
CTL Model-checking for Systems with
Unspecified Components

�

[Extended Abstract]

Gaoyan Xie and Zhe Dang
School of Electrical Engineering and Computer Science
Washington State University, Pullman, WA 99164, USA

� gxie,zdang � @eecs.wsu.edu

ABSTRACT
In this paper, we study a CTL model-checking problem for sys-
tems with unspecified components, which is crucial to the quality
assurance of component-based systems. We introduce a new ap-
proach (called model-checking driven black-box testing) that com-
bines model-checking with traditional black-box software testing to
tackle the problem in an automatic way. The idea is, with respect to
some requirement (expressed in a CTL formula) about the system,
to use model-checking techniques to derive a condition (expressed
in terms of witness graphs) for an unspecified component such that
the system satisfies the requirement iff the condition is satisfied by
the component. The condition’s satisfiability can be established by
testing the component. Test sequences are generated on-the-fly by
traversing the witness graphs with a bounded depth. With a prop-
erly chosen bound, a complete and sound algorithm is immediate.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Formal methods, Model-checking; D.2.5 [Software Engineering]:
Testing/Debugging—Black-box testing; F.4.1 [Mathematic Logic
and Formal Languages]: Mathematical Logic—Temporal Logic

General Terms
Verification, Component-based systems

Keywords
Component-based systems, Model-checking, Black-box testing

1. INTRODUCTION
Although component-based software development [22, 6] enjoys

the great benefits of reusing valuable software assets, reducing de-
velopment costs, improving productivity, etc., it also poses serious
�
The research was supported in part by NSF Grant CCF-0430531.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

challenges to the quality assurance problem [3, 27] of component-
based systems. This is because prefabricated components could be
a new source of system failures. In this paper, we are interested in
one problem that system developers often face:

(*) how to ensure that a component whose design de-
tail and source code are unavailable will function cor-
rectly in a host system.

This is a rather challenging problem and yet to be handled in a satis-
fying way by available techniques. For instance, in practice, testing
is almost the most natural resort to solve the problem. When inte-
grating a component into a system, system developers may either
choose to thoroughly test the component separately or to hook the
component with the system and conduct integration testing. How-
ever, software components are generally built with multiple sets of
functionality [17], and indiscriminately testing all the functional-
ity of a software component separately is not only expensive but
also infeasible. Also, integration testing is often not applicable in
applications where software components are used for dynamic up-
grading or extending a running system [32] that is too costly or not
supposed to shut down for testing at all. Even without the above
limitations, purely testing techniques are still considered to be in-
sufficient to solve the problem for mission-critical or safety-critical
systems where formal methods like model-checking are highly de-
sirable. But, it is very common that design details and source code
of an externally obtained component are not available to the devel-
opers of its host system. This makes existing formal verification
techniques (like model-checking) not directly applicable to these
cases.

In this paper, we study how to extend CTL model-checking tech-
niques to solve the problem in (*). Specifically, we consider sys-
tems with only one such unspecified component. Denote such a
system as �����	��

������� , where � is the host system and �
is an unspecified component. Both � and � are finite-state tran-
sition systems (the actual specification of � is unknown), which
communicate with each other by synchronizing a finite set of given
input and output symbols. Then our problem can be further formu-
lated as to check whether

��������� ��� holds, where � is a CTL
formula specifying some requirement for ����� .

Our approach to solve the above model-checking problem is a
combination of both model-checking and traditional black-box test-
ing techniques (called model-checking driven black-box testing).
First, a model-checking procedure is used to derive from � and �
a condition � over the unspecified components � . The condition
� guarantees that the system ����� satisfies the requirement � iff
� is satisfied by � . The satisfiability of the condition � over the
unspecified component � is then checked through adequate black-

box testing on � with test-cases generated automatically from � .
Our study shows that the obtained condition � is in the form of a hi-
erarchy of communication graphs (called a witness graph), each of
which is a subgraph of � . Test-cases can be generated by travers-
ing witness graphs when the unspecified component � is a finite
or infinite state system. In particular, when � is a finite state sys-
tem (� is an upper bound of its state number), our study shows that
traversing the witness graphs up to a depth bounded by

������� �	� ��

�
is sufficient to answer the model-checking query, where

�
is the

number of CTL operators in the formula � and
�

is the state num-
ber in the host system � . Thus, in this case, with a properly chosen
search depth, a complete and sound solution is immediate.

The advantages of our approach are obvious: a stronger confi-
dence about the reliability of the system can be established through
both model-checking and adequate functional testing; system de-
velopers can customize the testing of a component with respect to
some specific system properties; intermediate model-checking re-
sults (the witness graphs) for a component can be reused to avoid
(repetitive) integration testing when the component is updated, if
only the new component’s interface remains the same; the whole
process can be carried out in an automatic way.

The rest of this paper is organized as follows. Section 2 defines
the system model and introduces some background on black-box
testing. Section 3 presents algorithms for deriving the condition
as well as testing the condition over the unspecified component.
Section 4 compares our research with some related work. Section
5 concludes the paper with discussions on issues to be solved in the
future.

Due to space limit, details of most algorithms are omitted in this
extended abstract. Readers can find the full version of this paper at
http://www.eecs.wsu.edu/ � gxie/.

