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Abstract. We introduce (finite and infinite) typical paths of a graph andprove that the typical paths
carry all information with probability 1, asymptotically.An automata-theoretic characterization of
the typical paths is shown: finite typical paths can be accepted by reversal-bounded multicounter
automata and infinite typical paths can be accepted by counting Büchi automata (a generalization
of reversal-bounded multicounter automata running onω-words). We take a statechart example to
show how to generate typical paths from a graph using SPIN model checker. The results are useful in
automata theory since one can identify an information-concentrated-core of a regular language such
that only words in the information-concentrated-core carry nontrivial information. When the graph
is used to specify the system under test, the results are alsouseful in software testing by providing
an information-theoretic approach to select test cases that carry nontrivial information of the system
specification.
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1. Introduction

Graph is a basic data structure in computer science. When a graph is used to specify a (blackbox)
software system (e.g., control flow graphs, data flow graphs and statecharts [9]), selecting test cases
is essentially equivalent to selecting paths (may contain loops) from the graph. This view is vividly
illustrated and approved by several authors who understandtesting as a process to “find a graph and
cover it [2, 1].” A central problem of testing is how to selecttest cases, since test cases need be selected
before tests are run and faults can only be identified after tests are run.

∗Address for correspondence: School of Electrical Engineering and Computer Science, Washington State University, Pullman,
WA 99164, USA
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Test cases are generated according to a given test data adequacy criterion [8] to intuitively indicate
“how much”of the graph is covered. For instance, path coverage is an indicator to measure the number of
paths of lengthn, for some givenn, that are selected as test cases divided by the number of all possible
paths of lengthn. Therefore, in path coverage, all the paths of the same length n are born equal. This is
not intuitively true: some paths do carry much more Shannon information than others [16].

In information theory [5], there is a phenomenon called AEP (asymptotic equipartition property)
saying that, for a random process, its information concentrates almost entirely on a small part of the
sample sequences. The AEP has been shown valid for only a handful of cases; e.g., i.i.d. processes as
well as stationary and ergodic Markov chains [5]. In this paper, we would like to develop a theory to show
that the AEP holds on the paths (from a given initial node) of agraph; i.e., there are “typical paths”of the
graphs that concentrate almost all information of all the paths. In this way, software engineers can use
the result to select test cases carrying nontrivial information. However, there are difficulties in defining
the typical paths. First, in AEP, one needs a random process,but in our theory, we are only given a graph
without transition probabilities. We handle the difficultyas follows. Selecting a path from the graph
resembles a Markov walk on the graph. Since the software specification under test is a blackbox, we
know nothing except for the blackbox’s interface. Hence, the walk must achieve the maximal entropy
rate1 λ∗ (otherwise, we must know additional information on the blackbox). In [17], we prove that there
is a Markov chainX achieving the maximal entropy rateλ∗ = lim

n→∞

logS(n)
n

, whereS(n) is the number

of paths in the graph with lengthn. Then, we define anǫ-X -typical pathx1, · · · , xn, which is a node
path of the graph, of the Markov chainX to be one satisfying

∣

∣

1

n
log

1

p(x1, · · · , xn)
− λ∗

∣

∣ < ǫ,

wherep(x1, · · · , xn) is the probability of the pathx1, · · · , xn. Second, showing that the AEP holds for
theseǫ-X -typical paths is difficult. This is because of Shannon-Mcmillan-Breiman Theorem [5] saying
that the existence of the self-entropy rate (in the form of a limit definition) needs a strong side condition
(ergodicity). In this paper, we employ a limsup definition ofentropy rate and successfully prove the
AEP for ǫ-X -typical paths. Third, Markov chainX that achieves the rateλ∗ is not unique. In this case,
we would like to know whether there is a notion that contains all typical paths of these Markov chains
achieving the rateλ∗, with probability 1, asymptotically. In this paper, we prove that the following notion
is as desired: a node pathx1, · · · , xn+1, which hasn edges, on the graph isǫ-typical if it satisfies

logB(x1, · · · , xn+1)

n
>

1

2
(λ∗ − ǫ),

whereB(x1, · · · , xn+1) =
∏

1≤i≤n

b(xi) with b(xi) being the branching factor of nodexi. Additionally,

we also extend the above results toω-paths of the graph and show a similar AEP holds forω-paths; i.e.,
the typical set ofω-paths on a graph also takes probability 1. Then, we show thatǫ-typical paths (resp.ω-
ǫ-typical paths) can be accepted by reversal-bounded multicounter automata [11] (resp. counting Büchi
automata – a generalization of reversal-bounded multicounter automata running onω-words). The above
characterization has some applications. First, for a givenǫ > 0, we can algorithmically chooseǫ-typical

1In information theory, the entropy rate is used to indicate how many bits one needs to losslessly encode each sample in a
stochastic process. Intuitively, a high entropy rate implies that the Markov chain has a high complexity, since one needs more
resource (encoding rate) to faithfully describe the process.
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paths satisfying certain patterns such as regular patternsand some nonregular patterns. Second, when
the graph is used to specify the system under test, we providean approach to select test cases that carry
nontrivial information of the system specification. Third,we can define aninformation-concentrated-
core(ICC) of a regular language such that only words in the ICC carry nontrivial information. The ICCs
for regular and some nonregular languages deserve further investigation in automata theory.

