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Abstract. Inspired by P systems initiated by Gheorghe Pãun, we study a com-
putation model over a multiset of communicating objects. The objects in our
model are instances of finite automata. They interact with each other by firing
external transitions between two objects. Our model, called a service automa-
ton, is intended to specify, at a high level, a service provided on top of network
devices abstracted as communicating objects. We formalize the concept of pro-
cesses, running over a multiset of objects, of a service automaton and study the
computing power of both single-process and multiprocess service automata. In
particular, in the multiprocess case, regular maximal parallelism is defined for
inter-process synchronization. It turns out that single-process service automata
are equivalent to vector addition systems and hence can define nonregular pro-
cesses. Among other results, we also show that Presburger reachability problem
for single-process service automata is decidable, while it becomes undecidable
in the multiprocess case. Hence, multiprocess service automata are strictly more
powerful than single-process service automata.
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1 Introduction

Network services nowadays can be viewed as programs running on top of a (possibly
large) number of devices, such as cellular phones, laptops, PDAs and sensors. How to
design and implement such programs has become a central research topic in areas like
pervasive computing [15, 19], a proposal of building distributed software systems from
(a massive number of) devices that are pervasively hidden in the environment. In fact,
such a view has already embedded in algorithmic studies inspired from ant colonies
(where each ant resembles a communicating device in our context) [4, 7, 8], as well as
in more recent studies on P systems, a biologically inspired abstract computing model
running on, in a simplest setting, multisets of symbol or string objects [13, 14].

As an unconventional computing model motivated from natural phenomena of cell
evolutions and chemical reactions, P systems were initiated by Gh. Pãun [13, 14] nine
years ago. A P system abstracts from the way living cells process chemical compounds
in their compartmental structures. Thus, regions defined by a membrane structure con-
tain objects that evolve according to given rules. The objects can be described by sym-
bols or by strings of symbols, in such a way that multisets of objects are placed in



regions of the membrane structure. The membranes themselves are organized as a Venn
diagram or a tree structure where one membrane may contain other membranes. By us-
ing the rules in a nondeterministic and maximally parallel manner, transitions between
the system configurations can be obtained. A sequence of transitions shows how the
system is evolving. Objects in P systems are typed but addressless (i.e., the objects do
not have individual identifiers), which is an attractive property for modeling high-level
networks.

Inspired by P systems, we introduce an automata-theoretic model for the programs
over network devices, called service automata, to specify services running over commu-
nicating objects (which are an abstraction of, e.g., network devices mentioned earlier).
Our model is at the high-level. That is, the communicating objects are typed but address-
less. In other words, unique identifiers such as IP addresses for network devices are left
(and of course also necessary) for the implementation level. For instance, in a fire truck
scheduling system, which is also an example used throughout our paper, a fire emer-
gency calls for one or more trucks that are currently available. In this scenario, exactly
which truck is dispatched is not so important as long as the truck is available. Hence,
a service automaton runs on multisets of communicating objects. This also resembles
traditional high-level programming languages that run on a memory in the sense that a
variable is often mapped with a concrete memory address only at compile time.

In a service automaton, (communicating) objects are logical representations of phys-
ical devices and entities in a network. Functions of such a device or entity are abstracted
as an automaton specified in the correspondent object. In this paper, we mostly study
the case when the automaton is of finite-states, i.e., a finite automaton (FA). As we men-
tioned earlier, objects are typed but addressless in our model and the type of an object
is the FA associated with it. In other words, a service automaton runs on a multiset of
objects, which are modeled as finite automata.

We depict a service automaton as a finite diagram consisting of a number of big
circles. Each circle represents an object type that is an FA whose state transitions, called
internal transitions, are drawn inside the circle. Notice that an unbounded number of
objects could share with the same object type. Communications between objects are
specified by external transitions, each of which connects two (internal) transitions. An
example service automaton is depicted in Fig. 1.

We could impose an initial constraint on a service automaton to explicitly set the
number of objects of certain types at the initial time, while the number of objects of
other types are not specified. For a service automaton without an initial constraint, the
number of objects for each type is not specified. That is, the automaton can run on any
multiset of objects that are of the object types specified in the diagram of the service
automaton. The service automaton starts from an initial object (of a predefined initial
object type) and, at this moment, we say that the object is active. Roughly speaking, at
each step, the service automaton runs as follows. Suppose that the current active object
O is of type A and is at state q. At the step, either an active object fires a purely internal
transition (that is an internal transition not connected by any external transitions in the
diagram of the service automaton) from its current state q to a new state and remains
being active, or the active object O communicates with another nondeterministically
chosen object O′ (we use B to denote its type and p to denote its current state) through
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firing an external transition. Suppose that the external transition is r. To ensure r firable,
we further require that, on the diagram of the service automaton, the r connects from an
internal transition tA inside the big circle of type A to an internal transition tB inside
the big circle of type B. Furthermore, the two internal transitions start with the current
states of the two objects O and O′, respectively. On firing the external transition, both
objects O and O′ fire the two internal transitions, respectively and simultaneously. After
firing the external transition, the current active object becomes O ′ and the object O is
no longer active.

Actually, we can view an active object as one holding a token. When an external
transition (between two objects) is fired, it can pass the token to the other object. When
we follow the flow of the token, we can define a process of the service automaton as a
sequence (of labels) of transitions that the token is passing through. Hence, the service
defined by the service automaton is the set (i.e., language) of all such processes. In the
paper, we show that service automata and vector addition systems are equivalent and
hence can define nonregular services. We also discuss other variations and verification
problems of service automata. One interesting open question is that we currently do not
know whether there is a nontrivial subclass of service automata that only define regular
services.

In the service automaton given above, there is only one object being active at any
time (i.e., there is only one token), and hence it is a single-process service automaton.
In the paper, we also study multiprocess service automata, where there are multiple
active objects at any time; i.e., there are multiple tokens, each of which corresponds
to a process. Inter-process communication is also defined through our notion of regu-
lar maximal parallelism among processes, which generalizes Pãun’s [14] classic max-
imal parallelism as well as other derivation modes [6, 10] in the context of P systems.
One of our results shows that multiprocess service automata are strictly stronger than
(single-process) service automata. We also study variations and verification problems
for multiprocess service automata.

Our service automata, in their current form (where each object type specifies an FA),
can be treated as a variation of P systems where each object is a pair of a symbol and a
state. Roughly speaking, an external transition that connects from the internal transition
q → q′ in an automaton of type A to the internal transition p → p ′ in an automaton of
type B can be depicted in a P system rule in the following form:

ĀqBp → Aq′B̄p′

where the symbol objects Āq and B̄p′ indicate the active objects. Tailored for network
applications, our model has the following features and differences:

– In this paper, we mostly consider the case when the communicating objects are of
finite-states. However, when communicating objects in our model are augmented
with some unbounded storage devices (such as a counter), it is difficult to di-
rectly translate transitions in such generalized service automata into P system rules.
Hence, it is necessary to further study P systems on “automata objects” in addition
to symbol and string objects.