2. PRELIMINARIES

2.1 The System Model
In this paper, we consider systems with only one unspecified

component, which is denoted by

����� �

� � ��� �
where � is the host system and � is the unspecified component.
Both � and � are finite-state transition systems communicating
synchronously with each other via a finite set of input and output
symbols.

Formally, the unspecified component � is viewed as a determin-
istic Mealy machine whose internal structure is unknown (but an
implementation of � is available for testing). We write � as a
triple
�� ������� � , where � is the set of � ’s input symbols, � is the
set of � ’s output symbols, and � is an upper bound for the number
of states in � (the � is given). Upon receiving an input symbol,
� may perform some internal actions, move to a new state, and
then send back an output symbol immediately. Assume that � has
an initial state ��������� and � is always in this initial state when the
system starts to run. A run of � is a sequence of alternating sym-
bols in � and � : ������� �	!��"!�#$#%# , such that, starting from the initial
state �&�%�'�%� , � outputs exactly the sequence � � � ! #$#$# when it is given
the sequence ��� �	!�#$#$# as input. In this sense, we say that the input
sequence is accepted by � .

The host system � is defined as a (-tuple

����) ��*,+ ��- ��*/.103242 �65 �
where

7 � is a finite set of states;

7) is a finite set of events;

7 * + ��-98 �;:<)=: � defines a set of environment transitions,
where

� � �6> � ��?@�9AB* + �'- means that � moves from state �
to state ��? upon receiving an event (symbol) >CA=) from the
outside environment;

7 * .103242 8 �D:E�F:;�G: � defines a set of communica-
tion transitions where

� � ��� �6� � ��?H�IAJ* .103242 means that �
moves from state � to state � ? when � outputs a symbol
�KA�� after � sends � an input symbol �;AC� ; and,

7 5L8 � defines � ’s initial states.

Without loss of generality, we further assume that, there is only one
transition between any two states in � (but in general, � could
still be nondeterministic).

An execution path of the system ��� � �

��� � � is a (potentially
infinite) sequence M of states and symbols, � �ONO� � !�N
! #$#$# , where each
� � A � , each N � is either a symbol in) or a pair � � � � (called a
communication) with ���PAQ� and �R�PA�� . Additionally, M satisfies
the following requirements:

7 � � is an initial state of � , i.e., � � AS5 ;

7 for each N �PAQ) ,
� ��� � N � � ���@T ! � is an environment transition of

� ;

7 for each N � �U���V��� , � ��������� �6����� ����T ! � is a communication
transition of � .

The communication trace of M , denoted by M W , is the sequence
obtained from M by retaining only symbols in � and � (i.e., the
result of projecting M onto � and �). For any given state �<A � ,
we say that the system ����� can reach � iff ����� has an execution
path M on which � appears and M W (if not empty) is also a run of � .
In the case when � is fully specified, the system can be modeled
as an I/O automaton [26] (which is not input-enabled) or as two
interface-automata [10]. In the latter case, the state number � can
also be considered as the number of states in an interface automaton
of � (instead of the state number in � itself).

s0 s1 s2

ack/yes

msg?

msg?

msg?

send/yes

s4 ack/yes

send/no

s3

Figure 1: An example system

As an illustrating example, consider a system ��� � �

��� � �
where the host system � keeps receiving messages from the out-
side environment and then sends the message through the unspeci-
fied component � . The only event symbol in � is � �OX , while �
has two input symbols ��Y �[Z and > N � that make � send a message
and ask � for an acknowledge respectively. � also has two output
symbols �\Y � and

�[]
that indicate whether the internal actions re-

lated with a previous input symbol succeeded or not (i.e., whether
a message is sent and whether an ack is available). The transition
graph of � is depicted in Figure 1 where we use a suffix ^ to de-
note events from the outside environment (e.g., msg?), and use an
infix _ to denote communications of � with � (e.g., �&Y �[Z _ �\Y �).

2.2 Black-box Testing
Black-box testing is a technique to test a system without knowing

its internal structure. A system is regarded as a “black-box” in
the sense that its behaviors can only be determined by observing
its implementation’s the input/output sequences, and a test over a
black-box is simply to run its implementation with a given input
sequence.

Studies [33] have shown that if only an upper bound for the num-
ber of states in the system and the system’s input/output symbols
are known, then its (equivalent) internal structure can be recovered
through black-box testing. Clearly, a naive solution to the CTL
model-checking problem over the system ����� is to first recover the
full structure of the component � through black-box testing, and
then solve the classic model-checking problem over the fully speci-
fied system composed from � and the recovered � . Notice that, in
the naive solution, when black-box testing is performed over � , the
selected test sequences have nothing to do with the host system � .
Therefore, it is desirable to find more sophisticated solutions such
as the algorithms introduced in below, which only select “useful”
test sequences w.r.t. the � as well as its temporal requirement.

