , using the above insertion procedure.
We now emphasize two points. First, when we expand the recursions inside

the insertion procedure, it becomes a procedure of inserting basic runs (which

are loops) in B−Qiqjqj , j > i, repeatedly into a basic run in B−Qiqq′ . Second, because
of the unambiguity, we can properly renaming each appearance of a symbol
in all of the basic runs so that a run generated by a β in B−Qiqq′ is one-to-
one correspondent to the run after the renaming. These two points give a
replacement system G for R−Qiqq′ below:

• The first level of G contains all the basic runs qγq′ in B−Qiqq′ . For every
individual appearance of a symbol, say e, in γ, we rename it with a new
symbol (1, γ, i, l, e), where l is the position of the appearance in γ;

• The second level contains all the replacement rules in the form of

(1, γ, i, l, qj)← (1, γ, i, l, qj)γ
′(1, γ, i, l, qj) (13)

where j ≥ i+ 1, (1, γ, i, l, qj) is a symbol in the first level, and qjγ
′qj is a

basic run in B
−Qj
qjqj . We now, similar to the case of the first level, for every

rule in (13), rename every individual appearance of every symbol e in γ′

with a new symbol (2, γ′, j, l′, e), where l′ is the position of the appearance
in γ′;

• The third level contains all the replacement rules in the form of

(2, γ, i+ 1, l, qj)← (2, γ, i+ 1, l, qj)γ
′(2, γ, i+ 1, l, qj) (14)

where j ≥ i+2, (2, γ, i+1, l, qj) is a symbol in the second level, and qjγ
′qj

is a basic run in B
−Qj
qjqj . We now, similar to the case of the first level, for

every rule in (14), rename every individual appearance of every symbol
e in γ′ with a new symbol (3, γ′, j, l′, e), where l′ is the position of the
appearance in γ′;

• · · · .

10



In G shown above, a symbol e, which is either a state symbol or an input
symbol in M , can be renamed into finitely many new symbols; we use 〈e〉 to
denote the set of the new symbols. Notice that the p and q′, respectively as
the first and last symbol in a basic run in the first level, are not renamed in G.
The language L(G) generated by the replacement system G is “almost” R−Qiqq′

in the following sense: for every α, we have that α ∈ L(G) iff ᾱ ∈ R−Qiqq′ , where
ᾱ is the result of replacing every symbol in 〈e〉 in α with e, for all e’s that
are renamed. Additionally, because of the unambiguity, the mapping from α
to ᾱ is one-to-one and, obviously, length-preserving. Suppose now that P is a
Presburger formula over the counts of symbols in the alphabet of R−Qiqq′ . We
now replace, for every symbol e renamed in G, #e with∑

e′∈〈e〉

#e′ , (15)

in P and use P ′ to denote the resulting Presburger formula over the counts of
symbols in the alphabet of G. Equation (15) says that the symbols counts in
α “remain” in ᾱ. That is, for every α, we have that α ∈ L(G) ∧ P ′(#(α)) iff

ᾱ ∈ R−Qiqq′ ∧ P (#(ᾱ)). Let L′ be the counting replacement language specified
by L(G) and P ′. We then have λR−Qi

qq′
= λL′ . Now taking q = qinit, q

′ = qaccept,

i = 0 (noting that Q0 = ∅), we immediately have λR−∅qinitqaccept
= λL′ . To

emphasize that the L′ is for the chosen qaccept, we write the L′ as L′qaccept , the
G as Gqaccept

, and the P ′ as P ′qaccept .
Without of loss of generality, we assume that alphabets of L′qaccept are dis-

tinct. We can easily construct a replacement system G, as the “union” of all
the Gqaccept

’s, to generate

L(G) =
⋃

qaccept

L(Gqaccept).

Now, take P ′ as ∨
qaccept

P ′qaccept ∧#qaccept = 1.

(Notice that qaccept at the end of a basic run in the first level of Gqaccept (as
well as in G) is not renamed.) Combining the fact that (9) is a disjoint union,
the result follows since the counting replacement language L′, specified by L(G)
and P ′, satisfies λL′ = λRunP (M). �

A replacement system is simple if it has at most two levels. A regular re-
placement language is simple if it is generated by a simple replacement system.
A counting replacement language is simple if it is specified by a simple regular
replacement language and a Presburger formula. The third step in the proof
for the main theorem establishes that the information rate of a counting re-
placement language can be computed through the information rate of a simple
counting replacement language.
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The proof of Lemma 3 is difficult. We sketch the ideas used in the proof.
In the lemma, L is a given counting replacement language. Hence, L can be
specified by a regular expression with nested Kleene stars. In order to obtain
the desired simple counting replacement language L′, we must “collapse” the
nested Kleene stars. There is a straightforward way for the collapsing. For
instance, ((ab)

∗
c)∗ can be converted into (ab)

∗
c+ + Λ, where the latter one does

not have any nested Kleene star and the two expressions have the same Parikh
map. However, such a straightforward approach, used in computing the Parikh
map of a regular language, has a problem in establishing Lemma 3. Using
the approach, the resulting simple counting replacement language L′ may not
preserve the information rate. Therefore, we need a more sophisticated approach
that, roughly speaking, keeps both the information rate (up to a constant ratio
of K) and the Parikh map. The proof uses a one-to-one encoding that stretches
a word in L (this is where the constant K in the lemma comes from) and moves
around the nested loops in the word so that the resulting word contains at most
one level of loops.