The rest of the paper is organized as follows. Section 2 recalls the basic definitions and shows the
AEP for ǫ-X -typical andǫ-typical (ω-)paths. Section 3 gives the definition of reversal-boundedmulti-
counter automata [11] and counting Büchi automata and investigates an automata-theoretic characteriza-
tion of finite and infinite typical paths. Sections 4 shows an experiment to generate typical paths from a
statechart using SPIN [10]. Section 5 concludes this paper.

2. Graph, Markov chain, and typical path

As usual, a (finite) graphG has a set of nodesQ and a set of directed edgesE. It has a designated
initial node, say,q1. Without loss of generality, we assume that the graph is reduced; i.e., every node is
reachable from the initial node. Apath of G is a finite sequence of nodes inG, q1 · · · qn, for somen,
which starts from the initial node (i.e.,q1 = q1) and, for each1 ≤ i < n, 〈qi, qi+1〉 ∈ E. An ω-path in
G is an infinite sequence of nodes inG where each (finite) prefix is a path ofG.

In this paper, a (finite state) Markov chainX is a discrete stochastic processX1, · · · ,Xn, · · · where
the sample space for each random variableXn isQ, and the conditional probability ofX needs to satisfy

Prob(Xn = xn|Xn−1 = xn−1, · · · ,X1 = x1) = Prob(Xn = xn|Xn−1 = xn−1),

for all x1, · · · , xn ∈ Q. Together with theinitial distribution Prob(X1 = x1) = 1 (the process always
starts from the initial node ofG), the probability of a particular sequenceπ = x1 · · · xn for somen ≥ 1,
is

p(π) = Prob(X1 = x1)Prob(X2 = x2|X1 = x1) · · ·Prob(Xn = xn|Xn−1 = xn−1).

Hence, the (finite state and time-invariant) Markov chain can also be represented in the form ofprobabil-
ity transition matrixT = [Tij ] where each entryTij indicates thetransition probabilityProb(Xn+1 =
qj | Xn = qi) from nodeqi to qj. The Markov chainX is called aG-representedMarkov chain if, for
eachTij , Tij = 0 when there is no edge from nodeqi to nodeqj in G.

In information theory, entropy rate indicates the growth rate of the entropy of a stochastic process.
The entropy rate ofX is defined as

λX = lim
n→∞

1

n
H(X1, · · · ,Xn), (1)

whereH(X1,X2, · · · ,Xn) is the joint entropy ofX1, · · · ,Xn, defined as, according to Shannon,

∑

x1,··· ,xn

p(x1, · · · , xn) log
1

p(x1, · · · , xn)
.

Note that throughout this paper, the base of logarithm is 2. Traditionally, research in information theory
focuses on random processes when the entropy rate, as a limitin (1), exists; e.g., when the processes
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are stationary. However, in general, the limit may not exist. In this paper, we use the upper limit as the
entropy rate if the limit does not exist. The entropy rate nowis defined as follows:

λX = lim sup
n→∞

1

n
H(X1,X2, · · · ,Xn). (2)

Notice that the upper limit always exists (and is≤ log |Q|, and hence finite), when the Markov chainX
isG-represented. In this case, what would be the maximal rateλ∗ among all possibleG-representedX?
In [17], it is shown that

lim
n→∞

log S(n)

n
= λ∗, (3)

whereS(n) is the number of paths inG with lengthn, and the rateλ∗ is achievable by aG-representedX
(however, such Markov chainX is not necessarily unique); i.e.,λX = λ∗. The existence [3] of the limit
in (3) is the source of the well-known fact that the count of words with lengthn in a regular language
grows either polynomially or exponentially. Furthermore,in [17] (also implicitly in [3]), an efficient
numerical algorithm to compute the rateλ∗ from the graphG is provided. In the sequel, the rateλ∗ is
also called therate of the graphG. That is all for our technical preparation in this section.

Intuitively, λ∗ refers to the entropy rate of a most “random” Markov walk on the graph. In the sequel,
X refers to a Markov process that achieves the maximal rateλ∗.