The unspecified component � in this paper can be treated as
a black-box. And as a common practice in black-box testing, �
is assumed to always have a special input symbol ��Y ��Y � which
always makes it return to the initial state �&�%�'�%� regardless of its
current state. Throughout this paper, we use ������Y��	���SY � � to de-
note a test over the unspecified component � . Specifically, we use
�����RY
�����CY � � � � ���'Y ��Y ��
 � to denote the output sequence obtained
by testing � with the input sequence �'Y ��Y ��
 (i.e., run � from its
initial state with input sequence

). Suppose after testing � with

the input sequence ��Y ��Y ��
 , we continue to run � by feeding it with
an input symbol � . Corresponding to this � , we may obtain an out-
put symbol � from � , and we use ������Y������SY � � � � �1��� to denote
this � . Notice that this ������Y������SY � � � � �1��� is actually a shorthand
for “the last output symbol in ������Y��	���CY � � � � ����Y ��Y ��
 � � ”.

3. CTL MODEL-CHECKING DRIVEN
BLACK-BOX TESTING

In this section, we introduce algorithms for CTL model-checking
driven black-box testing for the system ����� �

� � ��� .

3.1 Ideas
Recall that the CTL model-checking problem is, for a Kripke

structure � � � ����* ���	� , a state �&�QA�� , and a CTL formula � ,
to check whether � � � � � � � holds. The standard algorithm [9] to
solve this problem operates by exhaustively searching the structure
and, during the search, labeling each state � with the set of subfor-
mulas of � that are true at � . Initially, labels of � are just � � �&� .
Then, the algorithm goes through a series of stages—during the � -
th stage, subformulas with the

� ������� -nested CTL operators are
processed. When a subformula is processed, it is added to the la-
bels of each state where the subformula is true. When all the stages
are completed, the algorithm returns

� �	�RY when �&� is labeled with
� , or � >�� �&Y otherwise.

However, for a system like ����� that contains an unspecified
component, the standard algorithm does not work, since transitions
of the host system � may depend on communications with the un-
specified component � , which cannot be statically resolved. For
instance, for the system depicted in Figure 1, a simple check like

� � ��� � �'! � ��� ���
 (i.e., whether �
 is reachable from � !) can-
not be done by the standard algorithm. In this section, we adapt the
standard CTL model-checking algorithm [9] to handle systems like

����� ; i.e., to check whether

������� � ��� � � � (1)

holds, where � � is an initial state in � and � is a CTL formula.
Our new algorithm follows a similar structure to the standard

one. It also goes through a series of stages to search � ’s state
space and label each state during the search. The labeling of a
state, however, is far more complicated when processing a subfor-
mula during each stage. The central idea of our algorithm can be
summarized as follows. When the truth of a subformula � at a state
� cannot be statically decided (due to communications), we con-
struct some communication graph (called a witness graph, written
as ���!) by picking up all the communications that shall witness the
truth of � at state � and then label � with the witness graph. The
witness graph serves as a sufficient and necessary condition for �
to be true at � , and this condition shall be later evaluated by testing
the unspecified component � .

Actually, we do not have to construct one witness graph for ev-
ery subformula at every state. Instead, we construct one witness
graph only for a subformula � that contains a CTL operator, and
this witness graph encodes all the witnesses (communications) to
the truth of the formula at every state in � . Thus, totally we shall
construct

�
witness graphs where

�
is the number of CTL operators

in � , and we associate each witness graph with a unique ID number
that ranges from " to

�$# � . Let % be the mapping from the witness
graphs to their IDs; i.e., % � ���! �� denotes the ID number of � ’s wit-
ness graph, and %'& ! � � � denotes the witness graph with � as its ID
number, ")(*�$(��# � . Notice that the witness graph to different
CTL operators shall be evaluated differently, so we call ���! as an
EX graph, an EU graph, or an EG graph when � takes the form of
� � X , �,+ X !.-;X

/
, or �10;X , respectively.

Specifically, we label a state � with � (resp. nothing) if � is
true (resp. false) at � regardless of the communications between
� and � . Otherwise, we shall label � with ���2% � ���! �� when
� takes the form of � � X , �,+ X\!3- X

/
, or �40 X , which means

that � could be true at � and the truth would be witnessed by some
(communication) paths starting from � in % � ���! �� . When � takes the
form of a Boolean combination of subformulas using 5 and 6 , the
truth of � at state � shall also be a logic combination of the truths of
its component subformulas at the same state. To this end, we shall
label � with an ID expression 7 defined as follows:

7 598;: �<� �
" ��#�# # � ��# � ;
7 7=: � 598 �
5>7 �?7@6A7 .

Let B denote the set of all ID expressions. For each subformula � ,
in addition to the possible witness graph of � , we also construct a
labeling (partial) function �DC): �FEGB to record the ID expression
labeled to each state during the processing of the subformula � . The
labeling function is returned when the subformula is processed.

In summary, our new algorithm to solve the model-checking
problem

��� ��� � �&� � ��� can be sketched as follows:

Procedure HI�RY N � HKJK� � � � � � �&� � ���
��LM: � �I�] N Y � �
HKJK� � ��� ���
If � � is labeled by �DL Then

If ��L � � � � �<� Then
Return

� �	��Y ;
Else

Return J Y � �ON 0 � � ���'Y ��Y � � � � ���DL � � � ��� ;
Else

Return � >P� ��Y .

