
On Model-Checking of P Systems
�

Zhe Dang
�����

, Oscar H. Ibarra
�
, Cheng Li

�
, and Gaoyan Xie

�
�
School of Electrical Engineering and Computer Science

Washington State University
Pullman, WA 99164, USA

�
Department of Computer Science

University of California
Santa Barbara, CA 93106, USA

Abstract. Membrane computing is a branch of molecular computing that aims
to develop models and paradigms that are biologically motivated. It identifies an
unconventional computing model, namely a P system, from natural phenomena
of cell evolutions and chemical reactions. Because of the nature of maximal par-
allelism inherent in the model, P systems have a great potential for implementing
massively concurrent systems in an efficient way that would allow us to solve
currently intractable problems. In this paper, we look at various models of P sys-
tems and investigate their model-checking problems. We identify what is decid-
able (or undecidable) about model-checking these systems under extended logic
formalisms of CTL. We also report on some experiments on whether existing
conservative (symbolic) model-checking techniques can be practically applied to
handle P systems with a reasonable size.

1 Introduction

There has been a flurry of research activities in the area of membrane computing (a
branch of molecular computing) initiated five years ago by Gheorghe Paun [9]. Mem-
brane computing identifies an unconventional computing model, namely a P system,
from natural phenomena of cell evolutions and chemical reactions. It abstracts from
the way living cells process chemical compounds in their compartmental structures.
Thus, regions defined by a membrane structure contain objects that evolve according
to given rules. The objects can be described by symbols or by strings of symbols, in
such a way that multisets of objects are placed in regions of the membrane structure.
The membranes themselves are organized as a Venn diagram or a tree structure where
one membrane may contain other membranes. By using the rules in a nondeterminis-
tic, maximally parallel manner, transitions between the system configurations can be
obtained. A sequence of transitions shows how the system is evolving. Various ways
of controlling the transfer of objects from a region to another and applying the rules,
as well as possibilities to dissolve, divide or create membranes have been studied [10].
�

The work by Zhe Dang, Cheng Li and Gaoyan Xie was supported in part by NSF Grant CCF-
0430531. The work by Oscar H. Ibarra was supported in part by NSF Grant CCF-0430945.�	�
Corresponding author (zdang@eecs.wsu.edu).

Due to the maximal parallelism inherent in the model, P systems have a great potential
for implementing massively concurrent systems in an efficient way that would allow
us to solve currently intractable problems (in much the same way as the promise of
quantum and DNA computing) once future bio-technology gives way to a practical bio-
realization.

Designing a P system to achieve a pre-defined computational goal is difficult and
extremely error-prone. This is because, unlike traditional programming languages, the
inherent maximal parallelism in the model makes the P system highly nondeterministic,
concurrent, and, more importantly, lack of control-flow structure (e.g., without “control
states”). The difficulties naturally call for algorithmic (i.e., decidable) solutions to the
verification problem: whether a designed P system does have the desired behavioral
property. The solutions will also be important in the future when people implement a P
system in vivo. This is because an erroneous P system will be deemed a failure in an
expensive lab realization. It is highly desirable to validate the P system in advance in
vitro, e.g., through digital computers. Another important application of results concern-
ing decidable properties of P systems is in biology, where such systems are now being
proposed for the modeling and simulation of cells. While previous work on modeling
and simulation use continuous mathematics such as differential equations, P systems
will allow us to use discrete mathematics and algorithms. As a P system models the
computation that occurs in a living cell, an important problem is to develop tools for
determining reachability between configurations, i.e., how the system evolves over time.
Specifically, given a P system and a configuration

(a configuration is the number and

distribution of the different types of objects in the various membranes in the system)
and some constraints � (e.g., a linear constraint over the numbers of different types of
objects), is there a configuration � satisfying � that is reachable from

? This is es-

sentially a model-checking [4] problem: whether a transition system meets a desired
temporal property.

Unfortunately, to our best knowledge, model-checking theories for P systems have
never been studied so far. In our opinion, this is, probably, due to the short history of
membrane computing and also due to the theoretical difficulty of handling the maxi-
mal parallelism, which is quite different from the conventional infinite state transition
systems currently being studied in model-checking.

