
Linear Reachability Problems and Minimal Solutions
to Linear Diophantine Equation Systems

Gaoyan Xie, Cheng Li and Zhe Dang
�

School of Electrical Engineering and Computer Science
Washington State University
Pullman, WA 99164, USA

Abstract

The linear reachability problem for finite state transition systems is to decide whether there
is an execution path in a given finite state transition system such that the counts of labels on
the path satisfy a given linear constraint. Using some known results on minimal solutions
(in nonnegative integers) for linear Diophantine equation systems, we present new time
complexity bounds for the problem. In contrast to the previously known results, the bounds
obtained in this paper are polynomial in the size of the transition system in consideration,
when the linear constraint is fixed. The bounds are also used to establish a worst-case time
complexity result for the linear reachability problem for timed automata.

Key words: Model-checking, timed automata, reachability, linear Diophantine equation
systems, minimal solutions

1 Introduction

Model-checking [7,21] is a technique that automatically verifies a finite state transi-
tion system against a temporal property usually specified in, e.g., Computation Tree
Logic (CTL) [7] or Linear Temporal Logic (LTL) [19], by exhaustively exploring
the finite state space of the system. The usefulness of model-checking has been
demonstrated by several model-checkers (e.g., SMV [17], SPIN [15], BMC [3]),
which have been successfully used to verify/test industrial-level hardware/software
systems with significant sizes.

Although both CTL and LTL are expressive, many temporal properties are out of
their scope. For instance, event counting is a fundamental concept to specify some

�

Corresponding author (zdang@eecs.wsu.edu).

Preprint submitted to Elsevier Science 8 May 2004

important fairness properties. As a motivating example, we consider the design
(depicted as a finite state transition system

�
in Figure 1) of a process scheduler.

The scheduler schedules two kinds of processes: ��� and ��� according to some
scheduling strategy. A transition with label ��� (resp. ���) is taken when the sched-
uler chooses a ��� (resp. ���) process to run. It is required that the design shall sat-
isfy some fairness properties; e.g., starting from state �	� , whenever �
� is reached,
the number of ��� processes scheduled is greater than or equal to the number of ���
processes scheduled and less than or equal to twice the number of ��� processes
scheduled. To ensure that the design meets the requirement, we need to check
whether for any path � that starts from and ends with �	� , the linear constraint,��
��� ����� ��
�
� ������� ��
��� ����� is satisfied, where

��
��� ��� (resp.
��
� � ���) stands

for the count of labels ��� (resp. ���) on path � . Notice that this property is nonreg-
ular [6] and, since the counts could go unbounded, the property is not expressible
in CTL or LTL.

In general, by considering its negation, the property can be formulated as the linear
reachability problem for finite state transition systems as follows.

! Given: A finite state transition system
�

with labels " � �$#$#$#%�&"(' , two designated
states �$)+*,) - and �/.0*&132 , and a linear constraint 4 �65

� �$#$#$#%� 5 '$� .! Question: Is there a path � of
�

from �
)+*0) - to �%.&*&132 such that � satisfies 4 (i.e.,4 �7�8�9/� ���:�/#$#$#:� �8<;=� ���,� holds)?

The reachability problem is decidable. To see this, one can treat
�

as a finite au-
tomaton with initial state �
)+*0) - and final state �>.&*&132 . Then, a naive decision procedure
can be constructed in the following three steps: (i). Compute a regular expression
for the regular language (over alphabet ?	" � �$#$#$#%�&"('	@) accepted by

�
, (ii). Calculate

the semilinear set of the regular expression defined by a Presburger formula A [18],
and (iii). Check the satisfiability of the Presburger formula ACBD4 . Unfortunately,
the time complexity of this procedure is at least E � �GF HIF � , where JLKMJ is the number of
states in

�
, even when N is fixed. This is because the size of the regular expression,

in worst cases, is exponential in JLKMJ [16].

O6PQ:R Q:SQ%R
Q SQ S Q R

Q%R

O6T OVU OXW

OZY OX[

\
\

Fig. 1. An example of a scheduler

In this paper, we present a new algorithm solving the linear reachability problem.
This algorithm is completely different from the naive one. In our algorithm, we
estimate a bound] (called a bounding box) from

�
and 4 such that, the Question-

part is true iff the truth is witnessed by some � on which the count
^8<_<� ��� for

2

each label "�� is bounded by] . Interestingly, after a complex loop analysis, esti-
mating a bounding box] is reduced to a number theory problem: finding non-
negative minimal solutions to linear Diophantine equation systems. There has been
much research on this latter problem for homogeneous/inhomogeneous systems
with (nonnegative) integer solutions [4,5,13,20]. Suppose that 4 is in a disjunctive
normal form over linear equations/inequalities. Using the Borosh-Flahive-Treybig
bound in [4], we are able to show that, in worst cases, when JLKMJ is � the size
(which will be made clear later in the paper) of 4 , the bounding box] is bounded
by E � JLKMJ '�������� � , where 	 is the maximal number of conjunctions in a single dis-
junctive term of 4 . The Borosh-Flahive-Treybig bound has been used in solving
the boundedness problem for vector addition systems [22]. However, the path re-
arrangement technique used in [22] is not applicable (at least not in an easy way) to
obtaining the bounding box] . With the bounding box, one can easily show that the
linear reachability problem is solvable in time E � JLKMJ�
 '� '������������
0� , when JLKMJ�� N
and the size of 4 . In particular, when N and 4 are fixed, the complexity is poly-
nomial in JLKMJ . This is in contrast to the complexity of the naive algorithm that is
exponential in the state number J+K J . This new complexity result will be further used
in this paper to obtain complexity bounds (which were unknown) for some other
linear counting problems that involve linear constraints over counts, e.g., the linear
liveness problem [11] for

�
.

We also consider the linear reachability problem when
�

is ordered; i.e., on any
path � from �$)+*,) - to �%.&*&132 , each label "�� appears after all the "�� ’s whenever ����� . For
this restricted model of

�
, we can obtain a smaller complexity bound E � J+KMJ�� '� � � for

the linear reachability problem, using the Pottier bound [20] (the Borosh-Flahive-
Treybig bound is not applicable here) for nonnegative minimal solutions to linear
Diophantine systems. Interestingly, this restricted model and the complexity bound
can be used to establish a new complexity result for the linear reachability problem
for timed automata [1]. The problem is to decide whether there are two tuples of
clocks values satisfying two given linear constraints 4 and 4�� respectively such that
one tuple can reach the other in a timed automaton. For timed automata, although
many temporal verification problems involving linear constraints over clocks are
known to be undecidable [1,2,12], the linear reachability problem is decidable (even
when the clocks are dense) [8–10]. However, an upper bound for the worst-case
complexity was unknown. In this paper, we show that the linear reachability prob-
lem for a discrete timed automaton (i.e., a timed automaton with integer-valued
clocks) is solvable in time E � J+KMJ�� '� � � , when the number of (control) states in the
timed automaton, JLKMJ , is � the number N of clocks, the size of 4 and 4�� , and the
maximal absolute value of all the constants appearing in the clock constraints of
the timed automaton. This result can be generalized to timed automata with dense
clocks using the pattern technique in [9].