In information theory, there is an interesting principle called AEP (asymptotic equipartition property)
[5] whose intuitive meaning is as follows: for a random processX1, · · · ,Xn, the information is almost
entirely concentrated on a “small” (not necessarily small in practice) number of sequences; these se-
quences, calledtypical sequences, almost take probability 1. In other words, non-typical sequences take
almost zero amount of information, combined! The word “small” refers to the fact that the number of
typical sequences is only inverse-exponential ratio to thenumber of all sequences, in many cases. Hence,
the word “typical” here catches the real-world meaning of “carrying nontrivial amount of information.”

However, the principle has only been shown its validity for ahandful of cases (e.g., i.i.d. process and
ergodic Markov process, etc.). This is because the difficulty of the mathematics involved to show the
cases when AEP does hold.

In below, we will define typical paths for the Markov chainX . Intuitively, a typical path on the
G-representedX means that the self-entropy rate [5] of the path approximates the rate ofG, which is
also the entropy rate thatX achieves.

Definition 2.1. Let ǫ > 0 andX be theG-represented Markov chain specified earlier achieving the rate
λ∗ of the graphG. A pathx1, · · · , xn is ǫ-X -typical if the probability of this path satisfies

∣

∣

1

n
log

1

p(x1, · · · , xn)
− λ∗

∣

∣ < ǫ.

We are going to prove that AEP does hold for typical paths defined in above. In other words, for
sufficiently largen, non-ǫ-X -typical paths hold almost zero information by showing thatnon-ǫ-X -typical
paths take probability almost zero asymptotically, as follows.

Lemma 2.1. Let ǫ > 0 andX be theG-represented Markov chain specified earlier achieving the rateλ∗

of the graphG. Then,

lim inf
n→∞

Prob(
∣

∣

1

n
log

1

p(X1, · · · ,Xn)
− λ∗

∣

∣ ≥ ǫ) = 0.
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Proof:
LetX1, · · · ,Xn, · · · be the Markov chainX . For eachn, the sample space size ofX1, · · · ,Xn, accord-
ing to [17], isS(n). By definition

lim sup
n→∞

H(X1, · · · ,Xn)

n
= λ∗. (4)

Clearly, it suffices for us to show, using (3), that, for anyǫ > 0,

lim inf
n→∞

Prob(| log
1

p(X1, · · · ,Xn)
− logS(n)| ≥ nǫ) = 0. (5)

Let τ > 0. For notational convenience in the sequel, we defineC1(n) as the condition that

log
1

p(x1, · · · , xn)
≥ nτ + log S(n).

We first notice that, for alln andτ > 0, using Theorem 5.10.1 in [5],

Prob(log
1

p(X1, · · · ,Xn)
≥ nτ + logS(n)) ≤

1

2nτ−1
. (6)

From (6), we immediately have

lim inf
n→∞

Prob(log
1

p(X1, · · · ,Xn)
− log S(n) ≥ nǫ) = 0.

Hence, in order to prove (5), we need only show

lim inf
n→∞

Prob(log
1

p(X1, · · · ,Xn)
≤ log S(n)− nǫ) = 0. (7)

Takep∗ > 0 to be the minimal positive transition probability of the Markov chainX1, · · · ,Xn, · · · .
Clearly, from above,

∑

C1(n)

p(x1, · · · , xn) log
1

p(x1, · · · , xn)
≤

1

2nτ−1
· n log

1

p∗
. (8)

Notice that, asn → ∞, the RHS→ 0. Using (3) and (4), there aren1 < · · · < nk < · · · such that

lim
k→∞

logS(nk)−H(X1, · · · ,Xnk
)

nk

= 0. (9)

We prove (7) by contradiction. That is, we assume that there are ǫ > 0, δ > 0, and an infinite setK such
that for eachk ∈ K,

Prob(log
1

p(X1, · · · ,Xnk
)
≤ log S(nk)− nkǫ) ≥ δ

holds. Again, we useC2(n) to denote the condition

log
1

p(x1, · · · , xn)
≤ logS(n)− nǫ.



6 C. Cui et al. / Typical Paths of a Graph

Now, for eachk ∈ K, H(X1, · · · ,Xnk
)

≤
∑

C2(nk)

p(x1, · · · , xnk
) · [log S(nk)− nkǫ]

+
∑

¬C2(nk)∧¬C1(nk)

p(x1, · · · , xnk
) log

1

p(x1, · · · , xnk
)

+
∑

¬C2(nk)∧C1(nk)

p(x1, · · · , xnk
) log

1

p(x1, · · · , xnk
)

(Using (8))

≤ δ · [log S(nk)− nkǫ] + (1− δ) · [log S(nk) + nkτ ] +
1

2nkτ−1
· nk log

1

p∗
.

Takeτ < ǫ·δ
1−δ

and, sinceK is infinite, we have

lim inf
k→∞

log S(nk)−H(X1, · · · ,Xnk
)

nk

≥ ǫ · δ − (1− δ) · τ > 0,

a contradiction to (9). The result follows. ⊓⊔

The following AEP theorem, directly from Lemma2.1, claims that, asymptotically (i.e., for infinitely
many largen), typical paths take probability 1.