Lemma 3. Suppose that L is a counting replacement language. There are a
constant K and a simple counting replacement language L′, constructed from
the specification of L, such that λL = K · λL′ .

Proof. Let L be specified by L(G) and a Presburger formula P , where G is
a replacement system. It suffices to consider the case when the first level of
G contains exactly one base word. The reason is as follows. Suppose that
w1, · · · , wm, for some m ≥ 1, are all the bases words in G. Gi is a replacement
system whose first level contains only one base word wi and all other levels are
exactly the same as those in G. Clearly, L(G) is the disjoint union ∪iL(Gi). Let
Li be the counting replacement language specified by L(Gi) and a Presburger
formula P . Clearly, L is also the disjoint union ∪iLi and hence λL = maxi λLi .
Therefore, it suffices to show that the information rate of Li, which contains
only one base word, satisfies the theorem. Similarly, it suffices to consider the
case when every rule in the second level is applied at least once (otherwise, the
rule can be deleted).

Assume that G has k > 2 levels. Now we modify G into a new replacement
system G′ with k− 1 levels. Let w be the only base word in the first level of G.
Consider a symbol a that appears in w. By definition, a appears exactly once in
w. If there is a rule a← aua (for some u) in the second level of G, then the a is
called an active symbol. Now, let w′ = w. Then, for every active symbol a and
every rule a← aua (for some u) in the second level of G, we do the following:

• create a new rule a← a〈au〉a, where 〈au〉 is a new symbol;

• for each symbol b (from left to right) in u, append ♣〈aub〉b after w′; i.e.,
w′ := w′♣〈aub〉b, where the delimiter ♣〈aub〉 is a new symbol;

• create a new rule, for each symbol b in u, b ← bâubb, where âub is a new
symbol.

12



At this moment, we add w′ into the first level of G′ and all the rules that are
created into the second level of G′. Now, for each i ≥ 2, we add all the rules in
the (i+ 1)-level of G into the i-level of G′. Clearly, G′ has only k− 1 levels and
has w′ as its only base word.

We now explain the intuition underneath the construction of G′. Let a be
an active symbol in the base word w of G. An application of a rule a ← aua
in the second level of G is simulated by an application, on the w part of the
base word w′ of G′, of the rule a ← a〈au〉a in the second level of G′. Notice
that, in G′, there is no rule that can replace the symbol 〈au〉. This causes a
problem. Suppose that b is a symbol in u and we have a rule b ← bvb in the
third level of G. After the application of a← aua in G, there could be zero or
more applications of b ← bvb later on the u. Where are we going to simulate
these applications in G′? The key idea of the construction is to simulate these
application of b← bvb, in G′, on the part ♣〈aub〉b of w′. Notice that, in w′, this
part is after the w part. But, there are still problems. There is only one ♣〈aub〉b
part in w′. However, in G, multiple applications of a ← aua will obviously
create multiple instances of u’s. Where are the u’s in G′? In G′, we treat the
u’s as m number of b’s, for each b in u, where m is the number of instances of the
u’s. Hence, there must be a rule in G′ to create those b’s, which is exactly the

job of the rule b ← bâubb created. Certainly, we need a Presburger constraint
(defined in a moment) to carefully control the number of applications of each

such rule b ← bâubb. m − 1 applications of the rule b ← bâubb result in the
following sequence:

bâubbâub · · · bâubb (16)

with m number of b’s and (m − 1) number of âub’s. Now, we go back to
the aforementioned rule b ← bvb in G. This rule can be applied, for zero or
more times, over an instance u (suppose that it is the j-th instance) that was
generated earlier as a result of applying a ← aua in G. These applications of
the rule b← bvb in G are simulated by the same rule in G′ applied over the j-th
b in (16). By definition of G, symbols a and b can be uniquely associated with
the rule a ← aua. Hence, the applications of b ← bvb in G′ can be uniquely
translated back to the applications of the rule b← bvb inG over the j-th instance
of u’s. All the higher-level rules, i.e., fourth level, and, subsequently, fifth level,
etc., in G are faithfully simulated over the generated v’s in G′. Notice that,

these v’s were initially generated by the rules b ← bvb, along with b ← bâubb,
from the ♣〈aub〉b in w′. In summary, the construction of G′ defines a translation
a word α ∈ L(G) to a word α′ ∈ L(G′).

