Fundamenta Informaticae 110 (2011) 1-15 1
DOI 10.3233/FI-2011-551
10S Press

Typical Paths of a Graph

Cewei Cui, Zhe Dang, Thomas R. Fischer

School of Electrical Engineering and Computer Science
Washington State University, Pullman, WA 99164, USA
ccui@eecs.wsu.edu; zdang@eecs.wsu.edu; fischer@ageslws

Abstract. We introduce (finite and infinite) typical paths of a graph analve that the typical paths
carry all information with probability 1, asymptoticalbAn automata-theoretic characterization of
the typical paths is shown: finite typical paths can be agzkpy reversal-bounded multicounter
automata and infinite typical paths can be accepted by comBliichi automata (a generalization
of reversal-bounded multicounter automata runninguemords). We take a statechart example to
show how to generate typical paths from a graph using SPINetabecker. The results are useful in
automata theory since one can identify an information-eatrated-core of a regular language such
that only words in the information-concentrated-coreaontrivial information. When the graph
is used to specify the system under test, the results araiséfal in software testing by providing
an information-theoretic approach to select test case¢s#ney nontrivial information of the system
specification.
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1. Introduction

Graph is a basic data structure in computer science. Wheaphds used to specify a (blackbox)
software system (e.g., control flow graphs, data flow graptis statecharts [9]), selecting test cases
is essentially equivalent to selecting paths (may contaipd) from the graph. This view is vividly
illustrated and approved by several authors who underdiestihg as a process to “find a graph and
cover it [2, 1].” A central problem of testing is how to seléest cases, since test cases need be selected
before tests are run and faults can only be identified afsts &re run.

*Address for correspondence: School of Electrical Engingeand Computer Science, Washington State Universitynfaul,
WA 99164, USA
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Test cases are generated according to a given test dataaagiezyiterion [8] to intuitively indicate
“how much”of the graph is covered. For instance, path cayeiraan indicator to measure the number of
paths of length, for some givem, that are selected as test cases divided by the number afsalilppe
paths of lengtim. Therefore, in path coverage, all the paths of the sameHengte born equal. This is
not intuitively true: some paths do carry much more Shann@oriination than others [16].

In information theory [5], there is a phenomenon called ABBy(ptotic equipartition property)
saying that, for a random process, its information conegetr almost entirely on a small part of the
sample sequences. The AEP has been shown valid for only duhafidases; e.g., i.i.d. processes as
well as stationary and ergodic Markov chains [5]. In thisgrapve would like to develop a theory to show
that the AEP holds on the paths (from a given initial node) gifegoh; i.e., there are “typical paths”of the
graphs that concentrate almost all information of all théhgaln this way, software engineers can use
the result to select test cases carrying nontrivial infaroma However, there are difficulties in defining
the typical paths. First, in AEP, one needs a random probes#, our theory, we are only given a graph
without transition probabilities. We handle the difficultg follows. Selecting a path from the graph
resembles a Markov walk on the graph. Since the softwarefg@ion under test is a blackbox, we
know nothing except for the blackbox’s interface. Hence, walk must achieve the maximal entropy
ratet \* (otherwise, we must know additional information on the kkax). In [17], we prove that there
is a Markov chaint’ achieving the maximal entropy rat& = hm logi(”) whereS(n) is the number

of paths in the graph with length. Then, we define ag-X'- typlcal pathzy,--- ,z,, which is a node
path of the graph, of the Markov chadtito be one satisfying

1

1
|—log—
no 7 p(xi,,T)

-\ <e

wherep(zy,-- -, x,) is the probability of the path,--- ,z,. Second, showing that the AEP holds for
thesee-X-typical paths is difficult. This is because of Shannon-MtaniBreiman Theorem [5] saying
that the existence of the self-entropy rate (in the form aifrét Idefinition) needs a strong side condition
(ergodicity). In this paper, we employ a limsup definitionesftropy rate and successfully prove the
AEP for e-X'-typical paths. Third, Markov chaif’ that achieves the rate" is not unique. In this case,
we would like to know whether there is a notion that contailth$yaical paths of these Markov chains
achieving the rata*, with probability 1, asymptotically. In this paper, we peahat the following notion

is as desired: a node path, - - - , z,+1, Wwhich hasn edges, on the graph éstypical if it satisfies
IOgB(.%'l,"- ,.’L'n+1) 1 *
whereB(z1, - ,zp41) = [[ b(x;) with b(z;) being the branching factor of nodeg. Additionally,
1<i<n

we also extend the above resultsdgpaths of the graph and show a similar AEP holdsidepaths; i.e.,
the typical set ofu-paths on a graph also takes probability 1. Then, we showtyaical paths (respw-
e-typical paths) can be accepted by reversal-bounded raufiter automata [11] (resp. counting Biichi
automata — a generalization of reversal-bounded multies@utomata running an-words). The above
characterization has some applications. First, for a giverd, we can algorithmically choosetypical