The rest of this paper is organized as follows. Section 2 introduces some known
results on minimal solutions to linear Diophantine equation systems, which are
needed later in the paper. Section 3 obtains a bounding box for the linear reachabil-

3

ity problem for finite state transition systems. Based on the bounding box, Section
4 establishes a time complexity bound for the linear liveness problem for finite
state transition systems. Section 5 considers ordered finite state transition systems,
which, in Section 6, are used to show a time complexity bound for the linear reach-
ability problem for timed automata. Section 7 is a brief conclusion.

2 Preliminaries

Let � be the set of nonnegative integers and N be a positive integer. A finite state
transition system

�
is defined as

����� K����M���	�%� (1)

where K is a finite set of states, � � ?	" � �$#/#$#%�0" '	@ is a set of labels, ��
 K� � ���?��%@ ���DK is a set of transitions. When ��
 K�� ?��%@��DK ,
�

is called a finite state
machine. A path � of

�
is a finite sequence

� � �$���%�
��� � � #$#$# � � �3����7��� � � � � #$#$# � ��� � � �
����� � ����� � for some � such that for each � � � ��� ,

� � �3��� � ��� � � � � �!� . Path � is
a simple cycle if �
�
�$#$#/#/����� � � are distinct and �
� � ��� . Path � is a simple path
if �$�$�$#/#$#/������� � ����� are all distinct. For any path � of

�
, let

 � ��� denote the N -ary
vector

� �8&9/� �����$#$#$#:� �8<;=� ���,� , where each
�8 _,� ��� stands for the number of label " � ’s

occurrences on � , " � � � N .

Let
5

� �$#/#$#/� 5 ' be nonnegative integer variables. An atomic linear constraint is in
the form of # �

5
�%$ #$#/# $ #&' 5 ' &'# , where &�� ? � �)(@ , # � �$#$#$#%��#&' and # are inte-

gers. When & is
�

(resp. (), the constraint is called an equation (resp. inequal-
ity). The constraint is made homogeneous if one makes # � � in the constraint. A
linear constraint 4 is a Boolean combination of atomic linear constraints (usingB �+* �+, �+-). Without loss of generality, throughout this paper, we assume that the
linear constraint 4 is always written as a disjunction 4 � * #$#/#+* 4/. , for some 0 , of
conjunctions of atomic linear constraints. When 0 � " , 4 is called a conjunctive
linear constraint. 4 is made homogeneous if each atomic linear constraint in 4 is
made homogeneous; we use 4214365 to denote the result. In particular, a conjunctive
linear constraint 4 is a linear Diophantine equation system if each atomic linear
constraint in 4 is an equation.

Suppose that 4 is a conjunctive linear constraint, which contains 7 equations and8:9 7 inequalities. One may write 4 into ;=<>&@? , where &A� ? � �)(@CB , ; (
8

by N)
and ? (

8
by 1) are matrices of integers, and < is the column of variables

5
� �$#$#$#%� 5 ' .

As usual,
� ; ��?�� is called the augmented matrix of 4 , and ; is called the coefficient

matrix of 4 . We use J J ; J J �6D E to denote FHG�I � ?CJ � JK# ���(J @ (# ��� is the element at row �
and column � in ;) and use J J ? J J E to denote the maximum of the absolute values
of all the elements in ? . Assume L is the rank of

� ; ��?�� , and M � (resp. M
) is the
maximum of the absolute values of all the L	�NL minors of ; (resp.

� ; ��?��).

4

When 4 is a linear Diophantine equation system (i.e., 7 � 8), for any given tuples���
� �$#$#$#:� � '
� and

��� �� �$#$#/#%� � �' � in � ' , we say
���

� �$#$#/#/� � '$� � ��� �� �$#$#$#%� � �' � if
� � � � ��

for all " � � � N . We say
���

� �$#$#/#/� � '
� � ��� � � �$#$#$#%� � �' � if
���

� �$#/#$#/� � '/� � ��� � � �$#$#$#%� � �' �
and

� � � � �� for some "�� � � N . A tuple
��� � � �$#$#$#%� � �' � is a minimal solution to 4 if��� �� �$#$#$#:� � �' � is a solution to 4 but any

���
� �$#/#$#/� � '
� with

� � �$#$#$#%���(� � ���
� �$#/#$#/� � '/� ���� �� �$#$#$#:� � �' � is not. Clearly, there are only finitely many minimal solutions to 4 . It

has been an active research area to estimate a bound for minimal solutions, and the
following Borosh-Flahive-Treybig bound [4] is needed in this paper.

Theorem 2.1 (Borosh-Flahive-Treybig bound) A linear Diophantine equation sys-
tem 4 has solutions in nonnegative integers iff it has a solution

�65
� �$#$#/#%� 5 '$� in

nonnegative integers, such that L unknowns are bounded by M � and N 9 L unknowns
are bounded by

� FHG�I � N � 8 � 9 L $ " � M
 .
The Borosh-Flahive-Treybig bound gives a bound for one of the minimal solutions
in nonnegative integers to the inhomogeneous system 4 . In contrast, the following
Pottier bound gives an upper bound for all of the “minimal solutions” to a conjunc-
tive 4 (which is not necessarily a linear equation system); this result can be simply
obtained from Corollary 1 in [20].

Theorem 2.2 (Pottier bound) For any conjunctive linear constraint 4 that con-
tains 7 equations and

8 9 7 inequalities, there are two finite sets K and K 14365 �?�� � �$#/#$#/�����%@ , for some � , of vectors in � ' such that

! each element in K (resp. K 14365) is a solution to 4 (resp. 4 14365),! For any ��� � ' , � is a solution to 4 iff there are 	 � �$#/#$#/��	
� �@� , � � ��� $
	 � � � $ #$#/# $ 	
����� for some ��� � K ,! each component of all the vectors in K � K 14365 is bounded by the Pottier bound� � $ J JK; J J �6D E $ J J ? J J E � ' � B �� .

Therefore, for a conjunctive linear constraint 4 , each of its solutions can be rep-
resented as the sum of a small solution and a nonnegative linear combination of
small solutions to 4 14365 (clearly, the inverse is also true). Here, “small” means that
the solutions are bounded by the Pottier bound. When 4 is a linear constraint (i.e.,
0 ("), the Pottier bound of 4 is defined to be the maximal of all the bounds
obtained from Theorem 2.2 for each conjunctive linear constraint in 4 .