We now look at a simple example. Consider a G where the base word is a,
and the second level rule is a← aba, and the third level rule is b← bcb. Now, the

G′ is with base word a♣〈abb〉b, with second level rules: a ← a〈ab〉a, b ← bâbbb,
and b ← bcb. Take a word α = abcbcbaba ∈ L(G). This word corresponds,

uniquely, to the word α′ = a〈ab〉a〈ab〉a♣〈abb〉bcbcbâbbb in L(G′). The part that
is before the delimiter ♣〈abb〉 in α′ encodes two applications of a ← aba in G

over its base word a (so now we have β = ababa). The part bcbcbâbbb that is
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after the delimiter ♣〈abb〉 in α′ encodes two words bcbcb and b, delimited by the

âbb. The first word bcbcb represents two applications of b ← bcb in G over the
first b in β, while the second word b represents zero application of b← bcb in G
over the second b in β. The counts in α and α′ are the following:

• the second level rules are simulated for the same number of times: #a(α) =
#a(α′);

• the third level rules are also simulated for the same number of times:
#b(α) = #b(α

′), which is also #〈ab〉(α
′) + (#b(α

′)−#
âbb

(α′)− 1);

• other counts in α also remain: #c(α) = #c(α
′);

• α′ should be consistent; i.e., be able to translate back to an α:

#
âbb

(α′) is correctly related to the number of times that a← aba
is applied. That is, #〈ab〉(α

′) ≥ 1, and, #〈ab〉(α
′)−1 = #

âbb
(α′)

(recall that, as we assumed at the very beginning of the proof,
every second level rule is applied at least once).

The translation from an α to the unique α′ is straightforward, as shown above.
However, not every α′ in L(G′) can be translated backwards uniquely. In above,
the consistent constraint, placed over the symbol counts of α′, is a Presburger
formula to guarantee the unique backwards translation.

For a general G, the consistent constraint is similar:

for each active symbol a and each second level rule a← aua, #âu(α′)
is correctly related to the number of times that a← aua is applied.
That is, #〈au〉(α

′) ≥ 1, and, for every symbol b in u,

#〈au〉(α
′)− 1 = #

âub
(α′). (17)

The symbols counts in α also remain in α′; i.e., for every symbol a in G,

#a(α) = #a(α′). (18)

If the lengths of α and α′ were the same, then we would complete the con-
struction of G′ already since we could continue to collapse the G′ till it has two
levels. Unfortunately, the lengths are not the same. According to (18), α′ is
longer than α because the new symbols are introduced into w′, for each active
symbol a in w, each second level rule a← aua, and for each symbol b in u:

〈au〉, âub,♣aub. (19)

The counts of these symbols in α′ are in the following, for each active symbol
a:

• #〈au〉(α
′) is the number of times that the second level rule a← aua in G

is fired. Hence, ∑
all second level rules a←aua

#〈au〉(α
′) = #a(α)− 1; (20)
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• for every second level rule a← aua, and for each symbol b in u, #
âub

(α′)+1
is the number of times that the second level rule a ← aua in G is fired,
according to (17). Combining the fact that #♣aub(α

′) = 1, we have, for
every second level rule a← aua,∑

b in u

#
âub

(α′) + #♣aub(α
′) = |u| ·#〈au〉(α′). (21)

Using (21) and (20), for each active symbol a, the total counts of all the symbols
in (19) together with a itself, in α′, is therefore

Na = #a(α)− 1 +
∑

all second level rules a←aua

|u| ·#〈au〉(α′) + #a(α). (22)

We now make Na to be a linear term of #a(α). Let Ka be the LCM (Least
Common Multiple) of the lengths |u|, for u in a← aua; i.e.,

Ka = lcm(|u| : a← aua is a second level rule),

where, by default, any nonnegative integer is a multiple of 0. We modify every
rule a← a〈au〉a, created earlier in G′, into the following form:

a← a〈au〉 ]au · · · ]au︸ ︷︷ ︸
Ka−|u|

a, (23)

where ]au is a new symbol. (When |u| = 0, we do modify the rule; i.e., there
is no ]au in (23).) In fact, every symbol in the block ]au · · · ]au in (23) should
be renamed into a new one; for notational convenience, we just leave them
unrenamed since it won’t cause any confusion. The purpose of the added block
of length Ka − |u| in (23) is to make every application of a ← a〈au〉a created
earlier generate additional Ka − |u| symbols. Now, (19) contains one more new
symbol ]au, and therefore, the Na in (22), as the counts of all these new symbols
as well as the a itself, is then modified into

N ′a = Na +
∑

all second level rules a←aua with |u|>0

(Ka − |u|) ·#〈au〉(α′). (24)

Using (22) and (20), we can re-write (24) into

N ′a = (Ka + 2) ·#a(α)− (Ka + 1). (25)

To make constant term in (25) disappear, we modify the base word w′ in G′ by
appending Ka+1 number of new symbols ]a (again, for notational convenience,
we do not rename them). In this case, the total count Na is now

N ′′a = (Ka + 2) ·#a(α). (26)

In summary, the length of α′ is longer than the length of α, because of the new
symbols concerning the active symbols a; i..e,

|α′| = |α|+
∑
a

(Ka + 1)#a(α). (27)
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Though we can not make the lengths of α and α′ be the same, we can, instead,
make |α′| be a constant multiple of |α|, as follows.