In this paper, we try to identify what is decidable about model-checking of P sys-
tems. Clearly, since a P system is Turing complete in general, we have to focus on
restricted P systems in order to make the model-checking decidable. The first restric-
tion is to focus on P systems with only one membrane. Essentially, this is more like a
technical convenience than a real restriction. Since the P system model studied in this
paper does not have priority rules and membrane dissolving rules, multi-membranes can
be equivalently collapsed into one membrane through properly renaming symbols in a
membrane. The second restriction is to focus on bounded P systems (BPS) where rules
are only in the form of ���� , where and � are multisets of objects with � ������ ���
(the size � �� denotes the number of objects in). Notice that, since we do not require
that a BPS starts with a multiset whose size is bounded by a fixed constant, the BPS
is essentially an infinite state system (or more precisely, a system with an unbounded
number of states). An execution of a BPS can be understood as a sequence of multisets

(configurations). The formalism that we choose to specify the desired behavioral prop-
erty is �������! #" and ������$&%(' , which allow us to reason upon the executions. In short,
����� �) #" and ����� $&%(' are simply CTL [3] augmented with atomic predicates in REG
and in LIN, respectively. More precisely, in REG, one can compare the multiplicity of
a symbol against an integer constant, while in LIN, one can compare a linear combi-
nation of the multiplicities of all the symbols against an integer constant. Notice that
basic properties like halting are expressible in �����*�) #" . The corresponding �������) #"
(as well as ������$&%(') model-checking problem is to argue whether a given temporal
formula is interpreted as an empty multiset of configurations.

We first look at a non-cooperative BPS + where each rule is in the form of ,-�/. ,
where , and . are symbols, in Section 3. Surprisingly, for such systems, the �������) #"
model-checking problem is undecidable, even for a simple form of 0&1 (exist-until)
properties. When we further require that, in + , a symbol can evolve into at most one
kind of symbol, we show that the �������! #" becomes decidable. On the other hand,
when ������$&%('2 (roughly, dropping 0&1 from ������$&%(') is considered, its model-checking
problem becomes decidable for non-cooperative BPS. Lastly, when some form of de-
terminism is used to restrict a BPS, the ����� $&%(' is decidable. We then turn to study the
model-checking problems for BPS (which is not necessarily non-cooperative, i.e., � ��
can be greater than 1), in Section 4. We first give an exact automata-theoretic character-
ization of (non)deterministic BPSs reachable and halting configurations. That is, BPS
is equivalent to each of the following three classes of automata: linear-bounded mul-
ticounter machines, 3547698 space-bounded Turing machines, two-way multihead finite
automata. From this result, one can easily conclude that even �����*�) #"2 is undecidable
for (non)deterministic BPS. In the section, we also study some notions of determinism
that make BPS decidable for various model-checking problems.

Given the undecidability results in model-checking P systems, finally, in Section 5,
we conduct some experiments to see whether existing conservative (symbolic) model-
checking techniques such as Omega (which handles infinite state space) and SPIN
(which handles finite state space) for concurrent linear arithmetic programs can be
practically applied to handle P systems (which are not necessarily BPS, and also with
multi-membranes, and even with priority among rules) with a reasonable size. Previ-
ous experiments [1] used a model-checker of rewriting systems where, like our SPIN
experiments, object multiplicities have to be restricted to a finite domain. One of the
purposes of our experiments is to let us know if the maximally parallelism and “lack
of control-flow structure” in P systems would cause existing symbolic encodings for
concurrent systems to fail terribly. Our preliminary experiments show that additional
effort is needed in studying more efficient encodings and, in particular, new techniques
to extract the implicit control-flow from P system rules.

2 P Systems and Their CTL Model-checking Problems

Let : be the set of nonnegative integers and ;=<?>7, �A@CBDBDBE@ ,GFIH be an alphabet, for someJ
, and be a (finite) multiset over the alphabet. In this paper, we do not distinguish

between several representations of . That is, can be treated as a vector in : F (the
components are the multiplicities of the symbols in ;); can be treated as a word

where we only care about the counts of symbols (i.e., its Parikh map). We now introduce
formulas to define some sets of multisets. An atomic regular predicate is in the form ofKML ,GNPOQ8 @ where ,9RS; , 8TRU: and OVRT>XW @DYZ@ < @ � @C[H . The predicate is interpreted
as the subset of multisets over ; such that the multiplicity

KML ,GN of symbol , satisfies
the predicate. A regular formula is a Boolean combination of atomic regular predicates.
We use REG to denote the set of regular formulas. An atomic linear predicate is in
the form of \ ��]_^`] F 8 ^ba KcL , ^ NdOe8 @ where the 8 ^ ’s and 8 are integers (positive, 0,
negative), and OVRf>IW @DYZ@ < @ � @D[Z@hgji H with kml<onpRm: . The predicate is interpreted
as a subset of multisets over ; accordingly. A linear formula is a Boolean combination
of atomic linear predicates. We use LIN to denote the set of linear formulas. A setqsr : F is a linear set if there exist vectors �ut @ � �v@CBDBDBD@ �vw in : F such that

q <e>C�x�
�y<��vt{z|, � � � z BDBCB z},Iw~�vw @ , ^ R}:�H B A set

q�r : F is semilinear if it is a finite
union of linear sets. A Presburger formula is constructed from atomic linear predicates
using quantification and Boolean operators. It is known that the following items are
equivalent: (1) a set of multisets (treated as vectors) is semilinear, (2) the set is definable
by a linear formula, (3) the set is definable by a Presburger formula.