– In P systems, the notion of “threads” or “processes” is hard to abstract. Naturally,
in network service applications, such a notion is extremely important since, essen-
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tially, the applications are distributed and concurrent in nature. Targeting at these
applications, our model suggests a subclass of P systems where single/multiple pro-
cesses can be clearly defined and, therefore, opens the door for further applying the
model of P systems in areas like pervasive/mobile/distributed computing.

– In multiprocess service automata, we introduce the notion of regular maximal par-
allelism among processes, which is able to specify both Gh. Pãun’s classical max-
imal parallelism and some other restricted forms of (maximal) parallelism [6, 10].
However, we shall point out that, for network applications, maximal parallelism in
general is hard or expensive to implement. Therefore, it is a future research topic to
study the cost of implementing restricted forms of regular maximal parallelism.

There has been much work on modeling distributed systems using automata. For
instance, an input/output (I/O) automaton [12] models and reasons a concurrent and
distributed discrete event system based on the broadcasting communication. The name
“service automata” also appears in the work [11] that analyzes the behaviors over an
open workflow nets. We reuse the name “service automata” in our paper but with com-
pletely different context and meaning. In short, in the aforementioned papers, a system
is composed of a finite and fixed number of automata, while in our work, a service
automaton runs on a multiset of automata (whose size is not specified when there is
no initial constraint). The differences remain when one compares our work with some
research in pervasive computing models [1–3] and mobile agents [16]. Linda [5] is an-
other model of communications among processes, where communications are achieved
by creating new objects in a tuple space, which is a quite practical model.

Our previous work, Bond Computing Systems [21], is also an addressless model to
analyze network behaviors. However, the work treats a network system from a global
view and focuses on how symbol objects (without states) are formed, without using
maximal parallelism, into bonds, while in this paper we focus on automata objects and,
from a local view, study processes on how state changes between objects.

2 Definitions

Let Σ = {A1, ..., Ak} (k ≥ 1) be an alphabet of symbols. Each Ai, i = 1, · · · , k, is
called a type. An instance of a symbol Ai, for some i, in Σ is called an object of type
Ai, or simply an Ai-object. Without loss of generality, we call A1 to be the initial type.

Each Ai is associated with a (nondeterministic) finite automaton (we still use A i to
denote it), which is a 3-tuple

Ai = (Si, δi, qi0),

where Si = {Si1, ..., Sil} (some l ≥ 1) is a finite set of internal states (one can assume
that the Si’s are disjoint), δi ⊆ Si × Si is the set of the internal state transitions, and
qi0 ∈ Si is the initial state of the automaton Ai. We use ti : Siu → Siv to denote a
transition ti = (Siu, Siv) ∈ δi. In this way, an Ai-object itself is simply an instance of
the finite automaton Ai.

Inter-object communications are achieved by external transitions in a given Δ, and
each external transition r ∈ Δ is in the following rule-form:

r : (Ai, ti) → (Aj , tj),
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for some i and j, where ti ∈ δi and tj ∈ δj are internal state transitions. We will see in
a moment that it is required that ti and tj associated with the r must be fired together
with r, and can not be fired alone. If an internal state transition t is not associated with
any external transition, we call such a t as a purely internal state transition.

In summary, a service automaton is a tuple

G = 〈Σ, Δ〉
where Σ and Δ are specified in above. As we will see in a moment, G could run over
any number of objects and the number is not specified in G itself when there is no initial
constraint.

busy
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Fig. 1. An example service automaton G for a fire truck scheduling system.

Example 1. Now we model a fire truck scheduling system by a service automaton G =
〈Σ, Δ〉, where Σ = {Scheduler, F ire T ruck} with Scheduler being the initial type,
and Δ will be given in a moment. The service automaton G is shown in Fig. 1, where
automata Scheduler and Fire T ruck are represented by the big (and bold) circles,
internal state transitions (totally five) are represented by arrows within a big circle, and
external transitions (totally four) are represented by arrows crossing the big circles. In
Scheduler, busy is the initial state, while in Fire T ruck, on call is the initial state.
Again, the number of Scheduler-objects and Fire T ruck-objects is not specified in
G. �	

We now define the semantics of the G. To specify an object O, we need only know
its (unique) type A and its (unique) current state s of the finite automaton that is asso-
ciated with the type; i.e., the O is an instance of (A, s), where for some i, A = A i ∈ Σ
and s ∈ Si (sometimes, we just call O an (A, s) object).

A collection (C, O) is a multiset C of objects with O ∈ C being the only active
object.
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Let (C, O) and (C ′, O′) be two collections and r be a transition. We use

(C, O) r→ (C′, O′)

to denote the fact that the collection (C, O) changes to the collection (C ′, O′) by firing
the transition r, which is defined formally as follows.

We first consider the case when r is a purely internal transition, say t i : Siu → Siv

in δi (i.e., the transition is inside an Ai-object specified by the automaton Ai). We say

that O
ti→ O′ when O is at state Siu and is of type Ai, and O′ is the result of changing

the current state in O with Siv . Now,

(C, O) r→ (C′, O′)

if the following conditions are satisfied:

– O
ti→ O′.

– C ′ is the same as C except that the object O is changed into O ′.

Therefore, when the purely internal transition t i is fired, the active object must be at
state Siu and, after firing the transition, the current state of the object is S iv and it
remains as the active object.

Next, we consider the case when r is an external transition, say r : (A i, ti) →
(Aj , tj), where ti : Siu → Siv in δi and tj : Sjp → Sjq in δj are internal state
transitions. In this case,

(C, O) r→ (C′, O′)

if, for some O′′ ∈ C (with O′′ and O being distinct objects), and some object O ′′′,

– O
ti→ O′′′,

– O′′ tj→ O′, and
– C ′ is the result of, in C, replacing O with O ′′′ and replacing O′′ with O′.

Therefore, when the external transition r is fired, the active object O must be an A i-
object in state Siu and an Aj-object O′′ in state Sjp is nondeterministically chosen from
the collection. The Ai-object O will transit from state Siu to Siv (and evolve into O′′′

defined in above), and the Aj-object O′′ will transit from state Sjp to Sjq (and evolve
into O′ defined in above), in parallel. After the transition is fired, the active object is
changed from O to O ′.

Sometimes, it is useful to let a service automaton only run from a collection that
satisfies an initial constraint. In such a constraint, one can designate certain types and
explicitly require the number of objects for each such type to be a fixed constant, while
for the remaining types, such numbers are not specified. An example initial constraint
can be found in the scenario where one would like to specify a network service with
an unspecified number of client type objects but with exactly one central server type
object.

The collection (C, O) is initial if all objects in C are in their initial states, the O
is a designated initial and active object (i.e., the type of O is the initial type A1). and
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the C satisfies an initial constraint. Unless stated otherwise, we implicitly assume that a
service automaton is associated with an initial constraint.