An inequality can be translated into an equation by introducing a slack variable
(e.g.,

5
�
9 � 5
 (�� into

5
�
9 � 5
 9�� � � , where

�
, a new variable on � , is

the slack variable). So if 4 is a conjunctive linear constraint (in which there are
7 equations and

8 9 7 inequalities) over
5

� �/#$#$#/� 5 ' , we may write 4 into an equa-
tion system 4 �X5

� �$#$#/#%� 5 ' ��� � �$#$#$#%��� B ��<� with
8

equations, where � � �/#$#$#/��� B �� are the
slack variables.

5

3 A Bounding Box for the Linear Reachability Problem

Let
�

be a finite state transition system specified in (1). A set �'
 � ' is a small
linear set (with respect to the given

�
) if � is in the form of

?�� � $ �
��� � � �

� ��� �	� each
� � (� @ � (2)

where nonnegative integer L satisfies L � J+KMJ' , N -ary nonnegative integer vectors
� �
�$#$#$#:�
�(� satisfy J J �I� J J E � JLKMJ
 , and for each � � " �$#$#$#%�4L , J J ���=J J E � J+KMJ . � is a
small semilinear set if it is a union of finitely many small linear sets.

Recall that the linear reachability problem for
�

is to decide whether there ex-
ists a path � in

�
from �$)+*0) - to �/.&*0132 such that � satisfies a given linear constraint4 �65

� �$#$#$#:� 5 '$� . Let � be all paths of
�

from �$)+*0) - to �%.&*&132 . We use
 � ��� to denote

the set of N -ary nonnegative integer vectors ? � �����/�>���@ . Using a complex loop
analysis technique to reorganize simple loops on a path, one can show that

 � ��� is
a small semilinear set.

Lemma 3.1
 � ��� is a small semilinear set. That is, it can be represented as, for

some 	 ,

 � ��� � �

��� � ��� � �7� (3)

where each � � is a small linear set in the form of (2).

Proof. Let � be a path
� �
�
���%�$��� � � #$#/# � � �7����7��� � � � � #$#/# � ����� � ��� � � � �����=� of

�
. We useJ ��J � � to denote the length of � , K�� to denote the set of states appearing on � ,

and � � to denote the prefix of � whose length is � . Obviously, J ��J � J+KMJ when �
is a simple cycle, and J ��J � JLKMJ when � is a simple path. Path � passes a state �
whenever � �CK�� . Given two paths � � and �
 , we use K�� 9�� ��� to denote K�� 9�� K���� ,
which is the set of all the states that appear on both � � and �
 . If K�� 9�� �������

, we
say that � � touches �
 with touch states K�� 9 � � � . Otherwise, we say that � � does not
touch �
 .
Then, we can extract (as shown in Algorithm 1), from � , a simple path � � (called
the basic path of �) and a set ��� of simple cycles. It can be observed that the stack
content (when reading from bottom to top) does not contain any simple cycles at
any moment and hence the basic path ��� obtained in the last step is indeed a simple
path. Define �� � K��"!%�D? �$�$�����I@ . In particular, if ��� is empty, then �
� must be ���
(i.e., � itself forms a cycle), else � � � K��"! and �)� � K���! (i.e., � � K��"!). �� is
called the basic states.

 Note that though # may be large, it is irrelevant here.

6

Algorithm 1
Initialize a stack ��� and a set � � to be empty;
Scan � from left to right;
for each transition ���	��
 ���� ���
 � � ��� on � do

if
 � ��
 � � � (i.e., � itself is a simple cycle) then
� ��� ��� ����� ��� ;

else
Check whether ��� , from top to bottom, has an element � � ����
 �����
 � � with
��

 � � � ;
if yes then

Pop all the elements above � � and � � itself from the stack;
The popped elements together with � form a simple cycle ;
� � � �!� � ��� "� ;

else
Push � into ��� ;

end if
� � is obtained by concatenating the remaining elements in ��� from bottom to top.

end if
end for

Next, we partition ��� into subsets (called layers) 	 � �$#$#$#%��	 . for some 0 as fol-
lows. The first layer 	 � is the set of all the simple cycles # in � � such that # passes
a state in � ; i.e., 	 �

� ?$# �%# � � � G'&)(^K+* � �� �� � @ . Define �
� �,*�- � 9 K+* and.

�
� �/*0- � 9 � K+* � �:� � �

� � . � is the set of all the states that are passed by
simple cycles in 	 � .

.
� contains exactly all the touch states between � � and a simple

cycle in 	 � . In general, for � (� , 	 � is the set of all the simple cycles # � ��� such
that # has not been grouped into layers 	 � �$#$#/#/��	 � � � and # touches some simple
cycle in 	 ��� � ; i.e., 	 � � ?$# �,# � � � 9 � ��� � � � � � 	 � G'&1(K+* � � � � �� � @ # � is
the set of all the states that are passed by simple cycles in 	 � ; i.e., � � �/*�- � _ K+* .. � is the set of all the touch states between a simple cycle in 	 � � � and a simple
cycle in 	 � ; i.e.,

. � � �,*�- � _ � K+* � � � � � � � � � � � . It is easy to observe that,
according to the above definitions, 	 � � 	 � � �

whenever � �� � , � � � � �
whenever J � 9 ��J (� , and

. � �2. � � �
whenever � �� � . In particular, since

. � � �
iff 	 � � �

,
. � � �

implies
. � � �

� �
. Obviously, since each

. �
 K , there exists
some value 0 � JLKMJ such that 	 � �$#$#$#:��	 . �� �

but 	 . � �
� �

. That is, the number
of layers is bounded and the bound is independent of the choice of � . We call the
tuple

� � �/��	 � �$#$#$#%��	 . � . � �$#/#$#%� . . � the layered structure 3 � of path � .

For instance, consider a path � of the transition system in Figure " that passes
through the states (in this order): � �:� � �54:� ��� � ��4:� ��� � �
 � ���$�:� � ��4�� �:�
�&� � # After running
Algorithm 1, we can obtain a basic path ��� � �$��� � and four simple cycles (the
labels are omitted for simplicity), # � ����4�� ��� � ��4 , #
 �G� �&� � �
 � � , # � �G�$�:� � �54&� �:�$� , and
� � �$��� � ��4�� ���$� . From the above definitions, they are arranged into two layers as
shown in Figure � . In particular,

.
�
� ? �$�$��� � @ and

.