In this paper, we only focus on P systems without priority rules and membrane
dissolving rules. In this case, as we mentioned earlier, it suffices for us to consider P
systems with one membrane since multiple membranes can be equivalently collapsed
into one by properly renaming symbols within a membrane.

A (1-membrane) P system + is specified by a finite set of rules. Each rule is in
the form of Q��� where and � are multisets over alphabet ; . A configuration in+ is a multiset. As with the standard semantics of P systems [9–11], each evolution
step, called a maximally parallel move, is a result of applying all the rules in � in a
maximally parallel manner. More precisely, let ^ ��� ^ , � [=��[n , be all the rules
in + . We use ��< L`� �&@DBDBCB�@ � i N�R�: i to denote a multiset of rules, where there are� ^ instances of rule ^ ��� ^ , for each � [}��[n . Let

and � be two configurations

(multisets) over ; . The rule multiset � is enabled under configuration

if

contains\ �h])^�] i � ^*a ^ (i.e.,

contains the multiset union of
� ^ copies of multiset ^ , for all

� [?�{[n). The result of applying � over

is to replace, in parallel, each of the
� ^

copies of ^ in
 with � ^ . The rule multiset � is maximally enabled under configuration

if it is enabled under

and, for any other rule multiset ��� that strictly contains � , ���

is not enabled under configuration

. Notice that, for the same

, a maximally enabled
rule multiset may not be unique (i.e., + is in general nondeterministic).

can reach �

through a maximally parallel move, written

 �Q�e� , if there is a maximally enabled

rule multiset � such that � is the result of applying � over

. Formally,

 � � �

iff 0 � � @CBDBCBE@ � i R}: B#�S�v�#�b�!�&�#��� L`� � @CBDBCBE@ � iV@
 N������#� ��� L`� � @CBDBDB�@ � i�@
 @ ��N @ where�S�v�#�b�!�&�#��� L`� �v@CBDBCB�@ � i @
 N , indicating that
L�� �&@DBDBCBE@ � i N is maximally enabled under

configuration

, is the following formula:

 ¢¡¤£
�¦¥G§¨¥G©�ª §7«`¬G§7P® ªC¯�

¡
ª �h°�±�±�±²° ªD¯©

¡
ª ©{±�³

 ´¡ £
�¦¥G§¨¥G©VªD¯§ «`¬G§)µ ªD¯ �*¶ ª �u{±�±�±· ªD¯©�¶ ª ©�¸¹°

and ���º� �E� L�� � @DBCBDB�@ � i�@
 @ ��N , indicating that � is the result of applying
L`� � @CBDBDB�@ � i N

over

, is the following formula: �»<
s¼ \ �h])^�] i � ^ a ^ z½\ �h])^�] i � ^ a � ^	B No-
tice that, in above, we treat the multisets (i.e.,

, � , the ’s, and the � ’s) as vectors

in : F . Clearly, a maximally parallel move in + is always definable by a Presburger
formula. Starting from some initial configuration, an execution of + goes through a

sequence of configurations, where each configuration is derived from the directly pre-
ceding configuration in one maximally parallel move. Formally, we use

s¾ �/� to
denote the fact that � is reachable from � ; i.e., for some 8 and

 t @DBCBDB�@
�¿ , we have
 <
 t � � BCBDB � �
 ¿ <½� .
From above, a P system + can be treated as a transition system between multisets

or vectors in : F . There has been an established theory, called model-checking, in al-
gorithmically answering verification queries over a transition system’s behavior. For a
finite state transition system, the queries can be specified in a temporal logic like the
computation tree logic (CTL) [3] and various model-checking algorithms are known
[4]. For infinite state transition systems, the logic can also be interpreted in many cases
(e.g., [2]). In below, we formulate the CTL formalism that we will use to specify our
verification queries for P systems.

Let À be a given class of atomic predicates. The �����*Á formulas � are exactly
defined with the following grammar: ��Â�ÂÃ< Äe���Å�x�}�_�SÆ��|�)Ç��½�_0cÈV�}�#ÉSÈ
�¢�!�T0u1��´�!�ÅÉ#1Ê� @ where ÄËR?À is an atomic formula (predicate), and È stands
for “next” and 1 stands for “until”. As usual, the eventuality operator 0dÌÍ� is the
shorthand of Î � _ÏM0&1Ð� , and, its dual É*Ñs� is simply ÇÒ09ÌÓÇ�� . We use ������Á 2
to denote the fragment of �����*Á where the formulas � are exactly defined with the
following grammar: �fÂEÂ²</Ä½�7�j�M�m�7� � Æd� � �7Ç��U�C0jÈ��Å��É�È��Å�D0�ÌT�U��É�ÑT� @ where
ÄÔRUÀ is an atomic formula (predicate).