For an initial collection (C, O), we write

(C, O) �G (C′, O′) (1)

if there are collections (C, O) = (C0, O0), · · · , (Cz, Oz) = (C′, O′), for some z, such
that

(C0, O0)
r1→ (C1, O1) · · · rz→ (Cz, Oz), (2)

for some (purely internal and external) transitions r1, · · · , rz in G.
In fact, G defines a computing model that modifies a collection (C, O) into another

collection (C ′, O′) through (C, O) �G (C′, O′). To characterize the relationship �G

that the G can compute, we need more definitions.
Consider a set T ⊆ {(Ai, s), for all s ∈ Si, and for all i}. For each pair t =

(A, s) ∈ T , we use #t(C, O) to denote the number of the objects in C such that, each
of which is of type A and at state s. Clearly, when a proper ordering is applied on
T , we may collect the numbers #t(C, O), t ∈ T , into a vector called #T (C, O). We
use RG,T , called the binary reachability of G wrt T , to denote the set of all vector
pairs (#T (C, O), #T (C′, O′)) for all initial collections (C, O) and collections (C ′, O′)
satisfying (C, O) �G (C′, O′). In particular, when T = {(Ai, s), for all s ∈ Si, and for
all i}, we simply use RG to denote the RG,T .

Example 2. We now explain the semantics of the example service automaton in Fig.
1. Roughly speaking, what the service automaton G specifies is a fire truck schedul-
ing system, where there could be an unspecified number of schedulers and fire trucks.
Schedulers dispatch or call back fire trucks as needed, and once a fire truck changes
its state, it sends back an acknowledge message to a scheduler. According to the fi-
nite automaton Scheduler, a scheduler is busy all the time. For the finite automaton
Fire T ruck, the internal state transition out means that a fire truck is sent out to ex-
tinguish a fire, in means that a fire truck finishes its work and comes back, idle means
that a fire truck keeps being on-call, and work means that a fire truck keeps working
(being on-duty).

The external transition dispatch sends an on-call fire truck to extinguish a fire;
dispatch ACK describes that a dispatched fire truck sends an acknowledge message
to a scheduler (we assume that all schedulers can communicate with each other through
an underlying network); call back simply makes a scheduler call an on-duty fire truck
back; similar to dispatch ACK , call back ACK means that once an on-duty fire
truck is called back and becomes on-call, it sends an acknowledge message named
call back ACK to a scheduler.

In this example, we do not have an initial constraint. That is, G could run over any
number of Scheduler-objects and Fire T ruck-objects. �	

In the next example, we illustrate a scenario and explain in details how the example
service automaton runs.
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Example 3. We now illustrate an example run of the service automaton G specified in
Fig. 1. The run, as shown in Fig. 2, is on two schedulers and three fire trucks. Icons of
telephones are used to depict Scheduler’s which are always in state busy, and icons of
fire trucks are used for Fire T ruck’s, while a fire truck with a black dot on it denotes
a Fire T ruck in state on duty, otherwise denotes a Fire T ruck in state on call.

Consider T = {t1, t2, t3}, where t1 = (Scheduler, busy), t2 = (Fire T ruck,
on call) and t3 = (Fire T ruck, on duty). By definition, #t1(C, O), #t2(C, O),
and #t3(C, O) are the numbers of Scheduler’s in state busy, Fire T ruck’s in state
on call, and Fire T ruck’s in state on duty in a given collection (C, O), respectively.
Let #T (C, O) be the vector (#t1(C, O), #t2(C, O), #t3 (C, O)). We focus on an initial
collection (C0, O0) where O0 is an initial and active object (described in a moment),
and, accordingly, #T (C0, O0) = (m, n, 0), where m and n could be any number. In
this example, we assign m = 2 and n = 3.

Initially, according to the definition, there are only two Scheduler’s in state busy
and three Fire T ruck’s in state on call, since busy and on call are the initial state of
the automata Scheduler and Fire T ruck, respectively. Since Scheduler is the initial
type, we nondeterministically choose a Scheduler in state busy, say O0, as the ini-
tial and active object. Note that O0 (the same for O′

1, · · · , O′
5, O1, · · · , O5, O6 defined

later) is only for notational convenience and it is not an identifier; actually, our system
is addressless. Since all the internal state transitions are associated with external tran-
sitions, the internal state transitions cannot be fired alone, and hence, we only need to
consider external transitions. According to Fig. 1, the external transition dispatch re-
quires some active Scheduler in state busy and some Fire T ruck in state on call; the
external transition dispatch ACK requires some active Fire T ruck in state on duty
and some Scheduler in state busy; the external transition call back requires some ac-
tive Scheduler in state busy and some Fire T ruck in state on duty; and, finally, the
external transition call back ACK requires some active Fire T ruck in state on call
and some Scheduler in state busy.

Initially, dispatch is the only external transition that could be fired, since there
are only two Scheduler’s in state busy and three Fire T ruck’s in state on call in
the initial collection, and the active object is some Scheduler O0. We nondetermin-
istically pick a Fire T ruck in state on call, say O′

1, to fire dispatch. After firing
dispatch, O0 is still in state busy, while O′

1 changes to state on duty (a black dot is
added to O′

1 in Fig. 2 (1) to reflect the on duty state), and becomes the active object

O1. Now, we have (C0, O0)
dispatch→ (C1, O1) with #T (C1, O1) = (2, 2, 1). At this

moment, the only firable external transition is dispatch ACK , which requires some
active Fire T ruck in state on duty and some Scheduler in state busy. The active
Fire T ruck in state on duty is O1, and we nondeterministically pick a Scheduler in
state busy, say O′

2. Note that O′
2 and O0 may or may not (actually this is the case here)

be the same object. After firing dispatch ACK , O1 is still at state on duty, and O′
2

is still in state busy and becomes active object O2. So, we have (C1, O1)
dispatch ACK→

(C2, O2), where #T (C2, O2) = (2, 2, 1). Fig. 2 (1) shows the run (C0, O0)
dispatch→

(C1, O1)
dispatch ACK→ (C2, O2).
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Fig. 2. An illustration of how the example service automaton G in Fig. 1 runs on two schedulers
and three fire trucks. Icons of telephones here denote Scheduler’s which are always in state
busy, and icons of fire trucks here denote Fire Truck’s, while a fire truck with a black dot on
it denotes a Fire Truck in state on duty, otherwise denotes a Fire Truck in state on call.

Next, both dispatch and call back become firable. Suppose that dispatch is non-

deterministically picked to fire, similarly, we get (C2, O2)
dispatch→ (C3, O3) for some

Fire T ruck O3 in state on duty (a black dot is added on O3 in Fig. 2 (2)), and
#T (C3, O3) = (2, 1, 2). Next, dispatch ACK becomes the only firable external tran-

sition again. Suppose that (C3, O3)
dispatch ACK→ (C4, O4) for some Scheduler O4 in
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state busy and #T (C4, O4) = (2, 1, 2). Fig. 2 (2) shows the run of (C0, O0)
dispatch→

(C1, O1)
dispatch ACK→ (C2, O2)

dispatch→ (C3, O3)
dispatch ACK→ (C4, O4).