One can imagine that every a in α is “expanded” into Ka+ 2 many a’s in α′

so that we have (26). The expansion ratio is not uniform among the a’s. To fix
this, we take K as the LCM of all the (Ka + 2)’s. Now, for every rule in (23),
we add additional K − (Ka + 2) many ]au’s. As a result, (26) is accordingly
changed to

N ′′a = (Ka + 2) ·#a(α) + (K − (Ka + 2)) · (#a(α)− 1).

That is,
N ′′a = K ·#a(α)− (K − (Ka + 2)).

To get rid of the constant term, we can similarly append K − (Ka + 2) many
]a to the base word w′. In this case,

N ′′a = K ·#a(α). (28)

To make |α′| be a constant multiple of |α|, we only need to expand every symbol
d, that is not an active symbol, into K many d’s in the following sense.

• if the d is in the base word w, then in w′, we replace the d with d ]d · · · ]d︸ ︷︷ ︸
K−1

;

• if the d is in some u with a ← aua being a second level rule in G and
the d appears in the base word w′, then in w′, we also replace the d with
d ]d · · · ]d︸ ︷︷ ︸

K−1

;

• if the d is in a rule d← dvd of a level l higher than 2 in G, then, according
to the construction of G′, this rule is now a rule in the l − 1 level of G′.
We change the rule into

d← d ]d · · · ]d︸ ︷︷ ︸
K−1

vd.

Finally, we have |α′| = K · |α|.
We shall emphasize that the counts in (18) are still preserved. That is, for

a Presburger formula P on the counts of L(G), P (#(α)) iff P (#(α′)). Let L
be the counting replacement language specified by L(G) and P , and L′ be the
counting replacement language specified by L(G′) and P ∧ Q, where Q is the
consistent constraint in the construction of G′. The one-to-one mapping from
α to α′ shows the following: there is a one-to-one mapping f between L and L′

such that, for each α ∈ L, f(α) is with length K · |α|. That is, λL = K · λL′ . In
other words, once the information rate of L′ is computed, so is the information
rate of L.

The collapsing from G to G′ can be continued until G′ is simple (i.e., of two
levels). The result follows. �
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The proof of Lemma 4 is a complex reduction from computing the infor-
mation rate of a simple counting replacement language to solving a convex
minimization problem, which is well-known computable. (It really says that the
information rate of a simple counting replacement language is the solution of a
convex minimization problem.)

Lemma 4. The information rate of a simple counting replacement language is
computable.

Proof. Suppose that L is a simple counting replacement language specified
by L(G) and a Presburger formula P on counts of symbols in G, where G is,
without loss of generality, of two levels. Similar to the beginning of the proof
of Lemma 3, it suffices to consider the case where G contains exactly one base
word w.

Recall that, by definition, every symbol a in w appears exactly once in w.
We use Γ to denote the set of a’s in w such that there is a rule ra, called an
a-rule, in G that is in the form of a ← aua, for some u. Assume that Γ 6= ∅
(otherwise w is the only word generated by G and hence λL is computed as 0).
The length |ra| of the rule is the length of au. The vector of symbol counts
#(ra) is defined as #(au). There could be multiple a-rules for a given a; we use
Ra to denote all of them. The entire set of rules is denoted by R = ∪a∈ΓRa.
Consider a word α ∈ L. That is, α is generated by G and P (#(α)) holds.
Suppose that, in the process of generating the α, each rule r ∈ R is applied tr
times. Clearly,

#(α) = #(w) +
∑
r∈R

tr ·#(r).

We now define a Presburger formula Q(tr : r ∈ R) over all the variables tr with
r ∈ R as P (#(w) +

∑
r∈R tr ·#(r)), noticing that the #(w) and #(r)’s are all

constant vectors. Obviously,

α ∈ L ⇐⇒ α ∈ L(G) ∧Q(tr : r ∈ R). (29)

The length N(tr : r ∈ R) of α can be expressed as a linear polynomial∑
r∈R

tr · |r|+ |w| (30)

in the tr’s.
By definition,

λL = lim
N→∞

logSN
N

, (31)

where SN is the number of words in L with length N . In below, Str:r∈R denotes
the number of words α in L such that, in generating the α from G, each rule
r ∈ R is applied tr times. Since G is a replacement system,

SN =
∑

N(tr:r∈R)=N

Str:r∈R. (32)
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Observing that the number of vectors (tr : r ∈ R) satisfying N(tr : r ∈ R) = N
is at most Nk where k = |R| is the number of rules in G, we therefore have,
from (32),

max
N(tr:r∈R)=N

Str:r∈R ≤ SN ≤ Nk · max
N(tr:r∈R)=N

Str:r∈R. (33)

By default, the max in a set of numbers is 0 if the set is empty. Using (33), the
definition in (31) can be rewritten into:

λL = lim
N→∞

max
N(tr:r∈R)=N

logStr:r∈R

N
. (34)

Let Ŝtr:r∈R be the number of words α generated by G where each rule r is
applied for tr times. From (29), we can rewrite (34) as

λL = lim
N→∞

max
Q(tr:r∈R)∧N(tr:r∈R)=N

log Ŝtr:r∈R

N
. (35)