Let + be a P system. We interpret each �����*Á formula as a subset of configurations
of + . That is, the interpretation, written Õ �!Ö � , is a subset of multisets of objects in + .
Formally, the interpretation is recursively defined as follows [2]:

– Õ Ä�Ö � is a given subset of multisets of objects in + , where ÄÔRÅÀ ;
– Õ � � �c� � Ö � is Õ � � Ö �=× Õ � � Ö � ; Õ � � Æm� � Ö � is Õ � � Ö �=Ø Õ � � Ö � ;
– Õ Ç�� � Ö � is the complement of Õ � � Ö � ; (the universe is the set of all multisets of

objects in +)
– Õ 0{È�� � Ö � (resp. Õ ÉZÈ�� � Ö �) is the set of configurations

 � such that, for some (resp.
any) execution

 � �x�
 � �´� BCBDB , we have

 � RÙÕ � � Ö � ;

– Õ � � 0&1o� � Ö � (resp. Õ � � ÉG1Q� � Ö �) is the set of configurations

 � such that, for some

(resp. any) execution

 � � �
 � � � BDBCB , we have

 � @CBDBCBE@
 ¿ RÍÕ � � Ö � and
 ¿&Ú � RÙÕ � � Ö � , for some 8 .

The ����� Á model-checking problem is to decide whether, given a P system + and a
������Á formula � , the set Õ �!Ö � is empty. Notice that, in our definition of the ������Á
model-checking problem shown above, we did not mention the initial configurations of
+ . In fact, a verification question like whether a given initial configuration

ÜÛ ÝDÛ Þ
satis-

fies � can also be formulated in our definition as follows: is Õ Ä Û ÝDÛ Þ �V�!Ö � empty? where
Ä Û ÝDÛ Þ is an atomic regular predicate where

bÛ ÝCÛ Þ
is the only satisfying configuration.

In this paper, we focus on model-checking problems of �����*�! #" and �����ß$&%(' .
Unfortunately, the maximal parallelism in P systems is too powerful to make P systems
model-checkable; even in simple cases, P systems are able to be Turing complete. This
leads us to study restricted forms of P systems where model-checking problems could
be decidable. To this end, we focus on bounded P systems (BPS), in which each rule is
in the form of c�Ó� with � ��I�Ô� ��� (� �� denotes the number of objects in).

3 CTL Model-checking of Non-cooperative Bounded P Systems

Let + be a non-cooperative BPS. That is, + is a 1-membrane P system whose rules
are in the form of ,o�à. or in the form of ,o�âá (i.e., one object evolves into at
most one object), where , @ .SRs; . We first show that the ����� �! #" model-checking
problem is undecidable for + . Clearly, as we have mentioned earlier, when + has
multi-membranes, it can be collapsed into one with 1-membrane. Hence, all the results
in this section can be easily generalized to non-cooperative BPSs with multiple mem-
branes.

Theorem 1. The �������) #" model-checking problem for non-cooperative BPSs is un-
decidable. In fact, the undecidability remains even for �����*�! #" formulas in the form
of ãåä�ãå�y� L Ä{0u1�æfN , where ãåä�ãå� @ Ä and æ are regular formulas in ç ��è .

We should point out that in the proof of Theorem 1 we did not use rules in the form
of ,Å�éá . Hence, Theorem 1 still holds when only rules in the form ,U�ê. are used.
Because of the theorem, we will study a restricted form of + that makes �����*�) #"
model-checking decidable. A non-cooperative BPS + is special when, for any , , if
,c�é. and ,c�éë with . @ ë9l<sá are rules in + , then .Z<së (i.e., , could be disappear
with ,-��á but it can not evolve into two kinds of symbols).

Theorem 2. The �������! #" model-checking problem for special and non-cooperative
BPSs is decidable.

Because of the undecidability result in Theorem 1, we would like to investigate a frag-
ment of a CTL logic that makes the model-checking problem for non-cooperative BPSs
decidable. Before we proceed further, we need an intermediate result. Let + be a non-
cooperative BPS, whose alphabet is ;�<p>7, � @DBDBCBE@ , F H . Recall that we use ¾ � �
to denote the fact that multiset can reach multiset � in + through some number of
maximally parallel moves. We first show a characterization on the reachability relation¾ � r : FVì : F , which leads to Theorem 4 later.

Theorem 3. The reachability relation
¾ � r : FVì : F for a non-cooperative BPS +

is definable by a linear formula in LIN.

Theorem 4. The ������$&%('2 model-checking problem for non-cooperative BPSs is decid-
able.