� ? � � �&� �/����4/@ are indeed

disjoint. Now, suppose that we are given a layered structure 3 � , then how can we
obtain the path � ? Hereafter in this paper, we will use formulas in the form of

7

Algorithm 2
Initialize � to be empty;
for each � ��� ������� ��� do

for each
	� � � do
Choose an arbitrary simple cycle
��� � � � that passes
 ;
Add to � .

end for
end for

� � $ J*0-���
� *�# � � * (� , to stand for those paths obtained from 3 � by traversing the

basic path ��� once, and each simple cycle #2� � � for
� * times � during the traversal

of � � . Obviously, constraints must be put over these
� * ’s to ensure that we can

always obtain a path of the corresponding transition system. For instance, consider
the layered structure in Figure 2. In order to obtain � , each of #� (� � "=�&� � � ���)
must be traversed at least once (though, for now, we are not interested in the exact
numbers of traversals) during the traversal of the basic path � � . Failing to do so
will not allow us to obtain a path; e.g., ��� $ �'# � $ ��#

$ ��# � $ ��# � corresponds
to no path of the transition system in Figure 1 at all. For a layered structure 3 � of
a path � of any finite state transition system

�
, we define Span(3 �) as the set of

paths obtained by traversing ��� for once, and traversing each simple cycle in every
layer for at least once. That is, Span(3 �) is the set ? �/� $ J*�-� �

� *�# ����G���� � * (� @ ,

where �/� � � � $ J*�-� � # . Clearly, each path in Span
� 3 � � is indeed a path of

�
, and

� � Span(3 �). Recall that the main objective here is to obtain a small bounding
box. However, ��� , the set of simple cycles extracted from � , may be exponentially
large (in JLKMJ); �/� may therefore be too long to result in a useful bound. We need to
improve the representation of Span(3 �) by making �/� shorter.

basic path � T
O T

OVUOX[O6P � Yfirst layer � U �ZPOXT
OZY

O [O P
O P
OVUO [�6Usecond layer � W �ZW

O U
OXWOXP

O T OZY

Fig. 2. A layered structure

For each simple cycle # in 	 � (� � " �$#$#$#%�40), it can be observed that K * �2. �	�� �
.

Also, for each � � . � (� � � �$#$#/#/�40), there exists a simple cycle # � 	 � � � that
passes � . From these two observations, we can construct a smaller set � of simple
cycles using Algorithm 2.

� As we are only interested in the counts information of a path, the order in which these
cycles should be traversed is irrelevant here.

8

Obviously � contains exactly J . J 9 J . � J�� J+KMJ 9 J � � J simple cycles, where
. ��

��� � � .
. � , and � �� � � � $ J*0-�� # constitutes a path of

�
. Additionally, � �� has two good

properties. One is that the length J � �� J is bounded by J ���=J $ J �MJ��)FHG�I%*�-�� J #(J . Hence,J � �� J � J � � J $ � JLKMJ 9 J � � JL�
JLKMJ�� JLKMJ
 . Another is that ���� passes each of the touch
states in

.
, i.e.,

.
 K ���! . Since each simple cycle #=� ��� passes at least one state
in
.

, we can immediately conclude that ���� $ J*0-� �
� *0# constitutes a path of

�
for

all
� *=(� . Then, we define Span� (3 �) as ? ���� $ J*0-� �

� *�# � ��G���� � *=(� @ # Since

�
 � � , it is easy to see that Span(3 �)
 Span � (3 �) and � � Span � (3 �).

For every � ,
 �

Span � (3 �)) = ? � � �� � $ J*�-� �
� * � #%� � ��G���� � * (�I@ is a small linear

set. This is because J J � ���� � J J E � JLKMJ
 , J J � #/�
J J E � J+KMJ , and there are at most
L�� JLKMJ ' distinct vectors

 � #%� for all simple cycles # � � � .
Observe that there are only finitely many distinct sets Span� (3 �) for all � � � . Since,
for each � � � , Span � � 3 � �
 � , we immediately obtain � � �

��� � ���	��
 G & � � 3 � _ � for

some 	 and � � �$#/#$#/�7� � � � . Define � � � � ��
 G'& � � 3 � _ �,� , for " � � � 	 . The lemma
follows since

 � ��� � �
��� � ��� � � and, as we have shown, each � � is a small linear set.

Now let us turn to the property formula 4 . Recall that 4 is written as a disjunction
of 0 conjunctive linear constraints

4 � �
��� � � . 4 �3# (4)

Fix any "D� � � 0 . Suppose that 4 � contains
8

atomic linear constraints. After
adding (at most

8
) slack variables � � �$#$#$#%��� B , 4 � can be written into the following

form:
������
������
� �

5
� $ #/#$# $ # � ' 5 ' $�� � � �

� # �

...

B �
5

� $ #$#/# $ # B ' 5 ' $�� B � B � # B �
(5)

where the # ’s and � ’s are integers (each � is -1 or 0). Let ; be the coefficient
matrix for variables

5
� �$#$#$#%� 5 ' and ? be the column of # � �$#$#$#%��# B in (5). Define� �

� J J ; J J �6D E and �

� J J ? J J E . We may assume � ��� � (otherwise let � �

� ").
In the sequel, we use the following notions: � � (the maximum of all the values � �

among all 4 � ’s), �
 (the maximum of all the values �
 among all 4 � ’s), and 	 (the
maximum of all the values

8
among all 4 � ’s).

9

Due to the disjunctive representations of (4) and (3), we can consider only one
conjunction of 4 in the form of (5) and only one linear set in the form of (2).
That is, by substituting the expression in (2) for < � �65

� �$#$#$#%� 5 '
� in (5): < �
� � $ J

��� � � �
� �"��� , the equation system (5) is transformed into the following equation

system with unknowns
�

� �$#$#$#%� � � and � � �$#$#/#/��� B :
������
������

�
� �
�

� $ #/#$# $ �
� � � � $ � � � �

� � � �
...

�

B �
�

� $ #$#$# $ �

B � � � $�� B � B � � � B #
(6)

Hence, the linear reachability problem is reduced to finding a nonnegative integer
solution to (6). With the bounds on � � and each � � given in (2), a simple calculation
reveals that, in (6), all of the

�
’s are bounded by JLKMJ � � and all of the

� � � �$#$#$#%� � � B are
bounded by J+K J
 � � $ �
 .