Theorem 2.1. Let ǫ > 0. Theǫ-X -typical paths take probability 1, asymptotically; i.e.,

lim sup
n→∞

Prob(
∣

∣

1

n
log

1

p(X1, · · · ,Xn)
− λ∗

∣

∣ < ǫ) = 1.

Now, we extend our results toω-paths ofG.

Definition 2.2. LetX be theG-represented Markov chain mentioned earlier. Anω-path isω-ǫ-X -typical
if there are infinitely many prefixes such that each prefix isǫ-X -typical.

To show that AEP holds forω-ǫ-X -typical (ω-)paths, we first need to define a probabilistic measure
µ overω-sequences of nodes, using notation in [15]. In the sequel, we useπ = x1, · · · , xn to denote a
sequence inQ∗ and useπω = x1, · · · , xn, · · · to denote anω-sequence inQω. Define

cylinder(π) = {πω | π is a prefix of πω}

and define
µ(cylinder(x1, · · · , xn)) = p(x1, · · · , xn).

Now, µ can be extended to theσ-algebra generated by the cylinder sets, as usual [15]. In particular,
the set of allω-ǫ-X -typical paths can be written as

⋂

k∈N

⋃

n≥k

{(x1, · · · , xn · · · ) ∈ Qω |
∣

∣

1

n
log

1

p(x1, · · · , xn)
− λ∗

∣

∣ < ǫ}.

Clearly, this set is measurable underµ. We can show that the set of allω-ǫ-typical paths takes probability
1 using measure theory [18].
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Theorem 2.2. Let ǫ > 0. Then,

µ(
⋂

k∈N

⋃

n≥k

{(x1, · · · , xn, · · · ) ∈ Qω |
∣

∣

1

n
log

1

p(x1, · · · , xn)
− λ∗

∣

∣ < ǫ}) = 1.

However, the Markov chainX that achievesλ∗ is not necessarily unique, as mentioned earlier. There-
fore, we need a way to define a set that contains allǫ-X -typical paths for all suchX , asymptotically, as
follows. In this way, the set does not depend on any particular choice of theX and, hence, only depends
on the graphG. Letx1, · · · , xn+1 be a path ofG, which hasn edges. Define

B(x1, · · · , xn+1) =
∏

1≤i≤n

b(xi),

whereb(xi) is the branching factor (i.e., out-degree) of nodexi. We define anǫ-typical path of a graph
G as follows. Notice that this definition depends only on the graph (not on any Markov chain).

Definition 2.3. Let ǫ > 0. A pathx1, · · · , xn+1 onG is ǫ-typical if it satisfies

logB(x1, · · · , xn+1)

n
>

1

2
(λ∗ − ǫ), (10)

whereλ∗ is the rate of the graphG.

Intuitively, (10) says that the average logarithmic branching factors on the path is higher than almost
half of λ∗. Indeed, this is a good approximation as shown in the following Theorem 2.3. Intuitively, the
theorem states that, asymptotically with probability 1,ǫ-typical paths include allǫ-X -typical paths. We
first need a technical lemma.

Lemma 2.2. The numberK(n, ǫ) of pathsx1, · · · , xn+1 of G satisfying

logB(x1, · · · , xn+1)

n
≤

1

2
(λ∗ − ǫ) (11)

is bounded by2n(λ
∗− ǫ

3
), for anyn that is large enough.

Proof:
Define a random variableX = 1

B(X1,··· ,Xn+1)
, whereX1, · · · ,Xn+1 has uniform joint distribution over

node paths withn edges onG; i.e.,p(x1, · · · , xn+1) =
1

S(n) for every pathx1, · · · , xn+1. Observe that

∑

x1,··· ,xn+1 is a path

1

B(x1, · · · , xn+1)
= 1.

Hence, the meanE(X) = 1
S(n) and the deviationE(X − E(X))2 ≤ 1

S(n) .Using Chebyshev inequality,
we have

Prob(|
1

B(X1, · · · ,Xn+1)
−

1

S(n)
| ≥ (

2n
2

3
ǫ

S(n)
)
1

2 ) ≤
1

2n
2

3
ǫ
. (12)
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Therefore, sinceX1, · · · ,Xn+1 has uniform joint distribution, the number̂K(n, ǫ) of pathsx1, · · · , xn+1

of G satisfying

|
1

B(x1, · · · , xn+1)
−

1

S(n)
| ≥ (

2n
2

3
ǫ

S(n)
)
1

2 , (13)

using (12), is bounded as

K̂(n, ǫ) ≤
S(n)

2n
2

3
ǫ
. (14)