In the above algorithm, a procedure �I�] N Y � �
HKJK� (will be intro-
duced in Section 3.2) is called to process all subformulas of � , and
it returns a labeling function �DL for the outer-most subformula (i.e.,
� itself). The algorithm returns

� ����Y when �
� is labeled with � by
��L or � >P� ��Y when � � is not labeled at all. In other cases, a proce-
dure J,Y � �ON 0 (will be introduced in Section 3.3) is called to test
whether the ID expression �DL � ���&� could be evaluated true at ��� .
3.2 Process a CTL Formula

Processing a CTL formula � is implemented through a recur-
sive procedure �I�] N Y � �
HKJK� . Recall that any CTL formula can
be expressed in terms of 6 , 5 , � � , �1- , and �40 . Thus, at each
intermediate step of the procedure, depending on whether the for-
mula � is atomic or takes one of the following forms: X ! 6LX
 , 5 X ,
� � X , �,+ X ! - X

/
, or �40 X , the procedure has six cases to con-

sider. When it finishes, a labeling function � C is returned for the
formula � .

3.2.1 Process atom
When � is an atomic formula, �I�] N Y � �
HKJK� simply returns a

function that labels each state where � is true with � .
3.2.2 Process negation

When � � 5�X , we first process X by calling �I�] N Y � �
HKJK� , then
construct a labeling function �DC for � by “negating” X ’s labeling
function � � as follows:

7 For every state � that is not in the domain of � � , let ��C label
� with � ;

7 For each state � that is in the domain of � � but not labeled
with � by � � , let �DC label � with ID expression 5>� � � �
� .

3.2.3 Process union
When � � X ! 6QX
 , we first process X ! and X
 respectively by

calling �I�] N Y � �
HKJK� , then construct a labeling function � C for �
by “merging” X ! and X
 ’s labeling functions � ��� and � ��� as fol-
lows:

7 For each state � that is in both � ��� ’s domain and � ��� ’s do-
main, let ��C label � with � if either � ��� or � ��� labels � with
� and label � with ID expression � ��� � �&� 6�� ��� � �
� otherwise;

7 For each state � that is in � ��� ’s domain (resp. � ��� ’s domain)
but not in � ��� ’s domain (resp. � ��� ’s domain), let � label �
with � ��� � �&� (resp. � ��� � �&�).

3.2.4 Process an EX subformula
When ��� � �FX , subformula X is processed first by recursively

calling �I�] N Y � �
HKJK� . Then, the procedure �I�] N Y � �
� � is called
with X ’s labeling function � � to create a witness graph for � and to
construct a labeling function � C .

In �I�] N Y � ����� , the witness graph for ��� � � X , called an � �
graph, is created as a triple: ���� �
 � �O� �O� � � , where

�
is a set of

nodes and � is a set of annotated edges. It is created as follows:

7 Add one node to
�

for each state that is in the domain of � � .

7 Add one node to
�

for each state that has a successor in the
domain of � � .

7 Add one edge between two nodes in
�

to � when � has a
transition between two states corresponding to the two nodes
respectively; if the transition involves a communication with
� then annotate the edge with the communication symbols.

The labeling function �DC is constructed as follows. For each
state � that has a successor � ? in the domain of � � , if � can reach
� ? through an environment transition and ��? is labeled with � by
� � then let � C also label � with � , otherwise let � C label � with
% � ���� O� .
3.2.5 Process an EU subformula

The case when � � �,+ X ! -BX

/

is more complicated. We first
process X\! and X
 respectively by calling �I�] N Y � �
HKJK� , then call
the procedure �I�] N Y � �
�1- with X ! and X
 ’s labeling functions � ���
and � ��� to create a witness graph for � and to construct a labeling
function �DC .

In �I�] N Y � ���1- , the witness graph for �	� �,+ X ! - X

/
, called

an EU graph, is created as a � -tuple: ���! : �
 � ��� ��� ��� �O� ��� � ,
where

�
is a set of nodes and � is a set of edges.

�
is constructed

by adding one node for each state that is in the domain of �DC , while
� is constructed in the same way as that of �I�] N Y � ��� � .

We construct the labeling function �$C recursively. First, let �DC
label each state � in the domain of � ��� with � ��� � �&� . Then, for
state � that has a successor � ? in the domain of � C , if � (resp. � ?)
is labeled with � by � ��� (resp. �DC) and � can reach ��? through an
environment transition, then let �DC also label � with � , otherwise
let �DC label � with % � ���! �� . Notice that, in the latter step, if a state �
can be labeled with both � and % � ���! �� , let �DC label � with � . Thus,
we can guarantee that the constructed �$C is indeed a function.

3.2.6 Process an EG subformula
To handle formula � � �40FX , we first process X by calling

�I�] N Y � �
HKJK� , then call the procedure �I�] N Y � ���40 with X ’s la-
beling function � � to create a witness graph for � and to construct
a labeling function �DC .

In �I�] N Y � ���10 , the witness graph for � , called an EG graph, is
created as a triple: ���! 1: �
 � �O� �O� � � , where

�
is a set of nodes

and � is a set of annotated edges. The graph is constructed in the
same way as that of �I�] N Y � ���1- .