Now, both dispatch and call back become firable. Suppose that this time call back
is nondeterministically picked to fire. We nondeterministically pick a Fire T ruck in
state on duty from O1 and O3 (in Fig. 2 (3), O1 is picked), say O′

5, to fire call back.
After firing call back, O′

5 changes to state on call (the black dot is removed from O ′
5 in

Fig. 2 (3)) and becomes the active object O5. We get (C4, O4)
call back→ (C5, O5), where

#T (C5, O5) = (2, 2, 1). Similarly, call back ACK is the only firable external tran-

sition now, and we can get (C5, O5)
call back ACK→ (C6, O6), for some Scheduler O6

in state busy,and #T (C6, O6) = (2, 2, 1). Fig. 2 (3) shows the run (C0, O0)
dispatch→

(C1, O1)
dispatch ACK→ (C2, O2)

dispatch→ (C3, O3)
dispatch ACK→ (C4, O4)

call back→
(C5, O5)

call back ACK→ (C6, O6). Hence,

(C0, O0) �G (C6, O6).

�	

3 Decidability of Presburger Reachability

Let Y = {y1, · · · , ym} be a finite set of variables over integers. For all integers ay , with
y ∈ Y , b and c (with b > 0),

∑
y∈Y ayy < c is an atomic linear relation on Y and∑

y∈Y ayy ≡b c is a linear congruence on Y . A linear relation on Y is a Boolean
combination (using ¬ and ∧) of atomic linear relations on Y . A Presburger formula
P (y1, · · · , ym) [9] on Y is a Boolean combination of atomic linear relations on Y and
linear congruences on Y . We say a vector (z1, · · · , zm) satisfies P if P (z1, · · · , zm)
holds.

A simple but important class of verification queries is about reachability. In this
section, we study the Presburger reachability problem for service automata. Intuitively,
the problem addresses whether there is a collection satisfying a given Presburger con-
straint is reachable. More precisely, the Presburger reachability problem is defined as
follows:

Given: a service automaton G, a T ⊆ Σ × S, and a Presburger formula P .
Question: Is there any initial collection (C, O) and some collection (C ′, O′) such

that (C, O) �G (C′, O′), and #T (C′, O′) satisfying P?
In practice, the Presburger formula in the Presburger reachability problem is to spec-

ify some undesired property of a service automaton. Therefore, a positive answer to the
reachability problem indicates that a network service modeled by the service automaton
is not correctly designed.

Before we proceed further, we need more definitions. An n-dimensional vector ad-
dition system with states (VASS) M is a 5-tuple 〈V, p0, pf , S, δ〉 where V is a finite
set of addition vectors in Z

n, S is a finite set of states, δ ⊆ S × S × V is the tran-
sition relation, and p0, pf ∈ S are the initial state and the final state, respectively.
Elements (p, q, v) of δ are called transitions and are usually written as p → (q, v).
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A configuration of a VASS is a pair (p, u) where p ∈ S and u ∈ N
n. The transi-

tion p → (q, v) can be applied to the configuration (p, u) and yields the configuration
(q, u + v), provided that u + v ≥ 0 (in this case, we write (p, u) → (q, u + v)). For
vectors x and y in N

n, we say that x can reach y, written x �M y, if for some j,
(p0, x) → (p1, x + v1) → · · · → (pj , x + v1 + ... + vj) where p0 is the initial state, pj

is the final state, y = x+ v1 + ...+ vj , and each vi ∈ V . It is well-known that Petri nets
and VASS are equivalent. Consider a number k ≤ n. We use x(k) to denote the result
of projecting the n-ary vector x on its first k components. An initial constraint I is to
restrict certain components in a vector x to be fixed constants. We use R I

M (k) to denote
all the pairs (x(k), y(k)) with x �M y, and the starting vector x satisfying I . When
k = n, we simply write RI

M for RI
M (k). When I is simply true, we write RM for RI

M .
We say that a service automaton G can be simulated by a VASS M if for some number
k and initial constraint I , RG = RI

M (k). We say that a VASS M can be simulated by a
service automaton G if for some T , RG,T = RM . If both ways are true, we simply say
that they are equivalent (in terms of computing power).

Theorem 1. Service automata are equivalent to VASS, and therefore the Presburger
reachability problem of service automata is decidable.

Proof. The proof consists of two parts. First, we prove that the service automaton can
simulate an n-dimensional VASS M .

It is well known that VASS with no state are equivalent to VASS (with many states),
and therefore, we assume that M is specified by m addition vectors

vi = (vi,1, vi,2, ..., vi,n),

with 1 ≤ i ≤ m, and the VASS is n-dimensional.
Now we describe how to construct a service automaton to simulate the VASS M .

To make the description more concrete and easy to understand, we first give the service
automaton that simulates the addition vector (−3, +2) in Fig. 3.

We have three kinds of objects in the service automaton, namely, counter objects,
control objects, and addition vector objects. Each object is associated with internal
states.

Since the VASS M is n-dimensional, we have totally n types of counter objects,
namely, i-th type counter objects, for 1 ≤ i ≤ n. For each i-th type counter object,
COi, its internal states are CSi,1, CSi,2, and CSi,3. Recall that when the VASS M
runs, it changes the value of its configuration (which is simply a vector, called the
configuration vector). The number of i-th type counter objects in state CS i,2 represents
the current value of the i-th component of the configuration vector in the VASS M . In
Fig. 3, there are two types of counter objects, namely CO1 and CO2.

We also have a control object in the system. For the whole system, there is only
one control object (recall that, this constitutes part of the initial constraint of the service
automaton). This object has two states, namely Control State1 and Control State2,
with Control State1 as its initial state.

For each addition vector, vi = (vi,1, vi,2, ..., vi,n), we have a corresponding object
type AOi. For each type AOi, there is exactly one addition vector object in the whole
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Fig. 3. Simulation of VASS using a service automaton

system. We use |vi,j | to denote the absolute value of vi,j . The number of internal states
of AOi is

l =

⎛
⎝

n∑
j=1

|vi,j |
⎞
⎠ + 1.

In Fig. 3, we have six internal states for the addition vector object that represents the
addition vector (−3, +2).

Internal state transitions and external transitions are demonstrated in Fig. 3.
Initially, the control object is the active object in the service automaton. Suppose

M fires its i-th addition vector, say, vi = (vi,1, vi,2, ..., vi,n). The i-th addition vector
is simulated by a (rather long) sequence of transitions in the service automaton. Such
simulation is shown in Fig. 3. As mentioned before, here we use v i = (−3, +2) (with
n = 2). Initially, the control object fires the external transition r1 which changes the
control object’s state from Control State1 to Control State2, and r1, at the same
time, also triggers the state change of the addition vector object of type AO i. More
precisely, the AOi-object (from now on, we simply call it AOi) issues a transition from
ASi,1 to ASi,1. Now the active object is AOi and at state ASi,1. Then AOi will execute
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some external transition. Depending on whether v i,j is positive or not, the constructions
of external transition rules are different.