In information theory, the entropy rate is used to indicateslmany bits one needs to losslessly encode each sample in a
stochastic process. Intuitively, a high entropy rate ieplhat the Markov chain has a high complexity, since onesgeate
resource (encoding rate) to faithfully describe the preces
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paths satisfying certain patterns such as regular patsrdsome nonregular patterns. Second, when
the graph is used to specify the system under test, we pravidgproach to select test cases that carry
nontrivial information of the system specification. Thiwle can define amformation-concentrated-
core(ICC) of a regular language such that only words in the IC@ycaontrivial information. The ICCs
for regular and some nonregular languages deserve furthestigation in automata theory.

The rest of the paper is organized as follows. Section 2|settad basic definitions and shows the
AEP for e-X-typical ande-typical (w-)paths. Section 3 gives the definition of reversal-bounahexdti-
counter automata [11] and counting Biichi automata andstigetes an automata-theoretic characteriza-
tion of finite and infinite typical paths. Sections 4 shows gpegiment to generate typical paths from a
statechart using SPIN [10]. Section 5 concludes this paper.

2. Graph, Markov chain, and typical path

As usual, a (finite) grapldiz has a set of node§ and a set of directed edgés It has a designated
initial node, sayg;. Without loss of generality, we assume that the graph isaediui.e., every node is
reachable from the initial node. pathof G is a finite sequence of nodes @ ¢' - - - ¢”, for somen,
which starts from the initial node (i.e;) = ¢;) and, for each < i < n, (¢*,¢"*') € E. An w-pathin
G is an infinite sequence of nodesGhwhere each (finite) prefix is a path 6f

In this paper, a (finite state) Markov chathis a discrete stochastic process, - - - , X,,, - -- where
the sample space for each random variableis (0, and the conditional probability of needs to satisfy

Prob(X,, = 2| Xpn—1 = 2p-1, -, X1 = x1) = Prob(X,, = 2| Xp,—1 = zp—1),

for all z1,--- ,x, € Q. Together with thenitial distribution Prob(X; = x;) = 1 (the process always
starts from the initial node af), the probability of a particular sequenge= z; - - - z,, for somen > 1,
is

p(m) = Prob(Xy = z1)Prob(Xy = 22| X1 = 21) - - - Prob(X,, = 2| Xpno1 = zp—1).

Hence, the (finite state and time-invariant) Markov chaim&iso be represented in the formpsbbabil-
ity transition matrix7” = [T;;] where each entr§;; indicates theransition probabilityProb(X,,+1 =
¢; | Xn = ¢;) from nodeg; to ¢;. The Markov chaint is called aG-representedvlarkov chain if, for
eachT;;, T;; = 0 when there is no edge from noggto nodeg; in G.

In information theory, entropy rate indicates the growtte raf the entropy of a stochastic process.
The entropy rate of’ is defined as

1
Ay = lim —H(Xq,--,X,), (1)

n—oo n
whereH (X1, X, -+, X,,) is the joint entropy ofX1, - - - , X,,, defined as, according to Shannon,

1

p(x1, @)

Z p(xla e ’-Tn) 10g

T1, T

Note that throughout this paper, the base of logarithm isr@difionally, research in information theory
focuses on random processes when the entropy rate, as anlitiit, exists; e.g., when the processes
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are stationary. However, in general, the limit may not exXistthis paper, we use the upper limit as the
entropy rate if the limit does not exist. The entropy rate mowefined as follows:

)\X:Iimsule(Xl,Xg,--- , Xn)- 2
n—oo N
Notice that the upper limit always exists (andddog |Q|, and hence finite), when the Markov chalh
is G-represented. In this case, what would be the maximal¥atamong all possiblé--representedt’?
In [17], it is shown that
lim log S(n)
n—o0 n
whereS(n) is the number of paths i@ with lengthn, and the rate* is achievable by &-represented’
(however, such Markov chaift’ is not necessarily unique); i.e\,y = A*. The existence [3] of the limit
in (3) is the source of the well-known fact that the count ofdgwith lengthn in a regular language
grows either polynomially or exponentially. Furthermoire,[17] (also implicitly in [3]), an efficient
numerical algorithm to compute the raté from the graph(s is provided. In the sequel, the raké is
also called theate of the graphG. That is all for our technical preparation in this section.
Intuitively, \* refers to the entropy rate of a most “random” Markov walk andhaph. In the sequel,
X refers to a Markov process that achieves the maximalyate
In information theory, there is an interesting principldeh AEP (asymptotic equipartition property)
[5] whose intuitive meaning is as follows: for a random psx&, - - - , X,,, the information is almost
entirely concentrated on a “small” (not necessarily snralpiactice) number of sequences; these se-
guences, calletypical sequencealmost take probability 1. In other words, non-typical seuces take
almost zero amount of information, combined! The word “dinafers to the fact that the number of
typical sequences is only inverse-exponential ratio tatimaber of all sequences, in many cases. Hence,
the word “typical” here catches the real-world meaning @frfging nontrivial amount of information.”
However, the principle has only been shown its validity fiwaadful of cases (e.qg., i.i.d. process and
ergodic Markov process, etc.). This is because the difficoiltthe mathematics involved to show the
cases when AEP does hold.
In below, we will define typical paths for the Markov chal Intuitively, a typical path on the
G-representedt’ means that the self-entropy rate [5] of the path approxim#te rate o7, which is
also the entropy rate that achieves.

=\, )

Definition 2.1. Lete > 0 andX’ be theG-represented Markov chain specified earlier achievingabe r
A* of the graphGG. A pathzq,--- , x, is e-X-typical if the probability of this path satisfies
‘ l log ;
no 7 p(z, o, T)
We are going to prove that AEP does hold for typical paths ddfin above. In other words, for
sufficiently largen, non<-X-typical paths hold almost zero information by showing that<-X’-typical
paths take probability almost zero asymptotically, asofed.

—)\*‘ < €.

Lemma 2.1. Lete > 0 andX’ be theG-represented Markov chain specified earlier achievingdhe\*
of the graphGG. Then,

1 1
limianrob(blog p — X >¢) =0.

n—r00 Xl,--- ,Xn)
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Proof:
Let Xy, -, X,, - bethe Markov chair'. For eacm, the sample space size &f, - - - , X,,, accord-
ing to [17], isS(n). By definition

H(Xla"' )Xn)

lim sup = \" (4)
n—00 n
Clearly, it suffices for us to show, using (3), that, for any 0,
lim inf Prob(|log ————— — log S(n)| > ne) = 0. 5
m in (log ey ~legS(n)l = ne) (5)

Let 7 > 0. For notational convenience in the sequel, we defitién) as the condition that

log > nt + log S(n).

p('xla o ,CCn)

We first notice that, for alh andr > 0, using Theorem 5.10.1 in [5],

1 1
From (6), we immediately have
1
lim inf Prob(log ———— — log S(n) > ne) =
mnf Prob(log 5 —log S(n) > ne)

Hence, in order to prove (5), we need only show

linrr_1>i£f Prob(log X)) <log S(n) —ne) = 0. (7)
Takep* > 0 to be the minimal positive transition probability of the Mav chain X1, -- , X,,, -
Clearly, from above,
1
Z p('xla e axn) log p(xl, . ’xn) S 2n7'71 : nlog E (8)

C1(n)
Notice that, ag. — oo, the RHS— 0. Using (3) and (4), there are, < --- < np < --- such that
lim log S(ng) — H(X1, -, Xy,)

k—o0 ng

—0. (9)

We prove (7) by contradiction. That is, we assume that thexe & 0, > 0, and an infinite sef{ such
that for eachk ¢ K,

< log S(ny) — nge) = 0

1
Prob(log
( p(X17 7Xnk)

holds. Again, we us€'2(n) to denote the condition

log <log S(n) — ne.

p(xlv o ,.’I]n)
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Now, for eachk € K, H(X1,- -, Xn,)

< > pl@n,eee @) - [log S(ng) — npel

C2(ny)
1
+ Z p(wl,... ,xnk)logﬁ
—C2(np)A=C1(ny) PRy =5 Ty,
1
+ Z p(:vl’...’;gnk)log—(x )
~C2(ny)ACL(ng) P Ty
(Using (8))

< 6 [log S(ng) —nge] + (1 —6) - [log S(ng) + ng7] + -y log 1?

an,T—1
Taker < 1%55 and, sincek is infinite, we have

i inf log S(nk) — H(X1,--- , Xn,)

k—o0 ng

>e-0—(1—-0)-7>0,
a contradiction to (9). The result follows. O

The following AEP theorem, directly from Lemn2al, claims that, asymptotically (i.e., for infinitely
many largen), typical paths take probability 1.