The labeling function � C is constructed as follows. For each
state � that can reach a loop H through a path � such that every
state (including �) on � and H is in the domain of � � , if every state
(including �) on � and H is labeled with � by � � and no communi-
cations are involved on the path and the loop, then let �DC also label
� with � , otherwise let �DC label � with % � ���� O� .
3.3 Evaluate an ID Expression

As seen from the previous subsection, the �I�] N Y � �
HKJK� proce-
dure labels states with ID expressions for each subformula � , which
are essentially conditions under which the subformula � is true at
a state. Also, as seen in Section 3.1, the HI�RY N � HKJK� procedure
either gives a definite

� ����Y or � >P� ��Y answer to the CTL model-
checking problem, i.e.,

��� � � � � � � � � , or it reduces the problem
to checking whether the ID expression 7 � �DL � ����� can be eval-
uated true at state � � . The evaluation is carried out by a recursive
procedure J Y � ��N 0 , which is essentially a testing process.

According to the definition of an ID expression, J Y � ��N 0 only
needs to consider six cases. When the ID expression 7 is the value
� , J,Y � �ON 0 returns

� ����Y ; when 7 � 5 7 ! , J Y � ��N 0 returns
� >P� ��Y (resp.

� ����Y) if 7 ! is evaluated true (resp. false) at � � ; when
7 � 74! 6@7
 , J,Y � �ON 0 returns

� ����Y if either 74! or 7
 can be
evaluated true at � � , and returns � >P� ��Y if neither can be evaluated
true at �&� . The remaining three cases are when 7 represents an EX
graph, an EU graph, or an EG graph. We discuss the evaluation for
these three cases as follows.

3.3.1 Evaluate an EX graph

To check whether an EX graph 0 �
 � �O� �O� � � can be evalu-
ated true at a state �&� is simple. We just test whether the system �
can reach from � � to another state � ?PA������ � � � � along one edge
in 0 such that the ID expression � � � � ? � can be evaluated true at � ? .
3.3.2 Evaluate an EU graph

To check whether an EU graph 0 �
 � �O� �O� ��� �O� ��� � can be
evaluated true at a state � � , we need to traverse all paths � in 0
with length less than � �

,1 and test the unspecified component �
to see whether the system can reach some state ��? A������ � � ��� �
through one of those paths. In here, � is the given upper bound
for the number of states in the unspecified component � and

�
is

the number of nodes in 0 . In the meantime, we should also check
whether � ��� � � ? � can be evaluated true at � ? and whether � ��� � � � �
can be evaluated true at �&� for each ��� on � (excluding � ?) by calling
J Y � �ON 0 .

3.3.3 Evaluate an EG graph
To check whether an EG graph 0 �
 � �O� �O� � � can be eval-

uated true at a state � � , we need to find an infinite path in 0 ,
along which the system can run forever. The following procedure
J Y � � �40 first decomposes 0 into a set of SCCs. Then, for each
state � L in the SCCs, it calls another procedure � ��� J,Y � � �40 to test
whether the system can reach ��L from � � along a path not longer
than � �

,1 as well as whether the system can further reach � L from
�
L for � �=� times1. Here, � is the same as before while

�
is the

number of nodes in 0 .

Procedure J Y � � �40 � � �
 � ��� � 0��
 � � � ��� � ���
�.H�H : � � H � H is a nontrivial SCC of 0 � ;
J�: �
	���
������ � � � � A@H � ;
For each � AAJ Do

������Y������CY � � � � ���'Y ��Y ��
 � ;
If �>��� J Y � � �40 � � �
 � � � � � � 0 �O�VY�� Y
� ��� � N] � � � ��� � ;

Return
� ����Y ;

Return � >P� ��Y .

The maximal length of the paths that the above evaluation pro-
cess shall traverse depends on how many witness graphs are in-
volved in an ID expression, the sizes of the witness graphs, and the
number of states of the unspecified component. One can show that
the maximal length is bounded by

�����<�'�=� ��
O� , where
�

is the
number of CTL operators in the formula � , � is the upper bound
for the number of states in the unspecified component � , and

�
is

the number of states in the host system � .

3.4 Example
To better understand how our algorithms work, consider such a

model-checking problem for the system depicted in Figure 1: start-
ing from the initial state � � , whenever the systems reaches state �
 ,
it would eventually reach ��� ; i.e., the problem is to check whether� � � ��� � � � � �
�I0 � �
 E���� � � � holds. Taking the negation of the
original problem, we describe how the problem

� ��� �Q� � �
� � � � ,
where � � �,+ � �	�RY - � �
�� �40�5 � � �

/
is solved by our algorithms.

Step 1. Atomic subformula �
 (in �) is processed by Process-
CTL, which returns a labeling function � ! � � � �
 � �&� � .

Step 2. Atomic subformula � � is processed by ProcessCTL,
which returns a labeling function �
 �

� � ��� � �&� � .
Step 3. Subformula 5 � � is processed by

� Y X > � �]�� (see Section
3.2.2), which returns a labeling function ��� � � � ��� �?��� � � � ! �?�&� �� �
 �?��� �

� �� �?��� � .
1Since the unspecified component � is treated as a finite state tran-
sition system, these bounds can be easily obtained from a Cartesian
product of � and � .