If vi,j is negative (which is the case here, since vi,1 = −3), this means we need
to decrease the number of COj-objects (here is the CO1-objects) in state CSj,2 (here
is CS1,2), hence r2 is fired. It will change its state from ASi,1 to ASi,2. At the same
time, r2 will make the counter object, CO1, change the state. Thus the CO1-object
will change the state from CS1,2 to CS1,3. This accomplishes one subtraction. Now
the CO1-object becomes the active object. To let the process to continue, the CO 1-
object executes r3 to transfer the active object back to AOi. It will change its own state
to change from CS1,3 to CS1,3, and AOi will change the state from ASi,2 to ASi,2.
Now AOi is the active object. Next the process executes r4, r5, r6, and r7 sequentially,
resulting that the number of (CO1, CS1,2) is subtracted by 3 (which is corresponding
to vi,1 = 3 ), and AOi is still the active object.

If vi,j is positive (which is the case of vi,2 = 2), this means we need to increase the
number of COj -objects (here is the CO2-objects) in state CSj,2 (here is CS2,2), hence
next r8 is fired. Thus the CO2 object will change the state from CS2,1 to CS2,2. This
accomplishes one addition. Now CO2 becomes the current active object. Next the pro-
cess executes r9, r10, and r11 sequentially, resulting that the number of (CO2, CS2,2)
is added by 2 (which is corresponding to v i,2 = 2 ), and AOi is still the active object.

To make this description general, let’s assume AOi is at the state ASi,j , where

j =
(∑k

h=1 |vi,h|
)

+ l with 1 ≤ l ≤ vi,k+1. To accomplish the operation of vi,k+1,

there are still (|vi,k+1| − l) more steps to go.
AOi will execute an external transition. It will change its state from AS i,j to ASi,j+1.

At the same time, this external transition will make the counter object, COk+1, change
the state. Depending on whether vi,k+1 is positive or not, there are two cases.

If vi,k+1 is negative, this means we need to decrease the number of COk+1, CSk+1,2

objects. Thus the COk+1 object will change the state from CSk+1,2 to CSk+1,3. This
accomplishes one subtraction. Now COk+1 becomes the current active object. For the
process to continue, it needs to transfer the active role back to AO i. Then, COk+1

will execute an external transition. It will change its state to change from CSk+1,3 to
CSk+1,3. AOi will change the state from ASi,j+1 to ASi,j+1. Now AOi will become
the current active object and its state is in ASi,j+1.

If vi,k+1 is positive, this means we need to increase the number of COk+1-objects in
state CSk+1,2. Thus the COk+1-object will change the state from CSk+1,1 to CSk+1,2.
This accomplishes one addition. Now COk+1 becomes the current active object. For the
process to continue, it needs to transfer the active role back to the AO i. Then, COk+1

will execute an external transition. It will change its state to change from CSk+1,2

to CSk+1,2. AOi will change the state from ASi,j+1 to ASi,j+1. Now the AOi will
become the current active object and its state is in ASi,j+1.

As the above process continues, at the point that AO i is active and at the state ASi,z ,

z =
(∑n

j=1 |vi,j |
)

+ 1, and AOi has performed the internal transition from AS i,z to

ASi,z , all the operations of vi = (vi,1, vi,2, ..., vi,n) have been finished. Now we need
to make the control object to be active to fire a next addition vector. Thus AO i fires an
external transition where AOi changes its state from ASi,z to ASi,1. At the same time,
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the control object changes its state from Control State2 to Control State1. Thus
the control object becomes the active object again. In Fig. 3, this external transition is
labeled by r12. The addition vector vi = (vi,1, vi,2, ..., vi,n)’s function is accomplished.
The control object can continue to simulate firing a next addition vector.

It is not hard to see that the service automaton will simulate M .
For the second part of the proof, we need show that a VASS M can simulate a

service automaton G. Suppose that there are m types of objects in G, and without
loss of generality, we assume that internal states in different types of objects are all
distinct. Therefore, an internal state of an object can uniquely tell the type of the object
(hence, we do not need to refer an object type in an internal transition and an external
transition, in below). Suppose that all the internal states, S, are properly ordered (we use
position(s) to indicate the position of state s in the ordering), and we use # s to indicate
the current number of objects in state s at some moment when the service automaton
runs. We use # to indicate the array of all the #s. The VASS M constructed in below
is to update the vector # while transitions in G is executed.

In M , the states are exactly those in S, the internal states of objects in G.
For each internal transition, say s → s′, we have an addition vector along with

a state transition in M as follows: 〈s, (0, · · · , 0,−1, 0 · · · , 0, +1, 0, · · · , 0), s′〉, where
the −1 is at position position(s) and the +1 is at position position(s′). The vector
corresponds to the fact that, after firing the internal transition, there is one object in state
s evolving into an object in state s′. The state transition (from s to s′) in M corresponds
to the fact that, after firing the internal transition, the active object is transferred from
an object at state s to an object at state s′.

For each external transition, say (s1, s2) → (s3, s4) (where (s1, s2) and (s3, s4)
represent two internal transitions), we have an addition vector along with a state transi-
tion in M as follows:

〈s1, (0, · · · , 0,−1, 0 · · · , 0, +1, 0, · · · , 0,−1, 0 · · · , 0, +1, 0, · · · , 0), s4〉,
where the two −1’s are at positions position(s1) and position(s3), respectively, and
the two +1’s are at positions position(s2) and position(s4), respectively. The vector
corresponds to the fact that, after firing the external transition, there is one object in state
s1 evolving into an object in state s2, and at the same time, there is one object in state s3

evolving into an object in state s4. The state transition (from s1 to s4) in M corresponds
to the fact that, after firing the external transition, the active object is transferred from
an object at state s1 to an object at state s4. Clearly, M faithfully simulates G (assuming
that M starts with vectors that encode the initial collections of G).

The two parts complete our proof.
�	

The above theorem characterizes the computing power of service automata, when the
service automata are interpreted as computation devices. In the following, we will treat
service automata as language acceptors and therefore, we can characterize the processes
that are generated by such services. We need more definitions.

Let Π = {a1, · · · , an} (n ≥ 1) be an alphabet of (activity) labels. Now, we are
given a function that assigns each purely internal transition with Λ (empty label) and
assigns each external transition with either Λ or an activity label in Π . Recall that we
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write (C, O) �G (C′, O′) if there are collections (C0, O0), · · · , (Cz, Oz), for some z,
such that

(C0, O0)
r1→ (C1, O1) · · · rz→ (Cz , Oz),

for some purely internal and external transitions r1, · · · , rz in G. We use α to denote
the sequence of labels for transitions r1, · · · , rz . To emphasize the α, we simple write
(C, O) �α

G (C′, O′) for (C, O) �G (C′, O′). In this case, we say that α is a process
of G. The set L(G) of all processes of G is called the service defined by the service
automaton G.