Theorem 2.1. Lete > 0. Thee-X-typical paths take probability 1, asymptotically; i.e.,

1 1
lim sup Prob(|—log —————
n—)oop (‘n gp(le"' 7Xn)

Now, we extend our results to-paths ofG.

— M| <e =1

Definition 2.2. Let X be theG-represented Markov chain mentioned earlier.«Apath isw-e-X-typical
if there are infinitely many prefixes such that each prefixds-typical.

To show that AEP holds fap-e-X-typical (w-)paths, we first need to define a probabilistic measure
1 overw-sequences of nodes, using notation in [15]. In the sequeliser = z4,--- ,z, to denote a
sequence iiR)* and user” = x1,--- ,x,, - to denote am-sequence id)*. Define

cylinder(mw) = {n“ | 7 is a prefix of 7“}

and define
pleylinder(xy, -+ ,xy)) = p(z1, -+, xp).
Now, i can be extended to thealgebra generated by the cylinder sets, as usual [15]. riicpiar,
the set of allv-e-X'-typical paths can be written as

N Ul o) €@ [ Tlog s =¥ <)

RN nSh (z1,-- )

Clearly, this set is measurable undenVe can show that the set of alte-typical paths takes probability
1 using measure theory [18].
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Theorem 2.2. Lete > 0. Then,

M(ﬂ U{($1,'--,xn,---)€Qw| %logp !

——)\*| <e€})=1.
keN n>k (@1, 20)

However, the Markov chaift’ that achievea™ is not necessarily unique, as mentioned earlier. There-
fore, we need a way to define a set that contains-alttypical paths for all suck’, asymptotically, as
follows. In this way, the set does not depend on any partiaiaice of thet and, hence, only depends

on the graplG. Letzy, --- , x,41 be a path ofz, which hasn edges. Define
B(:Cla"' axn+1) - H b(fEZ),
1<i<n

whereb(z;) is the branching factor (i.e., out-degree) of nage We define are-typical path of a graph
G as follows. Notice that this definition depends only on thepgr(not on any Markov chain).

Definition 2.3. Lete > 0. A pathzq,--- ,x,41 ONG is e-typical if it satisfies

IOgB(fI,'l, e 7xn+1) >
n

(N —e), (10)

DO |

where\* is the rate of the grapty’.

Intuitively, (10) says that the average logarithmic branghfactors on the path is higher than almost
half of \*. Indeed, this is a good approximation as shown in the fohgwiheorem 2.3. Intuitively, the
theorem states that, asymptotically with probabilitye-typical paths include al-X-typical paths. We
first need a technical lemma.

Lemma 2.2. The numberK (n, €) of pathszy, - - - , x,,11 Of G satisfying
log B(xy, - - - 1
0og (xlvn 7xn+1) < 5()\* N 6) (11)

is bounded by2"(*"~3), for anyn that is large enough.

Proof:
Define a random variabl& = m whereX,,--- , X,,+1 has uniform joint distribution over
node paths witlw edges orG; i.e.,p(z1, -+ , Tpt1) = % for every pathey, - - - , z,41. Observe that

1
Z B(z1, - =L

-,
1, ,Zn+1 is a path ’ n—l—l)

Hence, the meaRi(X) = gy and the deviatioE(X — E(X))? < g5.Using Chebyshev inequality,
we have ]

1 1 2M3€ 1

Prob — > 3) < . 12

(‘B(le"'vXn—f—l) S(n)‘_(S(n)) ) < 2n%6 (12)
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Therefore, sincéy, - - - , X,,1 has uniform joint distribution, the numbéf(n, ¢) of pathsz1, - - - , 2p41
of G satisfying

- | > (53, (13)

using (12), is bounded as

K(n.e) < 20 (14)
2n§6
From (3),
2" 75 < S(n) < 27, (15)

whenn large enough. Now (13) can be restricted to, whes large,

2TL()\*7%6) )
Blay, -+ @) < [——=—]2. (16)

2
2n§5

N

That is, a sequence satisfying (16) also satisfies (13), whiamge. Notice that (16) is exactly (11).
Hence,K (n,e¢) < K(n,¢). The lemma follows, using (14) and (15). O

Using Lemma 2.2 and Theorem 2.1,we can show:
Theorem 2.3. Lete > 0. For anyG-representedt’ that achieves\*,

lim sup Prob( log B(Xy, -, Xot1) >

n—00 n

(N =) = 1.