We use M � to denote the maximum of the absolute values of all the 		� 	 , " �
	 � 8

, minors of the coefficient matrix for system (6) and M
 to denote that of
the augmented matrix. With the above mentioned bounds for the coefficients and
constants in (6), one can conclude that

M � � � JLKMJ � � � B 8�� G'&)(M
 � � JLKMJ
 � � $ �
 � � JLKMJ � � � B � � 8�� # (7)

A direct application of the Borosh-Flahive-Treybig bound in Theorem 2.1 shows
that system (6) has solutions in nonnegative integers iff the system has a solu-
tion

� �
� �/#$#$#/� � �/��� � �$#$#$#%��� B � in nonnegative integers, among which L unknowns

are bounded by M � and
8

unknowns are bounded by
� L $ " ��M
 (here, without loss

of generality, we assume the worst case where the rank of coefficient matrix of (6)
is
8
). Applying the bounds M � and

� L $ " ��M
 to
� � in (2), the linear reachability

problem is further reduced to the problem of finding a path � � � satisfying:

J J � ��� J J E � � J+K J
 $ � L 9 8 � JLKMJ M � $ 8 JLKMJ � L $ " � M
 � (8)

and 4 �7�8 9 � ���:�/#$#$#/� �8 ; � ���,� . Noticing that
8 � 	 , and L � J+K J ' according to (2),

we apply the bounds of M � and M
 in (7) to (8) and define a bounding box

] � � J+K J '��
 � � $ 	 JLKMJ � JLKMJ ' $ " � � JLKMJ
 � � $ �
 �<� � JLKMJ � � � � � �

	 � $ J+KMJ
 # (9)

Hence,

Theorem 3.2 Given a finite state transition system
�

, two states �)+*,) -,�&�/.0*&132�� K ,
and a linear constraint 4 �65

� �$#$#/#/� 5 '$� , the following two items are equivalent:

10

! There is a path � of
�

from �$)+*0) - to �/.0*&132 satisfying 4 ,! The above item is true for some � further satisfying J J � ��� J J E �] , where] is
defined in (9).

Notice that] in (9) is independent of 0 in (4). Now we measure the “size” of 4
with FHG�I � � � � �
 ��	 � . When the number of states J+K J in

�
is � N and the size of4 , the bounding box is in the order of] � E � JLKMJ '�������� ��# In this case, one can

easily show the following.

Theorem 3.3 The linear reachability problem for finite state transition systems is
solvable in time

E � JLKMJ
 '� '������������
 �:� (10)

when J+K J � N � � � � �
 ��	 .

4 The Linear Liveness Problem

An � -path � of
�

is an infinite sequence such that each prefix is a path of
�

. Let �
and � � be any two designated states of

�
. We say that � is 4 -i.o. (infinitely often)

at � � if there are infinitely many prefixes � from � to � � of � such that � satisfies4 (i.e., 4 �7�8 9 � ���:�$#$#/#/� �8<;=� ���,� holds). The linear liveness problem for finite state
transition systems can be formulated as follows:

! Given: A finite state transition system
�

, two designated states � and � � , and a
linear constraint 4 �65

� �$#$#/#/� 5 '/� .! Question: Is there an � -path � that starts from � and is 4 -i.o. at � � ?
In [11], this problem is shown decidable. However, the time complexity was un-
known. In this section, we reduce the liveness problem to a linear reachability
problem.

Recall that 4 is in the form of (4), 4 � * ��� � � . 4 � , and 4 14365� is the result of
making 4 � homogeneous. One key observation is as follows. The Question-part in
the linear liveness problem is true iff, for some " � �M��0 , (a). there is a path of�

from � to � � satisfying 4 � , and, (b). there is a path of
�

from � � to � � satisfying4 14365� . A proof of this observation can be followed from [11] using the pigeon-
hole principle. Both items are equivalent to the linear reachability problem for

�
concerning 4 � and 4 14365� , respectively. By trying out all of the 0 number of 4 � ’s
and 4 14365� ’s, and using Theorem 3.2 and (10), we conclude that:

Theorem 4.1 The linear liveness problem for finite state transition systems is solv-
able in time shown in (10), when JLKMJ � 0 ��N � � � � �
 ��	 .

11

5 Ordered Finite State Transition Systems

Let
�

be a finite state transition system specified in (1). Suppose that an order of
labels " � �$#/#$#/�&"(' is fixed, say " � � #/#$# � " ' . � is ordered if, on any path � from�/)+*0) - to �%.&*&132 , each label "�� appears before each label " � whenever � � � . In this
case,

�
behaves as follows: reading " � ’s for 0 or more times, then reading "
 ’s for

0 or more times, and so on. For this restricted version of
�

, we can obtain a better
complexity bound than (10) for the linear reachability problem.

Lemma 5.1 The linear reachability problem for ordered
�

is solvable in time

E � 0 �GJ+K J � '�
 � �
 ' ��� (11)

where � is the Pottier bound for 4 (i.e., the maximum of the Pottier bounds for
all 4 � ’s in (4)). Furthermore, since � is independent of JLKMJ , the linear reachability
problem for ordered

�
is solvable in time E � JLKMJ�� '� � �:� when J+K J � 0 ��N �0� .

Proof. We first assume that 4 itself is a conjunctive linear constraint (i.e., in (4),
0 � ") in the form of (5) containing 7 equations and

8 9 7 inequalities. We use� to denote the Pottier bound for 4 obtained from Theorem 2.2. Obviously, �
depends only on 4 (independent of JLKMJ in

�
) and is greater than or equal to the

Pottier bound for the homogeneous version 4 14365 . In the following, we construct a
(finite state) machine

�
and reduce the linear reachability problem concerning

�
and 4 to a reachability problem for

�
. Intuitively,

�
is a sequential composition of�

� �$#$#$#%� � ' ; each
� � is a restricted version of

�
that reads � and label " � only.

�
can

also be treated as
�

� �/#$#$#:� � ' running concurrently (since they read different labels),
as long as each

� � ends with the state that
� � � � starts with, for each "�� � � N . In

the construction,
�

simulates these concurrent runs and uses counters # � to count
the number of labels "�� read by

� � , " � � � N . The key idea is to use Theorem 2.2
to make these counters bounded by the Pottier bound: all these counters are reset to
� whenever 4 14365 � # � �$#$#$#%� #�'
� holds.

The finite state machine
�

works as follows.
�

is equipped with a tuple variable
� taking values in K ' and N bounded (by the Pottier bound �) nonnegative integer
counters # � �$#$#/#/� #�' . Initially, all the counters are � . �

first guesses and remembersN 9 " states, � �
 �/#$#$#/�&� �' in
�

. Then
�

sets � to be
� �$)+*0) -<��� �
 �/#$#$#/�&� �' � . An execution of

�
consists of some homogeneous rounds followed by one inhomogeneous round.