Example 4. Consider the example service automata in Fig. 1. We assign dispatch,
dispatch ACK , call back and call back ACK with a1, Λ, a2 and Λ, respectively.
The service, by definition, L(G) = {α : (C, O) �α

G (C′, O′)}. Define #a(w) as the
number of symbol a appearing in a word w. We can easily get that L(G) = {α :
#a1(α

′) ≥ #a2(α
′) for all prefix α′ of α}, since the number of fire trucks dispatched

is always greater that the number fire trucks called back. Hence, the service L(G) spec-
ified by the service automata in Fig. 1 is nonregular. �	

A multicounter machine M is a nondeterministic finite automaton (with one-way
input tape) augmented with a number of counters. Each counter takes nonnegative in-
teger values and can be incremented by 1, decremented by 1, and tested for 0. It is
well known that when M has two counters, it is universal. A counter is blind if it can
not be tested for 0, however, when its value becomes negative, the machine crashes. A
blind counter machine is a multicounter machine M whose counters are blind and the
counters become 0 when computation ends.

Theorem 2. Services defined by service automata can be accepted by blind counter
machines.

The above result follows from the well-known fact that blind counter machines are
essentially VASS treated as a language acceptor (with Presburger acceptance condition;
i.e., the VASS stops when a pre-given Presburger formula is satisfied by the current vec-
tor). From that fact, it is not hard to show that service automata can define fairly complex
processes, which are not necessarily regular, context free, or semilinear. Therefore, we
are curious on what will happen if we put some restrictions over the syntax of service
automata and what characteristics are essential to the computation power of service
automata.

One interesting case is when a service automaton only has objects of one type; i.e.,
Σ is of size 1, say, Σ = {A}. We call such a service automaton as a 1-type service
automaton. We get the following result, which implies that the number of object types
is not critical to the computation power when there is no initial constraint. Currently,
we do not know the precise relationship between 1-type service automata and service
automata both with initial constraints.

Theorem 3. 1-type service automata without initial constraints can simulate any ser-
vice automata without initial constraints, and, therefore, both define the same class of
services.
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Fig. 4. (a) A service automaton G (part). (b) A 1-type service automaton G′ to simulate G.

Proof. Given a service automaton G = 〈Σ, Δ〉 as shown in Fig. 4. (a), we now con-
struct a 1-type service automaton G′ to simulate G. In G′, we only have A-objects, and
inside A, we define the initial state of A as S0, and faithfully copy all the states from G,
while keep all the internal state transitions. For each Ai in G, suppose qi0 is the initial
state, then in G′, we define the following external transition to produce (A, q i0) objects:

ri1 : (A, ti1) → (A, t0),

where t0 : S0 → S0 and ti1 : S0 → qi0. In particular, each time when ri1 is fired, ti1
generates an (A, qi0) object, and t0 lets an (A, S0) object being active in order to fire
some next transition. If Ai is the intial type, we additionally define:

ri2 : (A, t0) → (A, ti1),

where t0 and ti1 are the same as in ri1. Once ri2 is fired, an (A, qi0) object will become
active, and ri1’s, for all i, cannot be fired any more, since there is no (A, S0) object
available. We label ri1 and ri2 with Λ’s (empty labels). Now we are to simulate the
external transitions of G. Suppose there is an arbitrary external transition r ∈ Δ defined
as

r : (Ai, ti) → (Aj , tj),

where ti : Siu → Siv and tj : Sjp → Sjq are internal state transitions. Corresponding
to r, in G′ we have

r′ : (A, t′i) → (A, t′j),
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where t′i : Siu → Siv and t′j : Sjp → Sjq are internal state transitions of A. Besides,
we assign r′ with the same activity label as r. We leave it to readers to check that
L(G) = L(G′).

�	
Our next question focuses on whether purely internal state transitions are necessary for a
service automaton. We call a service automaton without purely internal state transitions
as internal-free.

Theorem 4. Any service automaton can be simulated by an internal-free service au-
tomaton .
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S iS0
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(b)

ti

ti1

ti2

ti1
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Fig. 5. (a) A service automaton G with pure internal transition(s). (b) An internal-free service
automaton G′ to simulate G.

Proof. Given a service automaton G, we construct an internal-free service automaton
G′ to simulate it, as in Fig. 5. First, we copy the whole G into G ′, keep all the external
transitions, and preserve the initial constraint. Plus, we have an auxiliary object A r in
G′, with S0 as its initial state. Consider an arbitrary pure internal state transition t i of Ai

in G, ti : S1 → S2. For the corresponding Ai in G′, we add an intermediate state St,
and split ti into ti1 and ti2, where ti1 : S1 → St and ti2 : St → S2. For each ti in G,
we have a corresponding state Si in Ar, and define t′i1 : S0 → Si and t′i2 : Si → S0.
We define external transitions r1 and r2 as:

r1 : (Ai, ti1) → (Ar, t
′
i1),

and
r2 : (Ar, t

′
i2) → (Ai, ti2).

Obviously, r1 and r2 together can faithfully simulate ti, in the sense that #T (C, O) of
G′ is the same as #T (C, O) of G, respect to the same T . Besides, after firing r1 and
r2, the Ar-object is still in state S0, which implies that Ar is ready for the simulation
of the next internal state transition. Hence G ′ can consistently simulate G, and RG,T =
RG′,T , for any T ⊆ {(Ai, s), for all Ai ∈ Σ, and for all s ∈ Si}, where Σ is the
alphabet of symbols of G, and S is the set of all states of G.

�	
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However, currently, it is a difficult problem to characterize a nontrivial class of
service automata that only define regular services.

4 Multiprocess Service Automata

In previous sections, we model a single process from the local view of the active object;
i.e., we view a single process following the flow of its active object. We describe a
process in a service automaton G by recording the trace of the active object in a certain
collection, as given in (2),

(C0, O0)
r1→ (C1, O1) · · · rz→ (Cz, Oz),

for some purely internal and external transitions r1, · · · , rz in G.
In a real network, there are often multiple processes in execution at the same time,

and each process has its own active object. To model multiprocess processes, we need
to take all the active objects into consideration.

Let G = 〈Σ, Δ〉 be a service automaton, and we can define a corresponding multi-
process service automaton Gmp as follows. A multiprocess collection (C,O) is a multiset
C of objects with O ⊆ C being the active multiset (i.e., each object in O is active). Sup-
pose that there are totally m purely internal and external transitions r 1, · · · , rm in G.
Let R = {rn1

1 , · · · , rnm
m } be a transition multiset where each ni ∈ N∪{∗} (1 ≤ i ≤ m)

is the multiplicity of transition ri (the meaning of ∗ will be made clear in a moment). A
multiprocess service automaton is a tuple

Gmp = 〈Σ, Δ,R〉,

where R is a finite set of transition multisets. For each transition multiset R = {rn1
1 ,

· · · , rnm
m } ∈ R, we have a corresponding Presburger formula PR(y1, · · · , ym) defined

in this way: for each i, when ni ∈ N, we define an atomic linear relation Pi as yi = ni;
when ni = ∗, Pi is defined as yi ≥ 0. Finally, P =

∧
i Pi. For instance, for the

transition multiset {r∗1 , r2
5} (transitions with 0 multiplicity are omitted in the R), the

corresponding Presburger formula PR(y1, · · · , ym) is

y1 ≥ 0 ∧ y5 = 2
∧

i�=1,5

yi = 0.