4 Reachability in Bounded P Systems

We now consider a bounded P system (BPS) + that is not necessarily noncooperative.
That is, rules in + are in the form of f�í� with � ��� [� �� . Clearly, from Theorem 1,
the CTL �) #" model-checking problem remains undecidable for + . However, encour-
aged by the decidability results in Theorem 4 for non-cooperative bounded P systems,
we would like to know whether the �������) #"2 model-checking problem for (not neces-
sarily non-cooperative) BPSs would still be decidable. In this section, we will prove that
this is not true, even in very simple cases. We say that, when started with some given

configuration, a BPS + has a halting computation if + has an execution that leads to
a halting configuration (i.e., none of the rules is enabled).

We first consider the following problem: Given a bounded P system + with rules
of the form |�î� , where � ��b<�� ���P< 1 or 2 and a fixed multiset ï and a distinct
symbol 4 not in ï , is there an 8 such that when + is started with multiset ï�4

¿
(the

multiset union of ï and 8 copies of 4), it eventually halts? We shall refer to this as the
emptiness problem for bounded P systems. We will show that this problem is undecid-
able. In fact, this result holds even when the system is deterministic in the sense that
the maximally parallel multiset of rules applicable at each step in the computation is
unique. We only sketch the proof in this paper. The idea is to relate the computation
of + to a restricted type of multicounter machine, called linear-bounded multicounter
machine, whose emptiness is known undecidable.

Consider a deterministic (nondeterministic) multicounter machine ð that is linear-
bounded in the sense that when given an input 8 in one of the counters (called the
input counter) and zeros in the other counters, computes in such a way that the sum
of the values of the counters at any time during the computation is at most 8 . One can
normalize the computation so that every increment is preceded by a decrement (i.e., if ð
wants to increment a counter ñ , it first decrements some counter ò and then increments
ñ) and every decrement is followed by an increment. We do not require that the contents
of the counters are zero when the machine halts.

We will show that we can construct a deterministic (nondeterministic) bounded P
system + which uses a fixed multiset ï such that, when + is started with multiset
ï�4
¿

, it simulates ð and has a halting computation if and only if ð halts on input 8 .
(Again, we do not assume that the halting configuration of + to be in any special
form.) Moreover, the rules of + are of the form o�ó� @ where � ���<Ë� ���*<»� or ô .
Clearly, it follows that the computation of + is linear-bounded in the sense that any
reachable configuration has length exactly � ïV�Gz|8 (i.e., the size of the computation
space is always the same).

It is convenient to use an intermediate P system, which we shall call RCPS, a re-
stricted version of the CPS (communicating P system) introduced in [13]. A CPS has
multiple membranes labeled � @ ô @CBEB�B , where � is the skin membrane. The rules in any
membrane are of the forms: (1). ,-��,#õ , (2). ,G.ö��,÷õX.hø , (3). ,G.��Ë,÷õX.ùø7ëCú¦û i�ü , where
, @ . @ ë are objects, ý @	þ (which indicate the directions of movements of , and .) can beÿ Ï � Ï , 4A)Î , or � 8�� . The designation

ÿ Ï � Ï means that the object remains in the membrane
containing it, 4A!Î means that the object is transported to the membrane directly enclos-
ing the membrane that contains the object (or to the environment if the object is in the
skin membrane). The designation � 8�� means that the object is moved into the mem-
brane, labeled � , that is directly enclosed by the membrane that contains the object. A
rule of the form (3) can only appear in the skin membrane. When such a rule is applied,
ë is imported through the skin membrane from the environment (i.e., outer space) and
will become an element in the skin membrane. In one step, all rules are applied in a
maximally parallel manner. For notational convenience, when the target designation is
not specified, we assume that the symbol remains in the membrane containing the rule.

Let � be the set of all objects (i.e., symbols) that can appear in the system, and 4 be
a distinguished object (called the input symbol). A CPS + has n membranes, with a

distinguished input membrane. We assume that only the symbol 4 can enter and exit the
skin membrane (thus, all other symbols remain in the system during the computation).
We say that + accepts 4

¿
if + , when started with 4

¿
in the input membrane initially

(with no 4 ’s in the other membranes), eventually halts. Note that objects in � ¼ >74IH
have fixed numbers and their distributions in the different membranes are fixed initially.
Moreover, their multiplicities remain the same during the computation, although their
distributions among the membranes may change at each step. The language accepted
by + is � L +?Nb<?>74 ¿ �74 ¿ is accepted by +ÊH .

It is known that a language � r 4�� is accepted by a deterministic (nondeterministic)
CPS if and only if it is accepted by a deterministic (nondeterministic) multicounter
machine. (Again, define the language accepted by a multicounter machine ð to be ��<
>74
¿
�ùð when given 8 has a halting computation H). The “if” part was shown in [13]. The

‘only if” part is easily verified. Hence, every unary recursively enumerable language can
be accepted by a deterministic CPS (hence, also by a nondeterministic CPS).

In a recent paper [8], it was shown that � r 4 � is accepted by a deterministic
(nondeterministic) linear-bounded multicounter machine if and only if it is accepted by
a deterministic (nondeterministic) CPS which is restricted in that the environment does
not contain any object initially. The system can expel objects into the environment but
only expelled objects can be retrieved from the environment. The restricted system is
called deterministic (nondeterministic) RCPS.