By definition, Ŝtr:r∈R can be computed as follows. Recall that every position
of the base word w has a distinct symbol. Consider an a ∈ Γ. Each a-rule ra
in Ra will be applied for tra times. Then, what is the number Ŝtra :ra∈R of
words that can be generated from the a appearing in w? We first look at an
example. Consider two rules a← aba and a← aca, which fires t1 and t2 times,
respectively. Starting from a, there are many words that can be generated; e.g.,

abab · ab︸ ︷︷ ︸
t1

acac · · · ac︸ ︷︷ ︸
t2

a. The total number of such words is (t1+t2)!
t1!t2! . In general, we

have a similar form,

Ŝtra :ra∈R =
(
∑
ra∈R tra)!∏
ra∈R tra !

. (36)

Continuing with the previous example, we consider two additional rules d← ded
and d ← dfd, which fires t3 and t4 times, respectively. Starting from ad, what

is the total number of words generated? The total number is (t1+t2)!
t1!t2! ·

(t3+t4)!
t3!t4! .

In general, we also have a similar form

Ŝtr:r∈R =
∏
a∈Γ

Ŝtra :ra∈R. (37)

Consider the term
log Ŝtr :r∈R

N in (35), which, using (37), can now be written in
the form of

log Ŝtr:r∈R

N
=

∑
a∈Γ

log Ŝtra :ra∈Ra
N

. (38)

The term
log Ŝtra :ra∈Ra

N in (38) is actually, using (36),

log Ŝtra :ra∈Ra
N

=
log(

∑
ra∈Ra tra)!

N
−

∑
ra∈Ra log tra !

N
. (39)
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Using the Stirling approximation

lnn! = n lnn− n+O(lnn) (40)

in every factorial in (39), we obtain

log Ŝtra :ra∈R

N
=

(
∑
ra∈Ra tra) log(

∑
ra∈Ra tra)

N
−

∑
ra∈Ra tra log tra

N
+ ε, (41)

where

ε =
O(log

∑
ra∈R tra)−

∑
ra∈Ra O(log tra)

N
satisfying ε→ 0 as N →∞, since

∑
ra∈Ra tra ≤ N according to (30) and (35).

Therefore, it is safe to remove the ε from (41) without affecting the value of λL
in (35) that uses (38), which is now, using (41),

log Ŝtr:r∈R

N
=

∑
a∈Γ

(
(
∑
ra∈Ra tra) log(

∑
ra∈Ra tra)

N
−

∑
ra∈Ra tra log tra

N
). (42)

From now on, we only look at (35) and (42). The N and the tr’s in (42)
are specified in (35) as values satisfies Q(tr : r ∈ R) ∧N(tr : r ∈ R) = N . The
semilinear set that is defined by the Presburger formula Q is, by definition, a
finite union of linear sets Q̂1, · · · , Q̂m, for some m. That is, Q can be expressed
as Q1∪· · ·∪Qm where each Qi is a Presburger formula that defines the linear set
Q̂i. Let λi be the λL in (35) when the Q in (35) is replaced with Qi. Then, since
λL = maxi λi, it suffices for us to show that each λi is computable. Therefore,
we assume that the Q in (35) is already a Presburger formula that defines a
linear set Q̂. In below, we will prove that λL in (35) is computable.

Since Q̂ is a linear set, there are nonnegative integer variables s1, · · · , sm, for
some m, and, for each r ∈ R, a linear polynomial (with nonnegative coefficients
c1,r, · · · , cm,r, cr),

lr(s) = c1,rs1 + · · ·+ cm,rsm + cr, (43)

where s denotes the vector (s1, · · · , sm), such that Q(tr : r ∈ R) iff there is s
satisfying, for each r ∈ R,

tr = lr(s). (44)

Therefore, using (44), the equation in (35) can be written as

λL = lim
N→∞

max
N(s)=N

log Ŝlr(s):r∈R

N(s)
, (45)

where N(s) is the linear polynomial in (30), after replacing each tr with lr(s),
written

N(s) = d1s1 + · · ·+ dmsm + d, (46)

and
log Ŝlr(s):r∈R

N is the result of replacing each tra in (42) with lra(s). More
precisely,

λL = lim
N→∞

max
N(s)=N

∑
a∈Γ

(
la(s) log la(s)

N(s)
−
∑
ra∈Ra lra(s) log lra(s)

N(s)
), (47)
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where la(s) defined as

la(s) =
∑
ra∈Ra

lra(s), (48)

is a linear polynomial, written

la(s) = c1,as1 + · · ·+ cm,asm + ca. (49)

We can further simplify (47) into

λL = − lim
N→∞

min
N(s)=N

∑
a∈Γ

∑
ra∈Ra

lra(s)

N(s)
log

lra(s)

la(s)
. (50)

Recall that N(s) is the length of a word α generated from the base word w in
G, while each lra is the number of times that the a-rule ra is applied in the
generation. Therefore, ∑

a∈Γ

∑
ra∈Ra

lra(s) ≤ N(s). (51)

Using (43), (49) and (46), we replace lra(s), la(s), and N(s) in (50) and, after
simplification, we have

λL = − lim
N→∞

min
d1s1+···+dmsm+d=N

∑
a∈Γ

∑
ra∈Ra

c1,ras1+···+cm,rasm
d1s1+···+dmsm +

cra
d1s1+···+dmsm

1 + d
d1s1+···+dmsm

log

c1,ras1+···+cm,rasm
d1s1+···+dmsm +

cra
d1s1+···+dmsm

c1,as1+···+cm,asm
d1s1+···+dmsm + ca

d1s1+···+dmsm

.