From (3),
2n(λ

∗− ǫ

3
) ≤ S(n) ≤ 2n(λ

∗+ ǫ

3
), (15)

whenn large enough. Now (13) can be restricted to, whenn is large,

B(x1, · · · , xn+1) ≤ [
2n(λ

∗− 1

3
ǫ)

2n
2

3
ǫ

]
1

2 . (16)

That is, a sequence satisfying (16) also satisfies (13), whenn large. Notice that (16) is exactly (11).
Hence,K(n, ǫ) ≤ K̂(n, ǫ). The lemma follows, using (14) and (15). ⊓⊔

Using Lemma 2.2 and Theorem 2.1,we can show:

Theorem 2.3. Let ǫ > 0. For anyG-representedX that achievesλ∗,

lim sup
n→∞

Prob(
logB(X1, · · · ,Xn+1)

n
>

1

2
(λ∗ − ǫ)) = 1.

One can analogously defineω-ǫ-typical paths and, similar to Theorem 2.2, show that theω-ǫ-typical
paths take probability 1, asymptotically.

Definition 2.4. Let ǫ > 0. An ω-pathx1, · · · , xn, · · · on G is ω-ǫ-typical if it has infinitely many
ǫ-typical prefixes.

Theorem 2.4. For anyG-representedX that achievesλ∗, µ(the set ofω-ǫ-typical paths) = 1.

3. Automata-theoretic characterization of typical paths

Automata theory studies the relationship between formal languages and automata accepting the lan-
guages. Finite automata form a simple class of automata which only have a finite amount of memory.
They can be further equipped with unbounded storage devicessuch as counters. A counter is a non-
negative integer variable that can add one, subtract one or test against zero. A (nondeterministic) finite
automata augmented with a finite number of counters is calledanondeterministic multicounter automata
(NCA). It is well-known that NCAs with two counters are equivalent to Turing machines, which, in al-
most all cases, are too powerful to draw decidable results. To this end, it is necessary to make restrictions
on the counters’ behaviors. One such restriction is a reversal-bounded counter, proposed by Ibarra in
his seminal paper [11] in 1978. A counter isk-reversal-bounded if it changes modes between nonde-
creasing and nonincreasing for at mostk times. For example, the sequence of a counter values: 0, 0,
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1, 1, 2, 2, 3, 3, 2, 2, 1, 1, 2, 2, 3, 3, 4, 4,· · · is 2-reversal-bounded. An NCA where each counter is
k-reversal-bounded for somek in every execution is called anondeterministic reversal-bounded multi-
counter automata(NRCA). Note that an NRCA does not necessarily limit the number of moves to be
finite.

The notion of reversal-bounded counters has found its applications in areas like verification, Dio-
phantine equations, and P systems [13] (see [12] for a survey). For the purpose of this paper, we need a
fundamental result [11] that links NRCAs with Presburger formulas. We first need some definitions.

Let N be the set of nonnegative integers andZ be the set of integers. LetY = {y1, . . . , yn}, for
somen, denote a finite set of integer variables. Anatomic linear constraintis a formula in the form of
∑

1≤i≤n aiyi#b, where theai’s andb are integers and# ∈ {>,=}. When# is ≡d (for some constant
d), the formula is called anatomic mod-constraint. A Presburger formulais a Boolean combination of
atomic linear constraints and atomic mod-constraints. A set ⊆ Zn is Presburger-definable if there exists
a Presburger formulaP on Y such that the set is exactly the set of the solutions forY that makeP true.
It is well-known that Presburger formulas are closed under quantification.

An integerv can be represented by a unary string[v], i.e., +5 as “̇aȧȧȧȧ”, -5 as“̂aââââ”, and 0
as the empty string. In this way, a tuple of integers〈v1, · · · , vn〉 can be represented as ann-tuple string
[v1]# · · ·#[vn], where symbol# is the delimiter. Therefore, a set⊆ Zn can be represented as ann-tuple
language. In this paper, we need the following fundamental result in [11].

Theorem 3.1. For eachn, a set⊆ Zn is Presburger definable iff then-tuple language representing the
set is accepted by a nondeterministic reversal-bounded multicounter automaton. The result remains when
the automaton is further augmented with a counter (that is not necessarily reversal-bounded).

To study an automata-theoretic characterization ofω-ǫ-typical paths, we need a generalization, in-
spired by the machine model in [6], of NRCA to run overω-words. Acounting B̈uchi automatonM is a
tuple

〈Σ, S, Y, F, δ, s0〉, (17)

whereΣ is a finite alphabet,S is a finite set of states withs0 ∈ S being the initial state, andY =
{y1, · · · , yn}, for somen, is a finite set of nonnegative integer variables, which are called (monotonic)
counters. Additionally,F is a finite set ofaccepting conditions; each condition is a finite set ofPres-
burger tests. A Presburger test is a pair(s, P ) of a states ∈ S and a Presburger formulaP on the coun-
ters, (this definition of accepting conditions ensures Theorem 3.2 in below), andδ ⊆ S × Σ× N|Y | × S

specifies a finite set of transitions or edges. An edge inδ, 〈s, a, incr , s′〉 denotes a transition from state
s to states′ with a ∈ Σ being the (input) symbol on the transition. The vectorincr ∈ N|Y | specifies
how the counters change after firing the transition: each counteryi in Y is incremented by thei-th value
incr [i] in the vectorincr .