We can now modify the construction in [8] by introducing a new membrane in the
skin membrane which would simulate the environment. This is possible since, in an
RCPS, the environment does not contain any object initially and only 4 can be expelled
into the environment and can be retrieved from the environment. It follows that the
modified RCPS need only use rules of the form (1) and (2). But the modified RCPS,
call it + , has multiple membranes. We will convert this to a 1-membrane system +=� .
Suppose that + has membranes � @CBEB�BE@ n . For each object , in � , +s� will have sym-
bols , �A@CBEB�B�@ , i . In particular, for the distinguished input symbol 4 in � , +=� will have
4 �v@CBEB�BE@ 4 i . Hence the distinguished input symbol in +s� is 4 ^�� , where � t is the index of
the input membrane in + . We can convert + to the system +=� as follows:

1. If ,U� , õ is a rule in membrane � of + , then , ^ � ,	� is a rule in + , where � is
the index of the membrane into which , is transported to, as specified by ý .

2. If ,G.��Ë, õ , ø is a rule in membrane � of + , then , ^ . ^ �Ë,	�7.ùF is a rule in + , where� and � are the index numbers of the membranes into which , and . are transported
to, as specified by ý and þ .

Thus, corresponding to the initial configuration ï�4
¿

of + , where 4
¿

is in the input
membrane � t and ï represents the configuration denoting all the other symbols (differ-
ent from ï) in the other membranes, +?� will have initial configuration ï{��4

¿^
� , where ï��
are symbols in ï renamed to identify their locations in + .

Clearly, +Ô� accepts 4
¿^
� if and only if + accepts 4

¿
, and +?� is a deterministic (non-

deterministic) bounded P system. Now it is easy to show that the emptiness problem for
deterministic linear-bounded multicounter machines (i.e., given ð , is there an input 8
such that ð halts?) is undecidable. Hence, we have:

Theorem 5. It is undecidable to determine, given a deterministic (nondeterministic)
BPS + and a fixed multiset ï , whether there is an 8 such that + starting with multiset
ï�4
¿

has a halting computation.

For the next result, we need the fact that linear-bounded multicounter machines, 3�476�8
space-bounded TMs, and two-way multihead FAs are all equivalent (for both the de-
terministic and nondeterministic versions). As a corollary to Theorem 5, we can show
that Theorem 4 does not hold for deterministic (nondeterministic) bounded P systems,
even in very simple cases. Recall that æS,÷3`Î is a regular formula in REG that defines
all the halting configurations. For a fixed multiset ï , the set of all ï�4

¿
is clearly defin-

able by a regular formula �� in REG. Theorem 5 essentially says that the emptiness of
Õ ���U�U0{Ì�æS,÷3`Î~Ö � is undecidable. Hence, in contrast to Theorem 4, we have,

Corollary 1. The ����� �) #"2 model-checking problem for (nondeterministic) bounded P
systems is undecidable. The undecidability remains even for �����*�) #"2 formulas in the
form of ãåä�ãå�y�m0jÌ�æ where ãåä�ãå� and æ are regular formulas in ç ��è .

We have seen that the emptiness problem for deterministic bounded P systems is
undecidable. We now look at a special case when the cardinality of the maximally par-
allel multiset of rules applicable at each step is at most 1. Thus the computation of the
system would be sequential. More generally, consider a (nondeterministic) bounded P
system whose computation is restricted in that at every step, only one nondeterminis-
tically selected rule is applied. Call such a system a sequential bounded P system. In
contrast to Theorem 5, We show that the emptiness problem for sequential bounded P
system is decidable. In fact, this result is true even if the system is not bounded, i.e.,
in the rules of the form Ô�à� , we no longer require that � ��� [� �� . We can show
that such a sequential P system is equivalent to a partially blind multicounter machine
(PBCM). Note that a PBCM [6] can increment/decrement any counter by 1 or leave
it unchanged; however, it can not test a counter for zero. When there is an attempt to
decrement a zero counter, the machine gets stuck and the computation is aborted. The
machine starts with the input counter set to a value 8 with all other counters set to zero.
We say that the machine accepts if it eventually halts in an accepting state with all the
counters zero.

It can be shown that a language � r 4 � is accepted by a sequential P system if and
only if it is accepted by a PBCM. Since the emptiness problem for PBCMs is decidable
(as this problem is reducible to the reachability problem for vector addition systems
(i.e., Petri nets)) [6], we have:

Theorem 6. The emptiness problem for sequential P systems (and, hence, also for se-
quential bounded P systems) is decidable.