Step 4. Subformula �10�5 ��! is processed by �I�] N Y � �
�40 (see
Section 3.2.6), which constructs an EG graph 0 ! �
 � �O� �O��� �
with an ID " (see Figure 2) and returns a labeling function �" �� � ��� � "�� � � �'! � "'� � � �
 � "'� � .

s0 s1 s2send/yes

Figure 2: The witness graph for �10�5 � !

Step 5. Subformula �
 � �40�5 ��� is processed by
� Y�X > � �]
�

and - � �]�� (see Section 3.2.3), which return a labeling function
��# � � � �
 �O"'� � .

Step 6. Finally, the formula �,+ � ����Y1- � �
$� �40�5 � � �
/

is pro-
cessed by procedure �I�] N Y � ���1- (see Section 3.2.5), which con-
structs an EU graph 0
 �
 � �O� �O� �&%(' + �O� # � 2 with an ID) (see
Figure 3) and returns a labeling function �DL	� � � � � �() � � � � ! �()'� �� �
 �()'� �

� ��� �() � � � � �()'� � .

s0 s1 s2

ack/yes

send/yes

s4 ack/yes

send/no

s3

Figure 3: The witness graph for �,+ � ����Y - � �
�� �40�5 � � �
/

When �I�] N Y � �
HKJK� finishes, �&� is labeled by ��L with an ID
expression) instead of � (i.e.,

� �	�RY). This indicates that the original
model-checking problem can not be statically decided and its truth
depends on a condition that the ID expression) be evaluated true at
� � . Hence, procedure J Y � �ON 0 must be called to test the condition
as follows.

Step 7. The ID expression) is evaluated by �*� >P� � > � Y
�M- since
the witness graph with ID) , 0
 constructed in Step 6, is an EU
graph.

Step 8. �+� >P� �R> � Y
�1- traverses every path � of 0
 that is be-
tween � � and some state in the domain of �"# (recall that �"# is the
fourth component of 0
 in Step 6 and �
 is the only state in its
domain) to see:

7 Whether the annotations (communication symbols) on � con-
stitute a run of the unspecified component � . For instance,
if ����� � � ! �
 � ! � � � ! �
 , then we need to test the “black-box”
� with an input sequence “ ��Y �[Z > N � ��Y �[Z ” to see whether
the corresponding output sequence is “ �\Y � �\Y � �\Y � ”.

7 Whether the ID expression � �&%(' + � �&� (recall that � �&%(' + is the
third component of 0
 in Step 6) can be evaluated true at
each state � along � . Obviously, that is true from the defini-
tion of � �&%(' + .

7 Whether the ID expression �"# � �
 � � " can be evaluated true
at �
 by calling �+� >P� �R> � Y
�40 (since the witness graph with
ID " , 0 ! constructed in Step 4, is an EG graph).

2 � �&%(' + labels every state with � (i.e.,
� ����Y).

7 �+� >P� �R> � Y
�40 tries to find in 0 ! a loop H as well as a path � !
from �
 to H such that the annotations (communication sym-
bols) on the concatenated path ��� ! H constitute a run of the
unspecified component � . As we can see from Figure 2, the
only loop in 0 ! is � ! �
 � !

� � �
. So, if � � � � � ! �
 � ! � � � ! �
 ,

then we need to test the “black-box” � with an input se-
quence “ ��Y �[Z > N � ��Y �[Z ��Y � Z ��Y �[Z/���O�

” to see whether the
output sequence is “ � Y � �\Y � �\Y � �\Y � �\Y � ��� � ”.

Step 9. If none of such paths satisfies the conditions in Step 8,
then � >P� ��Y is returned to indicate that the original model-checking
problem is true. Otherwise,

� �	��Y is returned. In this case, the maxi-
mal length of test sequences generated is bounded by (&� #) � �<�
��� according to the evaluation algorithms for EU graphs and EG
graphs.

It is easy to see that, in this example, J,Y � �ON 0 essentially would
be testing whether some communication trace (of bounded length)
of � ��� with two consecutive symbol pairs

� ��Y �[Z �\Y �
� is a run of
the unspecified component � .

Note. Notice that the condition �DL , a sufficient and necessary con-
dition on the unspecified component � to ensure the truth of the
model-checking problem

� ��� ��� � �&� � � � , does not depend on the
state number � of � . Therefore, even when � is an infinite-state
system, the condition can also be useful in generating test cases for
� and a testing procedure similar to J Y � �ON 0 could be formulated
to answer the model-checking query conservatively.

4. RELATED WORK
The quality assurance problem for component-based software

has attracted lots of attention in the software engineering commu-
nity. However, most work are based on the traditional testing tech-
niques and they consider the problem from component developers’
point of view; i.e., how to ensure the quality of components before
they are released.

Voas [34, 35] proposed a component certification strategy with
the establishment of independent certification laboratories perform-
ing extensive testing of components and then publishing the results.
Technically, this approach would not provide much improvement,
since independent certification laboratories can not ensure the suf-
ficiency of their testing either. Some researchers [28] suggested an
approach to augment a component with additional information to
increase the customer’s understanding and analyzing capability of
the component behavior. A related approach [36] is to automati-
cally extract a finite-state machine model from the interface of a
software component, which is delivered along with the component.
This approach can provide some convenience for customers to test
the component, but again, how much a customer should test is still
a big problem.