A run of M over anω-wordα = a1a2 · · · ∈ Σω is an infinite sequence of configurations

C0C1C2 · · · ,

where each configurationCi = (si,Vi) is a pair of a statesi and counter values (as a vector)Vi, satisfying
the following conditions:

• In C0, the state is the initial state and the counter values are all0,
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• for eachi ≥ 0, Ci can reachCi+1 by firing a transition inM while reading the input symbolai.
That is,(si, ai,Vi+1 − Vi, si+1) ∈ δ. In this case, we also writeCi

ai→ Ci+1.

We say that a test(s, P ) satisfiesa configuration if the configuration is at states and the counter values
satisfyP ; i.e., the configuration is in the form of(s,V) with P (V) holds. The run isacceptingif there
is an accepting condition inF such that each test(s, P ) in the condition satisfiesCi for infinitely many
i. The infinite wordα is accepted byM if there is an accepting run ofM overα. The (ω-) language
accepted byM , denoted byLω(M), is the set of infinite words accepted byM .

Clearly, classic Büchi automata are a special case of counting Büchi automata where an accepting
condition contains only one test(s, true). The following result is straightforward and analogous to the
same result of Büchi automata (Lemma 1.2 in Chapter 4 in [14]).

Theorem 3.2. ω-Languages accepted by counting Büchi automata are closedunder union and intersec-
tion.

A basic automata theory problem concerns emptiness. In thiscontext, the emptiness problem for count-
ing Büchi automata is to decide whetherLω(M) = ∅ for a givenM .

To prove the emptiness problem of counting Büchi automata is decidable, we need more definitions.
We say configuration(s,V) can reach configuration(s′, V′), written

(s,V) ;M (s′,V′),

if there is a worda1 · · · ak−1 (for somek-1) such that

C1
a1→ C2

a2→ · · ·
ak−1
→ Ck (18)

whereC1 = (s,V) andCk = (s′,V′). In this case, the execution in (18)witnessesthe reachability.
LetR be a Presburger formula which defines a set⊆ S × Nn × S × Nn (note that the finite state set

S can be encoded as a finite range of integers). ThisR can be used to represent certain relation between
configurations. We say thatR is transitiveif, for any s,V, s′,V′, s′′,V′′, we have

R(s,V, s′,V′) ∧R(s′,V′, s′′,V′′) → R(s,V, s′′,V′′).

An infinite sequence of configurations(s1,V1) · · · (si,Vi) · · · is anω-chainof R if R(si,Vi, si+1,Vi+1)
holds, for eachi ≥ 1. We need the following result whose proof can be found in [6].

Theorem 3.3. It is decidable whether a transitive Presburger formula hasanω-chain.

Now, we are ready to claim the following theorem, using Theorem 3.1 and Theorem 3.2.

Theorem 3.4. The emptiness problem for counting Büchi automata is decidable.

In practice, one may select a typical path that satisfies a specific pattern from a graph (e.g., a typical
path on a graph satisfying that the number of times that nodesgreen, yellow, andred are passed are all
the same). It will be awkward (if not possible) to perform Matrix operations on a Markov chain while
maintaining the counting constraints, while searching forsuch a typical path. However, once the set
of typical paths is characterized as a language accepted by an automatonM , the selection problem is
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roughly asking ifL(M)
⋂

Lpattern 6= ∅, whereLpattern is the set of all sequences (not being necessarily
paths) satisfying the pattern. This is an emptiness problem, which has been a central research topic
throughout automata theory. In below, we will showM is an NRCA.

We will show thatǫ-typicalness is roughly Presburger in below. Recall that a pathx1, · · · , xn+1 is
ǫ-typical if

logB(x1, · · · , xn+1) >
1

2
n(λ∗ − ǫ). (19)

We use count#i to denote the number of appearances of the nodeqi in x1, · · · , xn (in other words,
#i denotes the number of times that the pathx1, · · · , xn passes the nodeqi in the graph). We use
bi to denote the branching factor of the nodeqi given in the graph. Notice thatB(x1, · · · , xn+1) =
∏

1≤i≤|Q|

(bi)
#i . For convenience, letai denotelog bi. Then, it is not hard to translate (19) into