N —

One can analogously definee-typical paths and, similar to Theorem 2.2, show thatthetypical
paths take probability 1, asymptotically.

Definition 2.4. Let ¢ > 0. An w-pathzy,--- ,x,,--- on G is w-e-typical if it has infinitely many
e-typical prefixes.

Theorem 2.4. For anyG-representedy’ that achieves\*, u(the set ofv-e-typical paths) = 1.

3. Automata-theoretic characterization of typical paths

Automata theory studies the relationship between formajuages and automata accepting the lan-
guages. Finite automata form a simple class of automatalwdiity have a finite amount of memory.
They can be further equipped with unbounded storage desgigels as counters. A counter is a non-
negative integer variable that can add one, subtract onesbagainst zero. A (nhondeterministic) finite
automata augmented with a finite number of counters is callethdeterministic multicounter automata
(NCA). It is well-known that NCAs with two counters are ecgient to Turing machines, which, in al-
most all cases, are too powerful to draw decidable resutt$hi$ end, it is necessary to make restrictions
on the counters’ behaviors. One such restriction is a rald@unded counter, proposed by Ibarra in
his seminal paper [11] in 1978. A counter/igeversal-bounded if it changes modes between nonde-
creasing and nonincreasing for at mésimes. For example, the sequence of a counter values: 0, 0,
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1,1,2,2,3,3,2,2,1,1, 2, 2,3, 3, 4,4, is 2-reversal-bounded. An NCA where each counter is
k-reversal-bounded for soniein every execution is called mondeterministic reversal-bounded multi-
counter automatdNRCA). Note that an NRCA does not necessarily limit the namdéf moves to be
finite.

The notion of reversal-bounded counters has found its egains in areas like verification, Dio-
phantine equations, and P systems [13] (see [12] for a surfrey the purpose of this paper, we need a
fundamental result [11] that links NRCAs with Presburgenfalas. We first need some definitions.

Let N be the set of nonnegative integers ahdbe the set of integers. L&t = {y1,...,y,}, for
somen, denote a finite set of integer variables. &tomic linear constraints a formula in the form of
Y 1<i<n GiYiFb, where thea;’s andb are integers angt € {>,=}. When# is =, (for some constant
d), the formula is called aatomic mod-constraintA Presburger formulds a Boolean combination of
atomic linear constraints and atomic mod-constraints. tATS8"™ is Presburger-definable if there exists
a Presburger formul® on 'Y such that the set is exactly the set of the solutionsrfthhat makeP true.

It is well-known that Presburger formulas are closed undemngjfication.
as the empty string. In this way, a tuple of integeérs, - - - ,v,,) can be represented asaiuple string
[v1]# - - - #[vy,], where symbo¥ is the delimiter. Therefore, a s€tZ" can be represented asatuple
language. In this paper, we need the following fundameeallt in [11].

Theorem 3.1. For eachn, a setC Z" is Presburger definable iff the-tuple language representing the
set is accepted by a nondeterministic reversal-boundeticowthter automaton. The result remains when
the automaton is further augmented with a counter (thattis@cessarily reversal-bounded).

To study an automata-theoretic characterization-eftypical paths, we need a generalization, in-
spired by the machine model in [6], of NRCA to run ovemvords. Acounting Bichi automaton\/ is a
tuple

(3,8,Y,F,6,s0), (a7)

whereX is a finite alphabetS is a finite set of states withy € S being the initial state, andl” =
{y1, - ,yn}, for somen, is a finite set of nonnegative integer variables, which atked (monotonic)
counters. Additionally,F" is a finite set ofaccepting conditionseach condition is a finite set ¢fres-
burger tests A Presburger test is a pdis, P) of a states € S and a Presburger formuld on the coun-
ters, (this definition of accepting conditions ensures Té@o3.2 in below), and C S x & x NYI x §
specifies a finite set of transitions or edges. An edgg is, a,incr, s’) denotes a transition from state
s to states’ with « € ¥ being the (input) symbol on the transition. The vedtmr € NI specifies
how the counters change after firing the transition: eachteoy; in Y is incremented by théth value
incr [¢] in the vectorincr.