Bertolino et. al. [4] recognized the importance of testing a soft-
ware component in its deployment environment. They developed
a framework that supports functional testing of a software compo-
nent with respect to customer’s specification, which also provides a
simple way to enclose with a component the developer’s test suites
which can be re-executed by the customer. Yet their approach re-
quires the customer to have a complete specification about the com-
ponent to be incorporated into a system, which is not always possi-
ble.

In the formal verification area, there has been a long history of
research on verification of systems with modular structure. A key
idea [24, 23, 20] in modular verification is the assume-guarantee
paradigm: A module should guarantee to have the desired behavior
once the environment with which the module is interacting has the
assumed behavior. There have been a variety of implementations

for this idea (see, e.g., [19, 1, 29, 11, 8, 37]). The assume-guarantee
ideas can be applied to our problem setup if we consider the un-
specified component as the host system’s environment (though this
is counter-intuitive). But the key issue with the assume-guarantee
style reasoning is how to obtain assumptions about the environ-
ment. Giannakopoulou et. al. [16, 15] introduced a novel approach
to generate assumptions that characterize exactly the environment
in which a component satisfies its property. Their idea is the closest
to ours, still there are non-trivial differences: (1) theirs is a purely
formal verification technique (model-checking) while we combine
both model-checking and black-box testing to handle systems with
unspecified components; and (2) theirs uses a labeled transition
system to specify the reachability property of a system while we
use CTL formulas, which are more expressive and harder to manip-
ulate. Although not within the assume-guarantee paradigm, Fisler
et. al. [13, 25] introduced a similar idea of deducing a model-
checking condition for extension features from the base feature for
model-checking feature-oriented software designs. Unfortunately,
their algorithms are not sound (have false negatives). Furthermore,
their approach is not applicable to component-based systems where
unspecified components exist. This paper is also different from our
previous work [38] where an automata-theoretic approach is used
to solve a similar LTL model-checking problem.

In the past decade, there has also been lots of research on com-
bining model-checking and testing techniques for system verifi-
cation, which can be grouped into a broader class of techniques
called specification-based testing. But many of the work only uti-
lizes model-checkers’ ability of generating counter-examples from
a system’s specification to produce test cases against an implemen-
tation [7, 21, 12, 14, 2, 5], and they do not generalize the problem
setup in this paper. Peled et. al. [31, 18, 30] studied the issue of
checking a black-box against a temporal property (called black-box
checking). But their focus is on how to efficiently establish an ab-
stract model of the black-box through black-box testing , and their
approach requires a clearly-defined property (LTL formula) about
the black-box, which is not always possible in component-based
systems.

5. CONCLUSIONS
In this paper, we studied the CTL model-checking problem

� ������� � ��� � � �
where � is an unspecified component. Our approach is a com-
bination of both model-checking and traditional black-box testing
techniques. For such a problem, our algorithm HI�RY N � HKJ3� in Sec-
tion 3.1 either gives a definite

� ����Y
_ � >P� ��Y answer or gives a suf-
ficient and necessary condition in the form of ID expressions and
witness graphs. The condition is evaluated through black-box test-
ing over the unspecified component � . Test sequences are gen-
erated by traversing the witness graphs with bounded depth as we
evaluate the condition. The evaluation process terminates with a� ����Y
_ � >P� ��Y answer. One can show that our algorithm is both com-
plete and sound with a properly chosen search depth (as the ones
given in this paper). Basically only theoretic results on the ap-
proach are presented in this paper, and in the future we plan to
continue investigating the following issues that are important to the
implementation of our approach.

7 Symbolic Algorithms. The algorithms presented in this pa-
per are essentially explicit state-space searches, which may
not scale well to large systems. So it would be interesting
our approach can be implemented with symbolic algorithms.

7 Scalability. Another issue concerning the scalability of our
approach is the choice of the search depth for the generations
test sequences. In practice we could sacrifice the complete-
ness of the algorithm by choosing a smaller search depth.

7 More Complex Models. The system model considered in this
paper is rather restricted. At the present, we are working to
extend our approach to more complex system models that
allow multiple unspecified components, asynchronous com-
munications between unspecified components and the host
system as well as among unspecified components, and un-
specified components with an infinite state space.

6. REFERENCES
[1] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K.

Rajamani, and S. Tasiran. MOCHA: Modularity in model
checking. In CAV’98, volume 1427 of LNCS, pages 521–525.
Springer, 1998.

[2] P. Ammann, P. E. Black, and W. Majurski. Using model
checking to generate tests from specifications. In ICFEM’98,
pages 46–. IEEE Computer Society, 1998.

[3] B. Balzer. Living with cots. In ICSE’02, pages 5–5. ACM
Press, 2002.

[4] A. Bertolino and A. Polini. A framework for component
deployment testing. In ICSE’03, pages 221–231. IEEE
Computer Society, 2003.

[5] P. E. Black, V. Okun, and Y. Yesha. Mutation operators for
specifications. In ASE’00, pages 81–. IEEE Computer
Society, 2000.