∑

1≤i≤|Q|

ai#i >
1

2
n(λ∗ − ǫ), (20)

where theai’s are some nonnegative reals.
We useτ = 10−j , for somej, to denote a precision accurate to thejth decimal place. We call

∑

1≤i≤|Q|

⌊
ai

τ
⌋#i > n⌈

λ∗ − ǫ

2τ
⌉ (21)

the lower-approximationof (20), and

∑

1≤i≤|Q|

⌈
ai

τ
⌉#i > n⌊

λ∗ − ǫ

2τ
⌋ (22)

the upper-approximationof (20). Notice that the floor(⌊·⌋) and the ceiling(⌈·⌉) are a little different
than usual in here:⌊2.01⌋ = ⌊2.00⌋ = 2 and⌈2.01⌉ = ⌈2.00⌉ = 3. Observe that (21) implies (20) and
(20) implies (22). Therefore, a pathx1 · · · xn+1 is ǫ-lower-typical (resp.ǫ-upper-typical) if it satisfies
(21) (resp. (22)). Clearly, the path isǫ-typical if it is ǫ-upper-typical; the path isǫ-lower-typical then
it is ǫ-typical. In below, we will show that the set ofǫ-lower-typical (ǫ-upper-typical as well) paths is
accepted by NRCA.

Theorem 3.5. The set ofǫ-lower-typical (ǫ-upper-typical as well) paths is accepted by an NRCA.

Proof:
For a pathx1, · · · , xn onG, the Presburger constraints in (21) as well as in (22) can be checked using
reversal-bounded counters. The result follows. ⊓⊔

Similarly, we can define anω-ǫ-lower-typical (resp.ω-ǫ-upper-typical) path to be anω-path such
that there are infinitely many prefixes, each of which is anǫ-lower-typical (resp.ǫ-upper-typical) path.
The proof of the following theorem is straightforward.

Theorem 3.6. The set ofω-ǫ-lower-typical (ω-ǫ-upper-typical as well) paths is accepted by a counting
Büchi automaton.
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The significance of the above two characterizations (Theorem 3.5 and Theorem 3.6) is that, from
[11] and Theorem 3.4, the emptiness problems for NRCAs and counting Büchi automata are decidable.

The characterizations immediately imply the decidabilityon whether there is a (lower- or upper-)
typical path following certain patterns. For instance, consider a graphG and an NRCAM accepting
a set of paths inG. For a givenǫ and a given precision, we useLlower(G) andLupper(G) to denote
the set ofǫ-lower typical paths and the set ofǫ-upper typical paths ofG, respectively. Clearly, whether
Llower(G)

⋂

L(M) = ∅ and whetherLupper(G)
⋂

L(M) = ∅ are all decidable (since languages ac-
cepted by NRCAs are closed under intersection [11]).L(M) can be used to specify fairly complex and
nonregular patterns: e.g.,

(#π(q1)−#π(q2) > 5) ∧ (#π(q3)−#π(q4) > 7) (23)

where#π(q) indicates the number of times thatπ passes nodeq in G. Hence, both of the following
problems are decidable:

• Is there a lower-ǫ-typical path inG that satisfies (23)?

• Is there an upper-ǫ-typical path inG that satisfies (23)?

Similarly, let M be a counting Büchi automaton to accept a set ofω-paths ofG. We useLω
lower(G)

andLω
upper(G) to denote theω-ǫ-lower-typical paths andω-ǫ-upper-typical paths ofG, respectively.

Clearly, whetherLω
lower(G)

⋂

Lω(M) = ∅ and whetherLω
upper(G)

⋂

Lω(M) = ∅ are both decidable
(using Theorem 3.2). Notice thatLω(M) can also be used to specify fairly complex and non-ω-regular
patterns: e.g.,ω-pathsπω of G such that

• there are infinitely many times thatπω passes through nodeq1 and, at each such time, the number
of times nodeq1 has been passed is greater than the number of times nodeq2 has been passed, and,

• there are infinitely many times thatπω passes through nodeq2 and, at each such time, the number
of times nodeq2 has been passed is greater than the number of times nodeq3 has been passed.

Hence, the following problems are decidable:

• Is there anω-ǫ-lower-typical path inG that satisfies the aforementionedω-pattern?

• Is there anω-ǫ-upper typical path inG that satisfies the aforementionedω-pattern?

Furthermore, when
Lω
upper(G)

⋂

Lω(M) = ∅, (24)

it really says that theω-paths contained in theω-patternLω(M) take probability 0 (Theorem 2.4). In
other words, theω-patternLω(M) does not carry “essential information” (Notice that theω-pattern is
also able to specify safety properties that concern finite prefixes ofω-paths only.). Theω-pattern can
also be specified using a generalized LTL formula [7, 6]. Sucha formula is often employed in a property
specification in a specification language such as Promela [10]. In this case, the graphG serves as the
system specification. Hence, from (24), a software engineermay conclude that the property specification
does not catch any “essential” information of the system specification.
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4. Experiment

Theoretically, generating a typical path is difficult. Thisis because there is no known polynomial time
algorithm to solve the emptiness problem of NRCAs. To this end, in this section, we use a practically
efficient model-checking [4] tool SPIN [10] to generateǫ-typical paths.