A run of M over anw-word o = aqas - - - € ¥ is an infinite sequence of configurations

CoC1Cy -+,

where each configuratiafi; = (s;, V;) is a pair of a state; and counter values (as a vectwr) satisfying
the following conditions:

e In (), the state is the initial state and the counter values afk all
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e for eachi > 0, C; can reach’; . by firing a transition in)M/ while reading the input symbai;.
Thatis,(s;, a;, Viy1 — Vi, si+1) € 0. In this case, we also writ€; 2 Ciy1.

We say that a tests, P) satisfiesa configuration if the configuration is at stat@nd the counter values
satisfy P; i.e., the configuration is in the form ¢, V) with P(V) holds. The run iscceptingif there
is an accepting condition if’ such that each tegt, P) in the condition satisfie€’; for infinitely many
1. The infinite worda is accepted by\/ if there is an accepting run dff overa. The (v-) language
accepted by, denoted byL.“’ (M), is the set of infinite words accepted Bby.

Clearly, classic Buchi automata are a special case of swuBtichi automata where an accepting
condition contains only one teét, true). The following result is straightforward and analogoushie t
same result of Blchi automata (Lemma 1.2 in Chapter 4 in[14]

Theorem 3.2. w-Languages accepted by counting Biichi automata are closder union and intersec-
tion.

A basic automata theory problem concerns emptiness. lrcdimtext, the emptiness problem for count-
ing Blichi automata is to decide whethér (M) = () for a given.

To prove the emptiness problem of counting Blichi autonsatkecidable, we need more definitions.
We say configuratiofis, V) can reach configuratiofs’, V), written

(va) ~ M (3/7V/)7
if there is a worduy - - - ag_1 (for somek-1) such that
OB 0,3 o (18)

whereC; = (s,V) andCj, = (s/,V’). In this case, the execution in (18jtnesseshe reachability.

Let R be a Presburger formula which defines aGet x N x S x N” (note that the finite state set
S can be encoded as a finite range of integers). Ehisin be used to represent certain relation between
configurations. We say thdt is transitiveif, for any s, V, s’, V', s, V", we have

R(s,V,s' V')A R(s,V' s" V") = R(s,V,s" V).

An infinite sequence of configuratiogs', V1) - - - (s?, V%) - - - is anw-chainof Rif R(s?, V¢, s"+1 Vitl)
holds, for eachi > 1. We need the following result whose proof can be found in [6].

Theorem 3.3. It is decidable whether a transitive Presburger formulagmas-chain.

Now, we are ready to claim the following theorem, using TlkeoB.1 and Theorem 3.2.

Theorem 3.4. The emptiness problem for counting Biichi automata is @dxéed

In practice, one may select a typical path that satisfies eifgppattern from a graph (e.qg., a typical
path on a graph satisfying that the number of times that ngaeEes) yellow, andred are passed are all
the same). It will be awkward (if not possible) to perform Kkbabperations on a Markov chain while
maintaining the counting constraints, while searchingsiach a typical path. However, once the set
of typical paths is characterized as a language accepted hytamaton)/, the selection problem is
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roughly asking ifL (M) () Lpattern # @, WhereLpaitern 1S the set of all sequences (not being necessarily
paths) satisfying the pattern. This is an emptiness probiehich has been a central research topic
throughout automata theory. In below, we will shdwis an NRCA.

We will show thate-typicalness is roughly Presburger in below. Recall thaathp,, - ,z,11 IS
e-typical if
1
log B(xlv o 7xn+1) > 5”()\* - 6)' (19)
We use coun#; to denote the number of appearances of the mpdez, - - - , z, (in other words,

#; denotes the number of times that the path--- ,x,, passes the nodg in the graph). We use
b; to denote the branching factor of the nagegiven in the graph. Notice thaB(zq, - ,zp,+1) =

[T (b;)*:. For convenience, let; denotelog b;. Then, it is not hard to translate (19) into
1<i<|Q|

1
> aihi > A" ), (20)
1<i<|Q)|

where thes;’'s are some nonnegative reals.
We user = 1077, for somej, to denote a precision accurate to e decimal place. We call

a; N —€
> Lo l#i> a5 (21)
1<i<|Q|
thelower-approximatiorof (20), and
a; N —€
> [1# >l (22)