In a homogeneous round, for each "�� � � N ,
�

executes � or more � -moves. For
each � -move,

�
updates the � -th component � of � to � � whenever

�
has a tran-

sition from � to � � on which the label is " � or � . Additionally,
�

increments the
counter # � by 1 whenever the label is " � . Nondeterministically at some moment,

�

decides to end this homogeneous round. At this moment, a test of 4 14365 � # � �/#$#$#:� #:'$�
is performed, and when the test is true,

�
resets every counter to � . Notice that

�

crashes whenever one of the counters exceeds the Pottier bound � during the round,

12

or the test is false. After � or more homogeneous rounds, nondeterministically,
�

decides to start the inhomogeneous round. The inhomogeneous round is exactly as
a homogeneous round except that the test is for 4 � # � �$#/#$#/� #�'/� . �

terminates if, on
completing the inhomogeneous round, � stores

� � �
 �$#$#$#:��� �' ���%.&*0132 � , where � �
 �$#$#$#:��� �'
were guessed and remembered initially. Clearly, because of Theorem 2.2,

�
termi-

nates iff the ordered
�

has a path from �
)+*0) - to �%.&*&132 satisfying 4 .
�

is a finite state
machine whose state space size is JLKMJ
 '� � �&� ' . Hence, using a depth first search on
the graph of

�
, whether

�
terminates can be solved in time quadratic to the state

space size.

When 0 � " , one can try each 4 � in (4) one by one for the linear reachability
problem. The lemma follows.

Recalling the definition of the Borosh-Flahive-Treybig bound, one may notice that
it can not be used in the above construction to prove the lemma. In the next section,
we will use this restricted model of

�
and the complexity bound to study timed

automata.

6 The Linear Reachability Problem for Timed Automata

A timed automaton [1] is a finite state machine augmented with a number of clocks.
All the clocks progress synchronously with rate 1, except when a clock is reset to 0
at some transition. We first consider discrete timed automata where clocks take inte-
gral values. Formally, a discrete timed automaton � is a tuple

� K��/? 5 � �$#$#/#/� 5 ' @ ���	�:�
where K is a finite set of (control) states,

5
� �$#/#$#/� 5 ' are clocks taking values in � ,

and � is a finite set of edges or transitions. Each edge
� �=����� 8 ��� � � denotes a transi-

tion from state � to state � � with enabling condition
8

in the form of clock regions
(i.e.,

5 # � 5>9 � # � where
5 ��� are clocks,

denotes � ��(� or

�
, and # is an in-

teger) and a clock reset set �
 ? "=�$#$#$#%��N�@ . Sometimes, we also write the edge as�=- B� � � , or simply �=- � � � when
8

is 	 L � 7 . Without loss of generality, we assume
that J���J � " . That is, each transition resets at most one clock (since resetting several
clocks can be simulated by resetting one by one). When �

� �
, the edge is called

a progress transition. Otherwise, it is a reset transition. � is static if the enabling
condition on each edge is simply 	 L � 7 .
The semantics of � is defined as follows. A configuration of � is a tuple of a control
state and clock values. Let

� �=� � � �$#$#$#:� � ' � and
� � � � � � � �$#$#$#%� � �' � be two configurations.� �=� � � �$#$#$#%� � ')� - � � � � � �� �/#$#$#/� � �' � denotes a one-step transition satisfying all of the

following conditions:

! There is an edge
� �=����� 8 ��� � � in � ,! The enabling condition of the edge is satisfied; i.e.,

8 ���
� �$#$#/#/� � '
� is true,! If � � �

(i.e., a progress transition), then every clock progresses by one time

13

unit; i.e.,
� ��
� � � $ " , " � � � N . If, for some � , �

� ? �G@ (i.e., a reset transition),
then

5 � resets to � and all the other clocks do not change; i.e.,
� ��
� � and

� ��
� � �

for each " � � �� ��� N .

� �=� � � �$#$#$#%� � ')� reaches
� � �Z� � �� �$#$#/#%� � �' � if

� �=� � � �$#$#$#%� � ')� -��
� � � � � � � �$#$#$#%� � �' �%� where

-�� is the transitive closure of - .

The linear reachability problem for discrete timed automata is defined as follows.

! Given: A discrete timed automaton � , two designated states �)+*0) - and �%.&*&132 , and
two linear constraints 4 and 4 � over N variables.! Question: are there clock values

�
� �$#$#$#:� � ' � � �� �$#/#$#/� � �' such that configuration� �/)+*0) - � � � �$#$#$#:� � ' � reaches configuration
� �>.&*&132X� � �� �$#/#$#/� � �' � and both 4 ���

� �$#$#$#%� � '$�
and 4 � ��� �� �$#/#$#/� � �' � hold?

It is known that the problem is decidable, even when the clocks are dense. The
decidability proofs and application examples can be found in [8–10]. However, as
we mentioned earlier, the time complexity for the problem was unknown. And in
this section, we give such a complexity bound using the result in (11).

Without loss of generality, we assume that both 4 and 4 � in the linear reachabil-
ity problem for discrete timed automata are disjunctions of 0 conjunctive linear
constraints. Each conjunctive linear constraint contains at most 	 atomic linear
constraints among which there are at most � equations. Similar to Section 3, we
use � � (resp. �
) to represent the maximal value of J JK; J J �6D E (resp. J J ? J J E) among
all the conjunctive linear constraints ;=<N&@? in 4 and 4�� . The complexity of the
linear reachability problem will be measured on, among others, 	 , � , 0 , � � , �
 ,JLKMJ , and N .

We first consider a simpler case when � is static. Before we proceed further, more
definitions are needed. A reset order � is a sequence � � �$#$#$#%��� � , for some " � � �N , where each � � contains exactly one element in ? "=�$#$#$#%��N�@ , and all of the � � ’s are
pair-wisely disjoint. Let ��� � ? " �$#$#$#:��N�@ 9 � ��� � � � ��� . An execution path of � is
of reset order � if every clock

5 � with � � ��� does not reset on � , and for rest of
the clocks, their last resets are in this order:

5 � 9 �/#$#$#/� 5 ��� , with � �
� ? � � @ �/#$#$#/� � � �? � �I@ . For the instance of the linear reachability problem of the static � , we consider

the Question-part witnessed by an execution path that is of any fixed reset order �
(there are only finitely many reset orders). From this instance and the given � , we
will construct an ordered finite state transition system

���
and a linear constraint4 � . Then, we reduce the linear reachability problem of � to the linear reachability

problem of
� �

and obtain the following result.

Lemma 6.1 The linear reachability problem for static discrete timed automata �
is solvable in time

E � N � �)0
 � � N $ � N $ " � �GJ+K J+� � '�
 � � � $ N � � � $ �
 � �
 '��
 ���

� ��� � ' �:# (12)

14

Proof. Let � be any fixed reset order � � �/#$#$#/� � � . Before we illustrate the construc-
tion of

� �
, some more definitions are needed.

Let)+*,) - � 	 � �$#$#$#%��	 ' be some given states with 	 � �$#$#$#:��	 '� � �� K and 	 ' � �/)+*0) - .� � � � � � is an ordered finite state transition system that repeatedly reads labels # �

at state 	 � (for � or more times nondeterministically), then, labels #
 at state 	
 , #/#$# ,
labels #&' at state 	 ' � �/)+*0) - . � � � � � � will be used later to “generate” any starting
clock values � � �$#$#/#/���$' mentioned earlier (each value � � represents the number of
labels #�� read). � � � ��	 7 � � � is a finite state machine in which all the state transitions
in � are kept but clock progresses/resets are ignored. A 7 � 7 	 � � ��� � is a finite state
machine in which only the state transitions in � that reset some clock in � are kept.