In this experiment, we are to chooseǫ-typical paths from a statechart. In the original statechart paper
[9], the author uses Citizen Quartz Multi-Alarm III wristwatch as an example to exemplify the way of
generating statecharts to explain the semantics of the system. In this section, for simplicity, we only
use thedisplays unit of the watch statechart as an instance to illustrate howto generateǫ-typical and
non-ǫ-typical paths (i.e., a path that is notǫ-typical) from a statechart.

Figure 1. The statechartS of thedisplays units (Figure 9 in [9])

Figure 1 shows the statechartS of the displays unit. In S, a node denotes a state and a labeled
edge denotes a transition with its label being the input symbol from one state to another. For example,

the transitiontime
button−a
−→ alarm1 represents that thedisplays unit can transit from the statetime to

the statealarm1 when button-a is pressed. Figure 1 indicates two functions:first, continuing pressing
button-a, the state can transit in the state sequence oftime, alarm1, alarm2, chime, stopwatch; second,
pressing button-d, the system can transit from statetime to statedate. If pressing the button-d again or
waiting more than 2 minutes, the system goes back to statetime again.

We use Promela (a specification language provided with SPIN)to code the statechartS and write
LTL formulas to specify a property on a path beingǫ-typical (resp. non-ǫ-typical). Hence, a non-ǫ-
typical path and anǫ-typical path can be generated using the counter example generation function of
SPIN.

In the experiments, we takeǫ = 0.007. The rateλ∗ = 0.5973 of the statechartS is computed using
a Matlab script written by Linmin Yang. SPIN generates two sequences with length of 19: one is an
ǫ-typical sequence,

(press button-a)15(press button-d)2(press button-a)2,
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and the other is a non-ǫ-typical sequence,

(press button-a)19.

Our Promela code runs on the Ubuntu 10.10 OS which is installed on an Oracle VirutalBox. The
hosting computer is a window platform PC with Intel P8600 processor and 2GB memory. The running
times of the experiments are all negligible.

5. Conclusion and discussion

We have introduced the concepts ofǫ-typical paths andω-ǫ-typical paths on a graph, and the typical paths
(ω-typical as well) take probability 1, asymptotically. We also provide an automata-theoretic characteri-
zation for those paths; e.g., typical paths accepted by NRCAs andω-typical paths accepted by counting
Büchi automata. Finally, we use SPIN to show how to generateǫ-typical paths in practice.

A magic number12 is used to define theǫ-typical paths in Definition 2.3. Can we use other larger
numbers instead of12 in order to generate a smaller typical set taking probability 1? We believe that the
answer is no. The reasons are explained as follows. First, ifwe use1 instead of12 in the formula, (10) can
be satisfied only when the transition probabilities of the graph are uniform. The uniform distribution is
not consistent with our intended meaning of typical paths. Second, we conjecture that12 is the maximal
value that can be used in the range[12 , 1) to achieve a similar AEP result. (1

2 used in Lemma 2.2 comes
from the Chebyshev inequality in its proof. The inequality is the root of the law of large numbers, which
is also “equivalent” to AEP.)

Additionally, typical paths of a graph can be generalized to“typical words” in a language. LetL be
a language (not necessarily regular) andw ∈ L be a word. DefineB(w), called the B-value ofw, to be

∏

w′≺w

branch(w′),

wherew′ is a proper prefix ofw (i.e.,w′ ≺ w) and branch(w′) is
∣

∣{a ∈ Σ : ∃w′′, w′aw′′ ∈ L}
∣

∣. For
example, LetL = {abc, cde, adf}. Then,B(a) = 2 andB(ab) = 4. Suppose now thatL is regular. For
a givenǫ > 0, we say that a wordw ∈ L is ǫ-typical if its B-value satisfies

logB(w)

n
>

1

2
(λ∗ − ǫ), (25)

whereλ∗ is computed as the rate of a graph representing a deterministic finite automaton acceptingL.
In this way, we can obtain aninformation-concentrated-core(ICC) of a regular language. The ICC
of a regular language is defined as the set of allǫ-typical words in this regular language for a given
ǫ > 0. From the results of this paper, the ICC is accepted by an NRCAafter applying a precision
to (25) (actually, it is context free), and satisfies Theorem2.3: only words in the ICC carry nontrivial
information. We conjecture that a similar notion of (25) canbe created for some nonregular languages
(e.g., context-free languages and languages accepted by NRCAs) and hence, the ICCs deserve further
investigation in automata theory.
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