(52)
Notice that, in (52), d1s1 + · · ·+ dmsm + d = N . So, as N →∞, all the terms

cra
d1s1+···+dmsm , d

d1s1+···+dmsm , and ca
d1s1+···+dmsm go to 0. Hence, it is safe to

replace the terms with 0 in (52) without disturbing the value λL. Also, the
constraint d1s1 + · · · + dmsm + d = N in (52) can be changed to d1s1 + · · · +
dmsm = N since d is a constant. That is

λL = − lim
N→∞

min
d1s1+···+dmsm=N

∑
a∈Γ

∑
ra∈Ra

c1,ras1 + · · ·+ cm,rasm
d1s1 + · · ·+ dmsm

log
c1,ras1 + · · ·+ cm,rasm
c1,as1 + · · ·+ cm,asm

, (53)

where we shall emphasize that all the coefficients c’s and d’s are nonnegative.
In particular, because the inequality in (51) holds for all s, whenever, in (53),
the coefficient di = 0 (for some i), we also have, for each a ∈ Γ, that ci,ra = 0
for every ra ∈ Ra and hence ci,a = 0. Therefore, without loss of generality, we
assume that none of the coefficients d1, · · · , dm is 0.

Now, we use a trick to make the N disappear in (53). Define, for each
1 ≤ i ≤ m,

θi =
disi
N

. (54)
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Now, the constraint d1s1 + · · ·+ dmsm = N in (53) is equivalent to∑
i

θi = 1 and each θi ≥ 0. (55)

Under the same constraint, (53) can be represented in θi’s:

λL = − lim
N→∞

min∑
i θi=1 and

each θi≥0

∑
a∈Γ

∑
ra∈Ra

(ĉ1,raθ1 + · · ·+ ĉm,raθm) log
ĉ1,raθ1 + · · ·+ ĉm,raθm
ĉ1,aθ1 + · · ·+ ĉm,aθm

, (56)

where ĉi,ra =
ci,ra
di

and ĉi,a =
ci,a
di

are nonnegative rational constants. Now, the

limit in (56) can be removed1 and, finally, we have the following: λL equals the
negative of

minH(θ1, · · · , θm), (57)

subject to ∑
i

θi = 1 and each θi ≥ 0, (58)

where H(θ1, · · · , θm) is the following function∑
a∈Γ

∑
ra∈Ra

(ĉ1,raθ1 + · · ·+ ĉm,raθm) log
ĉ1,raθ1 + · · ·+ ĉm,raθm
ĉ1,aθ1 + · · ·+ ĉm,aθm

. (59)

The function H(θ1, · · · , θm) defined in (59) satisfying (58) is convex, which can
be checked as follows. Let Lra(θ) = ĉ1,raθ1 + · · · + ĉm,raθm, and La(θ) =
ĉ1,aθ1 + · · ·+ ĉm,aθm. Therefore, (59) can be written as∑

a∈Γ

∑
ra∈Ra

La(θ)H(
Lra(θ)

La(θ)
), (60)

1There is a subtle argument in here, since the definition of θi uses N . Or more precisely,
the θi should be θi(N). For each fixed N , the min in (56) is achieved as H(θ∗1(N), · · · , θ∗m(N))
by θ∗i (N). Therefore, the λL in (56) is − limN→∞H(θ∗1(N), · · · , θ∗m(N)) and clearly,
λL ≤ −H(θ∗1 , · · · , θ∗m), where H(θ∗1 , · · · , θ∗m) is the min achieved in (57). Actually, from
the values θ∗1 , · · · , θ∗m, for every small ε > 0, one can find infinitely many N ’s such that
H(θ∗1(N), · · · , θ∗m(N)) ≤ H(θ∗1 , · · · , θ∗m) + ε. This is because H(θ1, · · · , θm) is continuous in
the region defined by (58) and the set

{(
d1s1

N
, · · · ,

dmsm

N
) : d1s1 + · · ·+ dmsm = N}

is exactly the (dense) set of all rational points in the region. This already gives λL ≥
−H(θ∗1 , · · · , θ∗m) − ε. Sending ε to 0, we have λL ≥ −H(θ∗1 , · · · , θ∗m). Hence, the limit
can be removed, since λL = −H(θ∗1 , · · · , θ∗m).
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where H(x) = x log x is a convex function. (By convention, 0 log 0 = 0 and
0
0 = 0. Also notice that, from (48) and (49), when La(θ) = 0, Lra(θ) has to

be 0.) It suffices for us to show each La(θ)H(
Lra (θ)
La(θ) ) is convex; i.e., for each