��� � � � � �����0" � is a finite state transition system (on alphabet ?	"G@) such that only
the state transitions in � that do not reset a clock in � are kept. In the meantime,

��� � � � � �����0" � replaces every progress transition in � by a transition with label" . These finite state transition systems will be used as basic “building blocks” in
constructing

� �
.

To construct
� �

, we have two cases to consider. The first case is when � � �� �
(i.e., � � N). In this case, an execution path of � can be partitioned into � $ "
segments separated by the � last resets given in � . We use �(�$��� � �$#$#$#%���C� to de-
note the number of progress transitions made on each segment respectively. Sup-
pose that the path starts with clock values � � �$#$#/#/���$' and ends with clock values5

� �$#$#$#%� 5 ' . Corresponding to the � $ " segments, we construct
� �

to be a sequen-
tial composition of � $ " finite state transition systems (in this order):

� �
�$#/#$#/� � � ,
where

� � is the sequential composition of
� � � � � � and

��� � � � � �����(�&"(�:� , and each
� � , " � �^� � , is the sequential composition of one move in A 7 � 7 	 � � ��� � � and
then

��� � � � �M��� � � � � � � �
�&" �X� . Clearly,
� �

has alphabet ?�# � �$#$#$#%��#&' �&"(�$�$#/#$#/�&" �I@ with
� � N and

� �
is ordered (with the ordering of labels # � ��#$#/#4#&' � "(� � #/#$# �" �). On a path � of

� �
, the counts

�� 9 � �����$#$#$#%� ��6; � ���:� �8 ! � ���:�$#/#$#/� �8
�
� ��� cor-

respond to the above mentioned values � � �$#$#$#%���$'	��� �$�/#$#$#/���C� , respectively. Each
ending clock value

5 � can be represented as a summation of (some of) � � �$#$#$#%���$'
and � �$��� � �$#$#$#%���C� . More precisely, for each " � � � N , we use

��� �3� to denote the
number �^� ��� � with � � � � . Then, for each � � ��� ,

5 � � � � $ �
	 � � � � � � � � �
� (13)

and for each � �� ��� ,
5 � � �	 � � � � � � � � �
(14)

Substituting (13) and (14) for each
5 � , " � � � N , in 4 � �65 � �$#/#$#/� 5 '$� , one can obtain

15

a linear constraint A over � � �/#$#$#/� �$' ��� �$�$#$#$#:����� . We use � � to denote

A � � � �$#/#$#/���$'	��� �$�$#$#$#%���C� ��B 4 � � � �$#$#$#%���$'
��# (15)

The second case is when ��� � �
(i.e., � � N). In this case, we only need to replace

� � in the above construction for
� �

with � � � ��	 7 � � � . The resulting
� �

is then an
ordered finite state transition system over alphabet ?�# � �$#$#$#%��#&' �&" � �$#/#$#/�&"('	@ . In this
second case, for each " � � � N , we use

��� �3� to denote the number " � � � � with
��� � � . Similarly, one may obtain, from 4 � �X5 � �$#$#$#%� 5 '
� , a linear constraint A over
� � �/#$#$#/��� ' using the following substitutions:

5 � � �	 � � � � � � ' � �
(16)

In this case, we use � � to denote

A � � � �$#$#$#%��� '/��B 4 � � � �/#$#$#/� �$'$��# (17)

In both cases, the number of states in
� �

is at most N $ � N $ " � � JLKMJ . It is straight-
forward to verify the following claim:

(*) The Question-part for the linear reachability problem for static � is true iff,
for some � , there is a path � from)+*0) - (the initial state of machine

� � � � � �) to�%.&*&132 in ordered
� �

such that � satisfies � � .
Notice that � � does not depend on JLKMJ . In order to use (11) on finite state transi-
tion system

� �
, we will estimate the Pottier bound for � �

as follows. � � , in the
form of (15) or (17), contains at most � N variables. Both of the forms can be re-
organized into a disjunctive normal form. That is, � �

can be written into at most
0
 conjunctive linear constraints ��� . Each � � is a conjunction of a conjunctive
linear constraint in 4 � (using substitutions like (13,14,16)) and a conjunctive linear
constraint in 4 . It is easy to see that the Pottier bound, using Theorem 2.2, of � � is
at most

� � $ N ��� � $ �
 �
 '��
 � �

�

. Hence, the Pottier bound for � � is also bounded
by the same number. Notice that there are at most � � N �

distinct � ’s. So, using (11)
and the above claim, the linear reachability problem for static � is solvable in time
shown in (12).

We use FHG�I � 0 ��	 � � � � �
 � to measure the “size” of 4 and 4 � . Using (12) and
noticing that � � 	 , we further conclude that the linear reachability problem for
static � is solvable in time E � J+KMJ�� '� � � , when J+K J � N and the size of 4 and 4 � .

Next, we consider the case when � is not necessarily static. Let � be one plus the
maximal absolute value of all the constants appearing in enabling conditions in � .
We use

.
to denote the result of (12) after replacing JLKMJ with

� " $ � � � ' � �G' � JLKMJ , 	
with 	 $ N , � with � $ N , � � with FHG�I � � � ���=� , and �
 with F G�I � �
 ��� � .

16

Theorem 6.2 The linear reachability problem for discrete timed automata � is
solvable in time E � N � � � " $ � � ' � . ��#
Proof. Let A be a linear constraint in the following form:

5 � 9 & � # � B 5 � � 9 5 � 9 &
 #
 B #$#$# B 5 � ; 9 5 � ; �

9 & ' #:'	� (18)

where (� � �$#$#$#%� �7') is a permutation of (" �$#$#$#%��N), each & � is “=” iff ��� # � � � , and
each & � is “ (” iff # � � � . Let A be fixed. From [12,10], one can construct a static
� � with two designated states � �)+*,) - and � �.&*&132 and with at most

� " $ � � � ' � �G' �<JLKMJ num-
ber of states to simulate � faithfully. More precisely, � � has this nice property: for
any clock values

�
� �$#$#$#:� � ' � � �� �$#/#$#/� � �' � � satisfying A ���

� �$#$#$#%� � '$� , the following
two items are equivalent,

(I).
� �/)+*0) -<� � � �$#$#/#/� � ' � reaches

� �%.&*&132X� � �� �/#$#$#/� � �' � in � ,

(II).
� � �)+*0) - � � � �$#/#$#%� � ')� reaches

� � �.&*0132 � � �� �$#$#$#:� � �' � in ��� .