A BPS + is separated if for any two distinct rules ^ � � ^ and � � � � in + ,
the multiset union of ^ and � ^ is disjoint with the multiset union of � and � � . For
instance, the system with rules ,G.���,÷Ï and ë��9��� is separated. But the system with
rules ,G.9�î,÷Ï and ë��y��Ï is not. In contrast to Corollary 1, we have the following
result. Currently, we do not know whether the result still holds when we modify the
above “separated” definition into the following: for any two distinct rules ^ �í� ^ and
��{�Ó��� in + , multisets ^ and �� are disjoint.

Theorem 7. For separated bounded P systems, the model-checking problem for formu-
las in the form of ãåä�ãå���S0ZÌ{æ , where ãåä�ãå� and æ are regular formulas in ç ��è , is
decidable.

Notice that separated systems can demonstrate nonlinear reachability relations. For in-
stance, consider such a system + with rules ÏA,-�Ë, and ëùëC.ö��ëD.�� . Define ãåä�ãå� to beKML .ùNb<s�X� KML ,GNP<Ô�X� KcL �÷NP<|k and æ to be

KcL ÏvN�WQkº� KcL ëDNö�Qô . Then, the set of all
� R�Õ æUÖ � that is reachable from some

 RyÕ ãåä�ãå��Ö � (i.e.,

´¾ ���) is exactly the set

of � satisfying the following nonlinear relation:
KcL ÏvN�WQkß� KcL ëCNö�¢ô�� KcL ,GNP<½ô�������� .

We believe that Theorem 7 can be generalized to the entire �����*�! #" , further investiga-
tion of which will be left for the full version of the paper.

We now investigate the case when a BPS + is bounded maximally parallel; i.e.,
there is a constant � such that on every execution of + , every maximally parallel
move only fires at most � instances of rules. Examples of such + include purely
catalytic systems [13, 14, 5], and following the same ideas of the proof of Theorem
5 but using constructions in [13, 14, 5], one can show that simple reachability queries
like formulas ãåä�ãå�´�S0�Ìjæ in �������) #" are undecidable for these + ’s. To make the
query decidable, we add one more restriction. A maximally parallel move from o<L Î �&@DBDBCB�@ Î	F&N (the vector representation of the multiset) to �T< L�� �&@DBCBDB�@ � FvN is 1-non-
monotonic if Î ��[� �&@CBDBDB�@ Î	F [� F . + is 1-non-monotonic if its executions consist
of 1-non-monotonic maximally parallel moves only. With this restriction, we can show
that linear reachability queries are decidable:

Theorem 8. For bounded maximally parallel and 1-non-monotonic BPSs, the model-
checking problem for formulas in the form of ãåä�ãå�¢�T0�ÌZæ , where ãåä�ãå� and æ are
linear formulas in �ßãåä , is decidable.

Let � be a constant. A configuration p< L Î �A@CBDBCBE@ Î	F&N is 1-unbounded if each of
Î �&@DBCBDB�@ Î	F is bounded by � (i.e., only the first Î � is possibly larger than �). + is 1-
unbounded if its executions consist of 1-unbounded configurations only. In this case,
we can generalize Theorem 8 to the full ������$u%�' .

Theorem 9. The ����� $&%(' model-checking problem for bounded maximally parallel
and 1-unbounded BPSs is decidable.

5 Experiments

From the results presented so far, even simple reachability queries like formulas ãåä�ãå�-�
0�Ì�æ in �������! #" are undecidable for a bounded P system + in general. In this section,
we investigate conservative behavior approximations that can be applied over + such
that every execution of the approximated system is also an execution of the original + .
Hence, such a conservative behavior approximation at least provides a way to help us
analyze the original system, partially. This resembles similar approximation techniques
in traditional model-checking of (in)finite state transition systems.

One such approximation is to let + to execute for at most � maximally parallel
steps for a given constant � . Clearly, since � is a fixed, the reachability relation of +
now is expressible as a Presburger formula, which can be calculated with a Presburger

manipulator like Omega [12]. Another approximation is to force + to crash whenever
+ reaches a multiset with more than

q
objects for a given constant � . Under this ap-

proximation, + can be simulated by a finite-state transition system and, accordingly,
tools like the LTL model-checker SPIN [7] can be used to analyze it. In fact, these two
approximations are applicable to a general P system (which is not necessarily a BPS)
with multi-membranes, priority rules and dissolving membranes. Below, we briefly re-
port our experiences in using Omega and SPIN to conservatively analyze a general P
system, which is taken from literature [11]. Since Omega (resp. SPIN) has been proved
effective in handling even fairly large infinite (resp. finite) real-world applications [2,
7], the primary purpose of our experiments is to identify whether these tools are also
effective for a general P system with a reasonable size, where the inherent maximal par-
allelism makes the model highly nondeterministic, concurrent, and, more importantly,
lack of control-flow structure.