1<i<|Q|

the upper-approximatiorof (20). Notice that the floof|-|) and the ceiling(]-]) are a little different
than usual in heref2.01] = |2.00] = 2 and[2.01] = [2.00] = 3. Observe that (21) implies (20) and
(20) implies (22). Therefore, a path - - - x,, 11 IS e-lower-typical (resp.e-upper-typical) if it satisfies
(21) (resp. (22)). Clearly, the path dgtypical if it is e-upper-typical; the path is-lower-typical then
it is e-typical. In below, we will show that the set eflower-typical ¢-upper-typical as well) paths is
accepted by NRCA.

Theorem 3.5. The set of-lower-typical g-upper-typical as well) paths is accepted by an NRCA.

Proof:
For a pathzy,--- , 2, on G, the Presburger constraints in (21) as well as in (22) carhbeked using
reversal-bounded counters. The result follows. O

Similarly, we can define aw-e-lower-typical (resp.w-e-upper-typical) path to be an-path such
that there are infinitely many prefixes, each of which is-dower-typical (resp.e-upper-typical) path.
The proof of the following theorem is straightforward.

Theorem 3.6. The set ofw-e-lower-typical (v-e-upper-typical as well) paths is accepted by a counting
Buichi automaton.
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The significance of the above two characterizations (Thed@e and Theorem 3.6) is that, from
[11] and Theorem 3.4, the emptiness problems for NRCAs andtoay Biichi automata are decidable.

The characterizations immediately imply the decidabitity whether there is a (lower- or upper-)
typical path following certain patterns. For instance, sidar a graphz and an NRCAM accepting
a set of paths irG. For a givene and a given precision, we ud8qye;(G) and Lyyper(G) to denote
the set ofe-lower typical paths and the set efupper typical paths of;, respectively. Clearly, whether
Liower(G) (N L(M) = @ and whethetL, . (G) (| L(M) = @ are all decidable (since languages ac-
cepted by NRCAs are closed under intersection [1L])}/) can be used to specify fairly complex and
nonregular patterns: e.g.,

(#W(QI) - #W(QQ) > 5) N (#W(QB) - #W(Q4) > 7) (23)

where+#,(q) indicates the number of times thatpasses node in G. Hence, both of the following
problems are decidable:

¢ Is there a lowekrtypical path inG that satisfies (23)?
¢ Is there an uppet-typical path inG that satisfies (23)?

Similarly, let M be a counting Biichi automaton to accept a sebqfaths ofG. We useL{’ . (G)

and LY _..(G) to denote thev-e-lower-typical paths and-e-upper-typical paths o7, respectively.

upper
Clearly, whethert! . (G)( L“(M) = @ and whethed s, .. (G) (| L*(M) = & are both decidable

lower

(using Theorem 3.2). Notice thét’ (M) can also be used to specify fairly complex and neregular
patterns: e.gw-pathsn® of G such that

o there are infinitely many times that’ passes through node and, at each such time, the number
of times nodey; has been passed is greater than the number of timesndds been passed, and,

e there are infinitely many times that’ passes through nodg and, at each such time, the number
of times nodey, has been passed is greater than the number of timesggddes been passed.

Hence, the following problems are decidable:
¢ Is there anv-e-lower-typical path in that satisfies the aforementioneépattern?
¢ Is there anuv-ec-upper typical path i that satisfies the aforementioneepattern?

Furthermore, when
Lﬁpper(G) ﬂ L¥ (M) =4, (24)

it really says that thes-paths contained in the-pattern .« (M) take probability O (Theorem 2.4). In
other words, thev-patternL“ (M) does not carry “essential information” (Notice that theattern is
also able to specify safety properties that concern finigdixes ofw-paths only.). Theuv-pattern can
also be specified using a generalized LTL formula [7, 6]. Sufdrmula is often employed in a property
specification in a specification language such as Promela [hGhis case, the grapty serves as the
system specification. Hence, from (24), a software engimagrconclude that the property specification
does not catch any “essential” information of the systenci§ipation.
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4. Experiment

Theoretically, generating a typical path is difficult. Thgsbecause there is no known polynomial time
algorithm to solve the emptiness problem of NRCAs. To thid, én this section, we use a practically
efficient model-checking [4] tool SPIN [10] to generatéypical paths.