Hence, to solve the linear reachability problem for � , one needs only to solve, for
each choice of A , the linear reachability problem for � � :

(**) Are there clock values
�

� �$#/#$#/� � '	� � � � �/#$#$#:� � �' �'� satisfying the follow-
ing two conditions:

� � �)+*0) - � � � �$#$#$#%� � ')� reaches
� � �.&*&132 � � � � �$#$#$#%� � �' � in ��� and both4 ���

� �$#$#$#%� � '/��B A ���
� �/#$#$#/� � '$� and 4 � ��� � � �/#$#$#/� � �' � hold?

With the representation of A in (18), the linear reachability problem for static � �
shown in (**) can be solved in time as in (12), after replacing JLKMJ with

� " $ � � � ' � �G' �JLKMJ , 	 with 	 $ N , � with � $ N , � � with FHG�I � � � ���=� , and �
 with FHG�I � �
 ��� � .
As the total choices for A in (18) are at most N � � � " $ � � ' , the linear reachability
problem for discrete timed automata is solvable in time E � N � � � " $ � � ' � . � .
From Theorem 6.2 and the definition of

.
, we can further conclude that the linear

reachability problem for discrete timed automata is solvable in time E � J+K J � '� � � ,
when JLKMJ is � N ��� � and the size of 4 and 4 � .

Now, we turn to the case when � is a timed automaton with N dense clocks. One can
similarly formulate the semantics and the linear reachability problem for � (e.g.,
see [9]). With the pattern technique presented in [9], it is easy to show the following.
From � and 4 �:4 � , one can construct a discrete timed automaton � � with N discrete
clocks and two linear constraints � � � � such that the linear reachability problem of
timed automaton � concerning 4 �%4 � is equivalent to the linear reachability problem
of discrete timed automaton � � concerning �D� � � . In addition, the number of states
in ��� is E � � � � '�� � � � ��JLKMJL� , where K is the state set in � . (There are at most � � � ' � � � �
patterns [9].) Furthermore, � and � � only depend on 4 �:4 � and N (independent of
�). Hence, the linear reachability problem for � with dense clocks is still solvable

17

in time E � JLKMJ � '� � � , when J+KMJ � N ��� � and the size of 4 and 4 � . To sum up, we
have the following result.

Theorem 6.3 The linear reachability problem for timed automata (with integer-
valued clocks or with dense clocks) is solvable in time E � JLKMJ�� ' � � � , when JLKMJ �N ��� �40 ��	 � � � � �
 .

7 Conclusions

In this paper, we obtained a number of new complexity results for various linear
counting problems (reachability and liveness) for (ordered) finite state transition
systems and timed automata. At the heart of the proofs, we used some known re-
sults in estimating the upper bound for minimal solutions (in nonnegative integers)
for linear Diophantine systems. In particular, when all the parameters (such as the
number of labels/clocks, the largest constant � in a timed automaton, the size of
the linear constraint to be verified, etc.) except the number of states, JLKMJ , of the un-
derlying transition system are considered constants, all of the complexity bounds
obtained in this paper is polynomial in J+K J . This is, as we mentioned in Section 1,
in contrast to the exponential bounds that were previously known. In practice, a
requirement specification (e.g., the 4 in a linear counting problem) is usually small
and simple [14]. In this sense, our results are useful, since the large JLKMJ is usually
the dominant factor in efficiently solving these verification problems. However, in
real-world applications, how to use the structural information (such as modularity)
of a transition system to obtain a smaller bounding box remains a practical problem
to solve.

The authors would like to thank P. San Pietro and the anonymous referees for many
valuable suggestions.

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, April 1994.

[2] R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM, 41(1):181–
204, January 1994.

[3] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs.
In TACAS’99, volume 1579 of LNCS, pages 193–207. Springer-Verlag, 1999.

[4] I. Borosh, M. Flahive, and B. Treybig. Small solutions of linear diophantine equations.
Discrete Mathematics, 58:215–220, 1986.

18

[5] I. Borosh and B. Treybig. Bounds on positive integral solutions of linear diophantine
equations. Proceedings of the American Mathematical Society, 55:299–304, 1976.

[6] A. Bouajjani, R. Echahed, and P. Habermehl. On the verification problem of
nonregular properties for nonregular processes. In LICS’95, pages 123–133. IEEE
CS Press, 1995.

[7] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. TOPLAS, 8(2):244–263, 1986.

[8] H. Comon and Y. Jurski. Timed automata and the theory of real numbers. In
CONCUR’99, volume 1664 of LNCS, pages 242–257. Springer, 1999.

[9] Zhe Dang. Pushdown timed automata: a binary reachability characterization and safety
verification. Theoretical Computer Science, 302(1-3): 93–121, 2003.

[10] Zhe Dang, O. H. Ibarra, T. Bultan, R. A. Kemmerer, and J. Su. Binary reachability
analysis of discrete pushdown timed automata. In CAV’00, volume 1855 of LNCS,
pages 69–84. Springer, 2000.

[11] Zhe Dang, O. H. Ibarra, and P. San Pietro. Liveness verification of reversal-bounded
multicounter machines with a free counter. In FSTTCS’01, volume 2245 of LNCS,
pages 132–143. Springer, 2001.

[12] Zhe Dang, P. San Pietro, and R. A. Kemmerer. Presburger liveness verification of
discrete timed automata. Theoretical Computer Science, 299(1-3): 413–438, 2003.

[13] E. Domenjoud. Solving systems of linear diophantine equations: an algebraic
approach. In MFCS’91, volume 520 of LNCS, pages 141–150. Springer-Verlag, 1991.

[14] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property
specifications for finite-state verification. In ICSE’99, pages 411–421. ACM Press,
1999.

[15] G. J. Holzmann. The model checker SPIN. TSE, 23(5):279–295, May 1997.

[16] J. Hopcroft and J. Ullman. Introduction to Automata theory, Languages, and
Computation. Addison-Wesley Publishing Company, 1979.

[17] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell
Massachusetts, 1993.

[18] R. Parikh. On context-free languages. JACM, 13:570–581, 1966.

[19] A. Pnueli. The temporal logic of programs. In FOCS’77, pages 46–57. IEEE CS Press,
1977.

[20] L. Pottier. Minimal solutions of linear diophantine equations: Bounds and algorithms.
In Rewriting Techniques and Applications, volume 488 of LNCS, pages 162–173.
Springer-Verlag, 1991.

[21] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification (preliminary report). In LICS’86, pages 332–344. IEEE CS Press, 1986.

[22] C. Rackoff. The covering and boundedness problems for vector addition systems.
Theoretical Computer Science, 6:223–231, 1978.

19