0 < δ < 1,

δLa(θ1)H(
Lra(θ1)

La(θ1)
) + (1− δ)La(θ2)H(

Lra(θ2)

La(θ2)
)

≥ La(δθ1 + (1− δ)θ2)H(
Lra(δθ1 + (1− δ)θ2)

La(δθ1 + (1− δ)θ2)
). (61)

Both La and Lra are linear functions. When La(θ1) or La(θ2) is zero, the
inequality in (61) is obvious. When La(θ1) 6= 0 and La(θ2) 6= 0, the inequality
in (61) follows directly using the linearity of La and Lra as well as the following
result (derived easily from Jensen inequality): if F is convex and each ci > 0
with 1 ≤ i ≤ q, for some q, then

∑
1≤i≤q

ciF (zi) ≥ (
∑

1≤i≤q

ci) F (

∑
1≤i≤q cizi∑
1≤i≤q ci

),

where we can take F as H, q = 2, c1 = δLa(θ1), c2 = (1−δ)La(θ2), z1 =
Lra (θ1)
La(θ1)

and z2 =
Lra (θ2)
La(θ2) .

Hence, computing λL is reduced to the convex minimization problem in (57)
subject to linear (in)equalities in (58), which is well-known to be polynomial
time solvable, numerically; e.g., using the interior point methods [17]. �

Directly from Lemmas 1, 2, 3, and 4, we have the following main theorem.

Theorem 3. The information rate of the language accepted by a reversal-bounded
deterministic counter machine is computable.

We currently do not have a precise time complexity of computing λL(M) where
M is the reversal-bounded DCM in Theorem 3. However, the lower bound of
the complexity is Ω(2m), where m is the number of states in M . The reason is
as follows. Consider an M with no counters and with m− 1 nested loops, each
with length 2. That is, the replacement system G obtained in Lemma 2 is of
m levels. Hence, in Lemma 3, after m − 2 rounds of collapsing, G becomes a
replacement system of two levels, where the length of each basic word is at least
2m−2.

Currently, we are not able to generalize the approach used in the above proof
to the case when M is nondeterministic. The reason was already mentioned
right after Lemma 1. However, when M is nondeterministic, a word in L(M)
may correspond to multiple accepting runs. Therefore, λL in the statement of
Lemma 1 now satisfies

λL ≥ λL(M), (62)

and hence, the information rate computed throughout the proof serves as a
computable upper bound of λL(M).
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Suppose that M is nondeterministic. Consider the one-to-many mapping
from input word w = a0 · · · an−1 in M to the “run” w′ (also of length n). We
use g(n) to denote the maximal number of distinct w′ one could possibly obtain.
Clearly, when M is highly nondeterministic, the number g(n) should be large.
Clearly, we have g(n) · Sn(L(M)) ≥ Sn(L). Hence, when

lim
n→∞

log g(n)

n
= 0, (63)

we have λL ≤ λL(M). Combining (62), we have λL(M) = λL and hence it is
computable when condition (63) holds.

We say that M is f(n)-choice if, during every execution of M over input word
of length n, M makes at most f(n) nondeterministic choices. M is sublinear-

choice if M is f(n)-choice for some f satisfying lim f(n)
n = 0. Suppose that M

contains K instructions (which is a constant). For an input word w ∈ L(M) of
length n, there are at most Kf(n) number of accepting executions that witness
the fact w ∈ L(M). Recalling the definition g(n), we have g(n) ≤ Kf(n), and

therefore, when lim f(n)
n = 0, condition (63) holds. Hence,

Theorem 4. The information rate of the language accepted by a sublinear-
choice reversal-bounded nondeterministic counter machine is computable.

Kuich and Maurer [16] investigate computation of information rate of tuple
languages from pseudolinear tuple grammars that, intuitively, cannot generate
more than one copy of a nonterminal symbol. It is worth studying the relation-
ship between the notion of “pseudolinear” and our notion of “sublinear-choice”,
noticing that our notion essentially limits the nondeterminism in a nondeter-
ministic machine.

Though currently it is open whether the information rate of a reversal-
bounded nondeterministic counter machine is computable, we can compute one
more upper bound as follows. It is known [3] that if M is a reversal-bounded
nondeterministic counter machine, we can effectively construct an equivalent
reversal-bounded nondeterministic counter machine M ′ that runs in dn time
for some effectively computable constant d. Without loss of generality, we as-
sume that M does not stay; i.e., on a move of M ′, it either changes a counter
value, or reads an input symbol. Again, we can also assume that each counter
in M ′ makes exactly one reversal and M ′ accepts with all counters being 0.
Let w be an input word of length n accepted by M ′. That is, there is an ac-
cepting run s1b1 · · · stbt over w, with t = dn. In above, each si is a state, and
each bi is either a symbol that M ′ reads from w, or a counter increment or
decrement symbol. Even though M ′ is a nondeterministic machine, the accept-
ing runs can be accepted by a reversal-bounded deterministic counter machine
M ′′. Hence, the information rate λL(M ′′) is computable. Notice that the ac-
cepting run (of length 2dn), after dropping all states and counter increment
or decrement symbols, becomes the input word w (of length n). Immediately,
we have S2dn(L(M ′′)) ≥ Sn(L(M ′)). Hence, λL(M ′) ≤ 2dλL(M ′′). Recalling
that M and M ′ are equivalent (i.e., accepting the same language), we have
λL(M) ≤ 2dλL(M ′′) and the latter is computable.
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Currently, it is unclear whether this upper bound or the one obtained in (62)
is better.