In this experiment, we are to choos¢ypical paths from a statechart. In the original statechaper
[9], the author uses Citizen Quartz Multi-Alarm 11l wristéeh as an example to exemplify the way of
generating statecharts to explain the semantics of theraystn this section, for simplicity, we only
use thedisplays unit of the watch statechart as an instance to illustrate twogenerate:-typical and
non--typical paths (i.e., a path that is natypical) from a statechart.

. press buttonad
N -
™, ] date
55 nulluu—.d—
\{i P S ’_..«-'

o "%' i _2m Jﬂ‘/ﬁ?u.

/ "'"\-\-..E
pre th.tlura a press tedton-a

|

|

f
I \
| press button-a_ press button-u press button-a

stopwatch (&=— chime |(==— alarm? =— alarmi

Figure 1. The statechaftof thedisplays units (Figure 9 in [9])

Figure 1 shows the statechaftof the displays unit. In S, a node denotes a state and a labeled

edge denotes a transition with its label being the input srfrlom one state to another. For example,

the transitiontime "% alarm1 represents that théisplays unit can transit from the statéme to

the statealarm1 when button-a is pressed. Figure 1 indicates two functidinst, continuing pressing
button-a, the state can transit in the state sequentienef alarm1, alarm2, chime, stopwatch; second,
pressing button-d, the system can transit from staie to statedate. If pressing the button-d again or
waiting more than 2 minutes, the system goes back to stateagain.

We use Promela (a specification language provided with SRINMpde the statechat and write
LTL formulas to specify a property on a path beiagypical (resp. noretypical). Hence, a noe-
typical path and anr-typical path can be generated using the counter exampleragon function of
SPIN.

In the experiments, we take= 0.007. The rate\* = 0.5973 of the statechar$' is computed using
a Matlab script written by Linmin Yang. SPIN generates twquances with length of 19: one is an
e-typical sequence,

(press button-d¥ (press button-d)press button-&)
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and the other is a nogttypical sequence,
(press button-dy.

Our Promela code runs on the Ubuntu 10.10 OS which is indtalfean Oracle VirutalBox. The
hosting computer is a window platform PC with Intel P8600gassor and 2GB memory. The running
times of the experiments are all negligible.

5. Conclusion and discussion

We have introduced the conceptséiypical paths and-e-typical paths on a graph, and the typical paths
(w-typical as well) take probability 1, asymptotically. Wealprovide an automata-theoretic characteri-
zation for those paths; e.g., typical paths accepted by NR&lw-typical paths accepted by counting
Biichi automata. Finally, we use SPIN to show how to gener#ypical paths in practice.

A magic number% is used to define the-typical paths in Definition 2.3. Can we use other larger
numbers instead 05 in order to generate a smaller typical set taking probgbll? We believe that the
answer is no. The reasons are explained as follows. Firgg ifsel instead of% in the formula, (10) can
be satisfied only when the transition probabilities of thepiyare uniform. The uniform distribution is
not consistent with our intended meaning of typical patrecdfd, we conjecture thétis the maximal
value that can be used in the rarfge1) to achieve a similar AEP result Used in Lemma 2.2 comes
from the Chebyshev inequality in its proof. The inequal#tyhie root of the law of large humbers, which
is also “equivalent” to AEP.)

Additionally, typical paths of a graph can be generalizettytpical words” in a language. Let be
a language (not necessarily regular) and L be a word. Definé3(w), called the B-value ofv, to be

H branch(w'),

w’ <w

wherew’ is a proper prefix ofv (i.e., w’ < w) and branch{’) is [{a € ¥ : Ju",w'aw” € L}|. For
example, Letl = {abc, cde, adf}. Then,B(a) = 2 andB(ab) = 4. Suppose now that is regular. For
a givene > 0, we say that a wora € L is e-typical if its B-value satisfies

log B(w) - 1

- 5 (A" —e), (25)

where\* is computed as the rate of a graph representing a deteriwifirgte automaton accepting.

In this way, we can obtain aimformation-concentrated-cor@CC) of a regular language. The ICC
of a regular language is defined as the set ofdjlpical words in this regular language for a given
e > 0. From the results of this paper, the ICC is accepted by an NRfi& applying a precision
to (25) (actually, it is context free), and satisfies TheotB81 only words in the ICC carry nontrivial
information. We conjecture that a similar notion of (25) dsncreated for some nonregular languages
(e.g., context-free languages and languages accepted BAB)Rand hence, the ICCs deserve further
investigation in automata theory.
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