Let (C,O) and (C ′,O′) be two multiprocess collections, R be a transition multiset
in R. Now,

(C,O) R→ (C′,O′)

if the following conditions are satisfied:

(i) there are some disjoint multisets Cj ⊂ C, each of which satisfies the following:
(Cj , Oj)

ri→ (C′
j , O

′
j) for some transition ri, multisets C′

j , and objects Oj and O′
j

(Notice that, by definition of
ri→, Oj ∈ Cj and O′

j ∈ C′
j). Notice that, for each j, the

ri is fired once.
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(ii) suppose that the total number of times that transitions r i are fired in (i) is #ri .
Then, the corresponding Presburger formula PR(#r1 , · · · , #rm) of R holds.

(iii) the ri’s are fired in a maximally parallel manner. That is, r i should be fired as many
times as possible under (i) and (ii); i.e., the vector (#r1 , · · · , #rm) satisfying (i)
and (ii) is maximal.

(iv) the C ′ is the result of replacing each sub-multiset Cj in C with C ′
j , and the O′ is

result of replacing each object Oj in O with O′
j .

Actually, (C,O) R→ (C′,O′) fires transitions in R in a maximally parallel manner with
respect to the constraint PR. By definition, the Presburger formula PR is only capable
of comparing a variable with a constant. Hence, the maximally parallel notion used
in here is called regular maximal parallelism. It is not hard to see that it generalizes
Pãun’s [14] classic maximal parallelism (taking the transition multiset in the form of
{r∗1 , · · · , r∗m}) as well as some other restricted forms [6, 10].

Similar to service automata, one can associate an initial constraint to a multiprocess
service automata. A multiprocess collection (C,O) is initial if the initial active multiset
O are of the initial type A1 in the initial state, and the collection C satisfies the given
initial constraint. For an initial multiprocess collection (C,O), we write

(C,O) �Gmp
(C′,O′) (3)

if, for some z, there are multiprocess collections

(C,O) = (C0,O0), (C1,O1), · · · , (Cz ,Oz) = (C′,O′)

such that

(C0,O0)
R1→ (C1,O1) · · · Rz→ (Cz,Oz), (4)

for some transition multisets R1, · · · , Rz in R.
Similarly, we can define #t(C,O) for t = (A, s) as the number of (A, s) objects

in C, and the vector #T (C,O) as well as the binary reachability RGmp,T can be defined
similarly to single-process service automata.

Example 5. Example 3 gives a service automaton that models a fire truck scheduling
system, where transitions are fired sequentially. In the real world, if there are multiple
schedulers, they can work in parallel; i.e., some schedulers may dispatch on-call fire
trucks, some schedulers may call back on-duty fire trucks, and those actions can hap-
pen in parallel, only if two different actions work upon disjoint objects. Based on this
observation, we can define a multiprocess service automaton G mp = 〈Σ, Δ,R〉 based
on the example service automaton G defined in Example 1, and R = {R} where R is
the only transition multiset defined in below:

R = {dispatch∗, dispatch ACK∗, call back∗, call back ACK∗},
which means that R fires the four transitions in a maximally parallel manner.

Suppose that O0 = {(Scheduler, busy)5} as the initial active set, i.e., initially,
there are five Scheduler’s in state busy which are ready to start five processes.
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As Example 3, we define T = {t1, t2, t3}, where t1 = (Scheduler, busy), t2 =
(Fire T ruck, on call) and t3 = (Fire T ruck, on duty). We focus on the initial mul-
tiprocess collection (C0,O0), where #T (C0, O0) = (m, n, 0), with m ≥ 5 and n can
be any number. Let us designate m = 5 and n = 8; i.e., there are five Scheduler’s and
eight Fire T ruck’s in the initial multiprocess collection. In below, we will illustrate
how the multiprocess service automaton runs.

Following the analysis in Example 3, we know that initially dispatch is the only ex-
ternal transition that can be fired, and there are at most five dispatch’s that can be fired,
since there are only five Scheduler’s. After firing R, we have five Fire T ruck’s in
state on duty and they all become active, and there are (8-5=3) three Fire T ruck’s in

state on call. Now, (C0,O0)
R→ (C1,O1) with O1 = {(Fire T ruck, on duty)5} and

#T (C1,O1) = (5, 3, 5). Next, there are at most five dispatch ACK’s that can be fired,

and (C1,O1)
R→ (C2,O2), where O2 = {(Scheduler, busy)5} and #T (C2,O2) =

(5, 3, 5). At this moment, R can fire both dispath and call back, and in fact, we can
fire five of them totally at most. Suppose that we nondeterministically pick one dispath
and four call back’s to fire, and then one new Fire T ruck is dispatched, and four on-
duty Fire T ruck’s are called back, and hence there are (3+4-1=6) six Fire T ruck’s
in state on call with four of them active, and (5-4+1=2) two Fire T ruck’s in state

on duty with one of them active. That is, we have (C2,O2)
R→ (C3,O3), where O3 =

{(Fire T ruck, on duty)1, (Fire T ruck, on call)4} and #T (C3,O3) = (5, 6, 2).
At this time, there are at most one dispath ACK and four call back ACK’s could

be fired, and hence (C3,O3)
R→ (C4,O4), where O4 = {(Scheduler, busy)5} and

#T (C4,O4) = (5, 6, 2). Therefore, we have

(C0,O0) �Gmp
(C4,O4).

�	
Obviously, multiprocess service automata can simulate service automata, and hence

they can simulate VASS. Next we will show that multiprocess service automata are
strictly more powerful than VASS.

5 Undecidability of Presburger Reachability for Multiprocess
Service Automata

Now we study the Presburger reachability problem for multiprocess service automata:
Given: a multiprocess service automaton Gmp, a set T ⊆ Σ × S, and a Presburger

formula P .
Question: Are there some initial multiprocess collection (C,O) and some multi-

process collection (C ′,O′) such that (C,O) �Gmp
(C′,O′) and #T (C′,O′) satisfying

P?
To proceed further, we need more definitions. A linear polynomial over nonnegative

integer variables x1, · · · , xn is a polynomial of the form a0 + a1x1 + ... + anxn where
each coefficient ai, 0 ≤ i ≤ n, is an integer. The polynomial is nonnegative if each
coefficient ai, 0 ≤ i ≤ n is in N. A k-system is a quadratic Diophantine equation system
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that consists of k equations over nonnegative integer variables x 1, · · · , xm, y1, · · · , yn

for some m, n, in the following form:

⎧⎪⎨
⎪⎩

∑
1≤j≤l B1j(y1, · · · , yn)A1j(x1, · · · , xm) = C1(x1, · · · , xm)

...∑
1≤j≤l Bkj(y1, · · · , yn)Akj(x1, · · · , xm) = Ck(x1, · · · , xm)

(5)

Where the A’s, B’s and C’s are nonnegative linear polynomials, and l, m, n are positive
integers.