A 2-tape NFA M is an NFA with two input tapes. If M is a 2-tape NFA,
let T (M) = {(x, y) : M on input (x, y) accepts }. At each step, the transition
of M is of the form q : (a, b) → p, where a, b ∈ Σ ∪ {ε} (ε is the null symbol).
The transition means that M in state q reading a and b on the two tapes enters
state p. A deterministic 2-tape NFA is denoted by 2-tape DFA.

If M is a 2-tape DFA, let R(M) = {xy : (x, y) ∈ T (M)} and S(M) = {xȳ :
(x, y) ∈ T (M)}, where ȳ is the reverse of string y. We first show that if M is a
2-tape DFA, the information rate of R(M) is computable. We describe an NFA
M ′ accepting a regular language that simulates the 2-tape DFA M . If M uses
transition q : (a, b) → p, then M ′ in state q reads a and enters state s (a new
intermediate state), then reads b′ (a marked version of b) in state s and enters
state p (and thus the symbols in the second tape of M are marked). Clearly, the
number of words of length n accepted by M ′ is “almost” the number of words
in R(M) of length n, where “almost” here refers to a ratio of n + 1 (there are
at most (n+ 1) ways to decode an xy in R(M) back to a pair (x, y) in T (M));
i.e.,

Sn(R(M)) ≤ Sn(L(M ′)) ≤ (n+ 1) · Sn(R(M)).

This immediately gives λL(M ′) = λR(M). Similarly, one can obtain λL(M ′) =
λS(M). Since the information rate of the language accepted by the NFA M ′ is
computable, we have

Theorem 5. For 2-tape DFA M , the information rates of R(M) and S(M)
are computable.

The proof ideas can be generalized. Let M be a 2-tape DFA with reversal-
bounded counters. As before, R(M) = {xy : (x, y) ∈ T (M)} and S(M) = {xȳ :
(x, y) ∈ T (M)}. Clearly, we can construct a deterministic reversal-bounded
counter machine M ′ simulating M by interleaving the symbols in the two tapes
as before. Since the information rate of the language accepted by a determin-
istic reversal-bounded machine is computable (Theorem 3), it follows that the
information rate of R(M) as well as S(M) is computable.

The above can further be generalized to k-tape DFA with reversal-bounded
counters (k ≥ 2), where

T (M) = {(x1, ..., xk) : M on input (x1, ..., xk) accepts},

and
R(M) = {(xop1

1 ...x
opk
k ) : (x1, ..., xk) ∈ T (M)}.

where each opi is either “does nothing” or “reverse xi” (the choice depends only
on R).

From this we can see that there are rather complicated examples of languages
for which the information rate is computable. For example, the language L =
{x#y#xy : x, y ∈ (a + b)∗} has computable information rate, since the set of
triples T = {(x#, y#, xy) : x, y ∈ (a + b)∗} can be accepted by a 3-tape DFA
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(even without reversal-bounded counters). Note that L is not even a context-free
language.

As we have shown above, the information rate of the language accepted by a
multi-tape DFA is computable. In contrast, for multi-head DFAs, we have the
following.

A 2-head DFA is a DFA with two one-way heads. The move of the machine
depends on the state and the symbols scanned by the two heads. In a move,
the machine changes state and moves each head (independently) at most one
cell to the right.

Proposition 6. The information rate of the language accepted by a 2-head DFA
is not computable.

Proof. The proof idea follows Kaminger [14]. It is known (using the un-
decidability of the halting problem for Turing machines) that the emptiness
problem (i.e., is the language accepted empty?) for 2-head DFAs is undecid-
able. Given a 2-head DFA M , we modify it to a 2-head DFA M ′ such that
L(M ′) = {xw : x ∈ L(M), w ∈ (a + b)∗}, where a, b are new symbols. M ′

simply simulates M on x and when M accepts, M ′ reads w and accepts. Hence
L(M ′) is empty if and only if L(M) is empty, and moreover, L(M ′) is infinite
(and with rate 1) if and only if L(M) is not empty. Then information rate
λL(M ′) = 0 if and only if L(M ′) is empty, which is undecidable. �

3. Conclusions and discussions

We have shown that the information rate of a language accepted by a
reversal-bounded deterministic counter machine is computable. For the non-
deterministic case, we have provided computable upper bounds. We also con-
sidered the cases when the reversal-bounded NCM is sublinear-choice. For the
class of languages accepted by multi-tape DFAs, the information rate is com-
putable as well, as we have shown.
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