[6] A. Brown and K. Wallnau. The current state of CBSE. IEEE
Software, 15(5):37–46, Sep/Oct 1998.

[7] J. Callahan, F. Schneider, and S. Easterbrook. Automated
software testing using model checking. In SPIN’96, 1996.

[8] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular
verification of software components in c. In ICSE’03, pages
385–395. IEEE Computer Society Press, 2003.

[9] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 1999.

[10] L. de Alfaro and T. A. Henzinger. Interface automata. In
ASE’01. ACM Press, 2001.

[11] J. Dingel. Computer-assisted assume/guarantee reasoning
with verisoft. In ICSE’03, pages 138–148. IEEE Computer
Society Press, 2003.

[12] A. Engels, L. Feijs, and S. Mauw. Test generation for
intelligent networks using model checking. In TACAS’97,
volume 1217 of LNCS, pages 384–398. Springer, 1997.

[13] K. Fisler and S. Krishnamurthi. Modular verification of
collaboration-based software designs. In FSE’01, pages
152–163. ACM Press, 2001.

[14] A. Gargantini and C. Heitmeyer. Using model checking to
generate tests from requirements specifications. In
ESEC/FSE’99, volume 1687 of LNCS, pages 146–163.
Springer, 1999.

[15] D. Giannakopoulou, C. S. Pasareanu, and J. M. Cobleigh.
Assume-guarantee verification of source code with
design-level assumptions. In ICSE’04, pages 211–220. IEEE
Press, 2004.

[16] D. Giannakopoulou, C. S. Psreanu, and H. Barringer.
Assumption generation for software component verification.
In ASE’02, pages 3–13. IEEE Computer Society, 2002.

[17] I. Gorton and A. Liu. Software component quality
assessment in practice: successes and practical impediments.

In ICSE’02, pages 555–558. ACM Press, 2002.
[18] A. Groce, D. Peled, and M. Yannakakis. Amc: An adaptive

model checker. In CAV’02, volume 2404 of LNCS, pages
521–525. Springer, 2002.

[19] O. Grumberg and D. E. Long. Model checking and modular
verification. ACM Transactions on Programming Languages
and Systems, 16:843–872, 1994.

[20] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. You
assume, we guarantee: Methodology and case studies. In
CAV’98, volume 1427 of Lecture Notes in Computer Science,
pages 440–451. Springer, 1998.

[21] G. J. Holzmann. The model checker SPIN. IEEE
Transactions on Software Engineering, 23(5):279–295, May
1997. Special Issue: Formal Methods in Software Practice.

[22] W. Kozaczynski and G. Booch. Component-based software
engineering. IEEE Software, 15(5):34–36, Sep/Oct 1998.

[23] O. Kupferman and M. Vardi. Module checking revisited. In
CAV’97, volume 1254 of Lecture Notes in Computer Science,
pages 36–47. Springer, 1997.

[24] L. Lamport. Specifying concurrent program modules. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 5(2):190–222, 1983.

[25] H. Li, S. Krishnamurthi, and K. Fisler. Verifying
cross-cutting features as open systems. ACM SIGSOFT
Software Engineering Notes, 27(6):89–98, 2002.

[26] N. Lynch and M. Tuttle. Hierarchical correctness proofs for
distributed algorithms. In 6th ACM Symposium on Principles
of Distributed Computing, pages 137–151, 1987.

[27] B. Meyer. The grand challenge of trusted components. In
ICSE’03, pages 660–667. IEEE Computer Society Press,
2003.

[28] A. Orso, M. J. Harrold, and D. Rosenblum. Component
metadata for software engineering tasks. volume 1999 of
LNCS, pages 129–144, 2001.

[29] C. S. Pasareanu, M. B. Dwyer, and M. Huth.
Assume-guarantee model checking of software: A
comparative case study. In SPIN, pages 168–183, 1999.

[30] D. Peled. Model checking and testing combined. In
ICALP’03, volume 2719 of LNCS, pages 47–63. Springer,
2003.

[31] D. Peled, M. Y. Vardi, and M. Yannakakis. Black box
checking. In FORTE/PSTV’99, pages 225–240. Kluwer,
1999.

[32] C. Szyperski. Component technology: what, where, and
how? In ICSE’03, pages 684–693. IEEE Computer Society,
2003.

[33] B. A. Trakhtenbrot and Y. M. Barzdin. Finite automata;
behavior and synthesis. North-Holland Pub. Co., 1973.

[34] J. Voas. Certifying off-the-shelf software components. IEEE
Computer, 31(6):53–59, June 1998.

[35] J. Voas. Developing a usage-based software certification
process. IEEE Computer, 33(8):32–37, August 2000.

[36] J. Whaley, M. C. Martin, and M. S. Lam. Automatic
extraction of object-oriented component interfaces. In
ISSTA’02, pages 218–228. ACM Press, 2002.

[37] F. Xie and J. C. Browne. Verified systems by composition
from verified components. In FSE’03, pages 277–286. ACM
Press, 2003.

[38] G. Xie and Z. Dang. An automata-theoretic approach for
model-checking systems with unspecified components. In
FATES’04, LNCS. Springer, to appear.