The example P system + is shown in the figure below. It has three membranes
where, in particular, membrane 2 (resp. membrane 3) are dissolved (i.e., objects in the
membrane are immediately become objects in the outside membrane and the membrane
along with the membrane’s rules is all gone) whenever the rule in membrane 2 (resp.
membrane 3) that contains fires. In membrane 2, the relation ���m����WË�m�! says
that, roughly, in a maximally parallel move, the former rule is given higher priority to
fire than the latter rule. The P system is to compute a quadratic relation between cer-
tain objects; see [11] for details. Using Omega, we encode a maximally parallel move
� � in a Presburger relation which contains 34 variables (i.e., : �#" ì : �#"). Notice that a
symbol may need up to three variables to represent, in order to specify its multiplicity in
one of the three membranes. Additionally, a number of quantified variables are needed
to encode the maximal parallelism, the priority rules and the dissolving membranes.
Due to space limitation, we omit the detail of the Omega encoding. We used Omega
to compute the reachability relation of + within � maximally parallel moves. Unfor-
tunately, the tool crashed when computing with � <%$ (memory usage was 1.6GB
including virtual memory), though it was successfully completed with �Ð<'& (in 489
CPU seconds).

To use SPIN, we encode + in Promela, the front- (*)(�+,(*-(�+,-/.)0+,)1)
-�+,22�+3254
4�+347678�9:)1);+,)#<�= :);+3.7<

3
21

end specification language in SPIN. A Promela process
is defined for each membrane, where the process ex-
its when its corresponding membrane dissolves. Object-
transfers across a membrane are simulated through ren-
dezvous communications among processes, and the pri-
ority relation between evolution rules is implemented
by carefully designed guards of the related selections.
Again, we omit the detail of the Promela encoding. Using SPIN’s default option, we
checked the system for deadlock states. Unfortunately, SPIN could not finish any run
within one hour as we varied the variable types from byte to short and long, respec-
tively. Then, we checked a liveness property: eventually, the evolution of this P system
will come to an end, i.e., only the skin membrane is left and no evolution rules in the
skin can be applied; this is equivalent to checking that eventually all the three processes
shall reach the ends of their bodies. Surprisingly, SPIN handled this property easily —

the total time consumed, as we varied the variable types from byte to short and long,
increased merely from less than 0.1 second to several seconds and several minutes. The
results of these checkings are all “false” since the inner membranes may not necessar-
ily dissolve. Another property we checked about this P system is that: whenever the
evolution of this P system comes to an end, the number of Ï objects outside the skin
membrane is the square of the number of � objects inside the skin membrane. Again,
SPIN gave the correct answer (“true”) fairly fast (in less than 1 second) for each of the
three cases (byte, short, long).

Through these preliminary experiments, we prefer SPIN over Omega to serve as the
back-end solver in a future P system model-checker. On the other hand, Omega has its
own strength in handling infinite state systems. Still, more research is needed for both
approximation methods to create a more efficient encoding. All our experiments were
run on a PC server with two 1GHz PIII processors running Linux with 1GB physical
memory. The encodings can be found in the long version of the paper, which is available
at www.eecs.wsu.edu/ O zdang.

References

1. O. Andrei, G. Ciobanu, and D. Lucanu. Executable specifications of p systems. In Proc. 5th
Workshop on Membrane Computing, pages 126–145, 2005.

2. T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with unbounded
integer variables: symbolic representations, approximations, and experimental results. ACM
Trans. Program. Lang. Syst., 21(4):747–789, 1999.

3. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244–263, April 1986.

4. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 1999.
5. R. Freund, L. Kari, M. Oswald, and P. Sosik. Computationally universal P systems without

priorities: two catalysts are sufficient. Available at http://psystems.disco.unimib.it, 2003.
6. S. Greibach. Remarks on blind and partially blind one-way multicounter machines. Theor.

Comput. Sci., 7:311–324, 1978.
7. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,

23(5):279–295, 1997.
8. O. H. Ibarra. The number of membranes matters. In Proc. 4th Workshop on Membrane

Computing, pages 218–231, 2003.
9. Gh. Paun. Computing with membranes. Journal of Computer and System Sciences,

61(1):108–143, 2000.
10. Gh. Paun. Membrane Computing: An Introduction. Springer-Verlag, 2002.
11. Gh. Paun and G. Rozenberg. A guide to membrane computing. TCS, 287(1):73–100, 2002.
12. W. Pugh. The omega test: a fast and practical integer programming algorithm for dependence

analysis. Communications of the ACM, 35(8):102–114, 1992.
13. P. Sosik. P systems versus register machines: two universality proofs. In Pre-Proceedings of

Workshop on Membrane Computing (WMC-CdeA2002), Curtea de Arges, Romania, pages
371–382, 2002.

14. P. Sosik and R. Freund. P systems without priorities are computationally universal. In WMC-
CdeA2002, volume 2597 of LNCS, pages 400–409. Springer, 2003.