[20] points out that the k-system in (5) can be simplified into the following form:
⎧⎪⎨
⎪⎩

y1A11(x1, · · · , xm) + · · · + ynA1n(x1, · · · , xm) = C1(x1, · · · , xm)
...

y1Ak1(x1, · · · , xm) + · · · + ynAkn(x1, · · · , xm) = Ck(x1, · · · , xm)
(6)

Theorem 5. If the Presburger reachability problem of multiprocess service automata
is decidable, then it is decidable whether a k-system has a solution for any k.

Proof. We will construct a multiprocess service automaton Gmp from a k-system speci-
fied in (6). In the k-system, an 〈i, j〉-term (resp. an 〈i〉-term) is to indicate the term x iyj

(resp. xi), for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Clearly, the k-system can be expressed as a
Presburger formula P over all of the 〈i, j〉-terms and the 〈i〉-terms.

Gmp is constructed as follows. It has only one object type, say A. Inside A, we
have states Sinitial, Swarehouse, S〈i,j〉, S〈i〉, for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Intuitively,
the number of objects at state S〈i,j〉, denoted by #S〈i,j〉, is to encode the 〈i, j〉-term
xiyj . Similarly, the number of objects at state S〈i〉, denoted by #S〈i〉, is to encode the
〈i〉-term yi.

Fig. 6 shows part of Gmp for simulating terms x1yj, · · · , xmyj . The complete
diagram of Gmp can be obtained by, respectively for each j, connecting the states
S〈1,j〉, · · · , S〈m,j〉 to states Sinitial, Swarehouse, S〈1〉, · · · , S〈m〉 shown in the figure. The
transitions r’s, h’s, g’s stated in below are all illustrated in the figure.

The automaton Gmp works as follows. Initially, all the objects are at the initial state
Sinitial, among which some are active. It first fires a transition multiset

Rinitial = {g∗warehouse, g
∗
1 , · · · , g∗m}

which obtains a number of Swarehouse-objects (that are objects at state Swarehouse) as
well as a number #S〈i〉 of S〈i〉-objects, for each i. Notice that all the S〈i〉-objects are
now active.

From now on, the numbers #S〈i〉 do not change anymore.
Next, for some j nondeterministically chosen, the following transition multiset

Rj,begin = {r∗1,j , · · · , r∗m,j}

is fired. The Swarehouse-objects serve as a warehouse in supplying objects that will be
modified into some S〈i,j〉-objects. As a result, the transition multiset, for each i, newly
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Fig. 6. A multiprocess service automaton constructed in the proof of Theorem 5.
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adds exactly #S〈i,j〉-objects. (Assuming that the number of Swarehouse-objects is not
zero; this assumption will be revisited later.) Next, the following transition multiset

Rj,end = {h∗
1,j, · · · , h∗

m,j}

will bring all the S〈i〉-objects back to being active. Execution of R j,begin and Rj,end

in sequel is called a j-round. Clearly, the effect of the j-round is: for all i, #S 〈i,j〉 :=
#S〈i,j〉+#S〈i〉. After this round, the automaton Gmp goes back to the beginning of this
paragraph.

To complete the construction, the set of transition multisets in Gmp is

{Rinitial, Rj,begin, Rj,end : 1 ≤ j ≤ m}.

Suppose that

(*) there exists some run of the automaton Gmp from some collection such that
the run further satisfies the following property (defined in a moment).

Assume that there are, for 1 ≤ j ≤ n, yj number of j-rounds have been performed in
the run. It is clear that, currently, #S〈i,j〉 stores #S〈i〉 · yj , for all i, j. The aforemen-
tioned property is as follows:

(**) the current values of #S〈i,j〉 and #S〈i〉 satisfy the Presburger formula P
(defined at the beginning of the proof)

conjuncted with #Swarehouse > 0 (recalling the assumption made earlier in this proof
that the number of Swarehouse-objects is not zero).

One can conclude that the existence in statement (*) is equivalent to the k-system in
(6) having solutions. The result follows immediately since whether statement (*) holds
is simply an instance of the Presburger reachability problem for multiprocess service
automata.

�	

It is shown in [20] that,

Theorem 6. There is a fixed k such that whether a k-system has a solution is undecid-
able.

We can directly obtain the following result from Theorem 5 and 6:

Corollary 1. The Presburger reachability problem for multiprocess service automata
is undecidable.

Therefore, from Theorem 1, together with Corollary 1, we can conclude that multipro-
cess service automata are strictly stronger than (single-process) service automata.
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Fig. 7. A comparison of Java and P systems based high-level network programs.

6 Discussions

Service automata are a form of P systems based high level network programs, running
over a network virtual machine. The virtual machine specifies abstract network com-
municating objects and the operations among the objects. In parallel to the idea of Java
Virtual Machine [17], shown in Fig. 7, service automata can be automatically compiled
into programs on the network virtual machine and, later, mapped to concrete network
protocols on physical networks. Since service automata are independent of the under-
lying physical networks, similar to Java, they make network applications specified by
service automata more portable, easier to verify and test.

The mechanism on the compiler and the mapping is detailedly described in [18].
Specifically, in single-process service automata, for a process running over a network
system, there is a token passed among the involved objects. There are two ways for an
object holding a token to find the next interactive object. One is a completely distributed
approach, where the object holding the token finds the next object by broadcasting or
multicasting. Another is a hierarchical approach: some servers are maintained to keep
the object information. The object holding the token can refer to the servers and know
which object it should pass the token to. External transitions are achieved by mes-
sage exchanges among objects. Except the messages that start the process execution, all
other messages in the system are unicast messages (i.e., messages are sent from a single
source to a single destination). Besides, two objects involved in the same external transi-
tion need change the state at the same time, and hence some synchronization is needed.
To implement this, we need to ensure that before the two state changes are finished, no
other state change can happen. One can achieve this using a some locking mechanism.
For multiprocess service automata, one can assign random integers to each objects in
the initial active set, and treat those random integers as Process IDs. If the sample space
of the random numbers is big enough, the probability that two processes have the same
process ID is almost 0. To ensure the correctness in a multiprocess service automaton,
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it is necessary for us to lock all the objects involved in a process at the beginning and
unlock them at the end. In this way, we can treat each process as a single process in a
single-process service automaton. However, such an implementation only works for the
special case of regular maximal parallelism where the transition multisets R does not
contain any ∗. The regular maximal parallelism in general is hard to implement since
we are lack of global clocks on a typical asynchronous network.
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