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Abstract. Compression aims to reduce the size of data without loss of informa-
tion. Compaction is a special kind of compression in which the output is in the 
same language as the input. Compaction of an XML data forest produces a 
smaller XML forest, without losing any data. This paper develops a formal 
framework for the compaction of XML data and presents two compaction  
techniques. 

1   Introduction 

Compression aims to reduce the size of data without loss of information. It is useful 
because smaller data can save storage space and also network bandwidth when data is 
transmitted. A compressor generates a file smaller in size than the original; feeding 
this file to a de-compressor can recover the original. 

XML is rapidly becoming a dominant media for data exchange over the Internet. 
Because XML data is usually quite verbose, compression is an important issue for 
XML. Several tools are already available for XML compression. One can use either a 
general purpose compressor such as gzip, or an XML-specific compressor (such as 
XMill [2]) to compress XML data. 

This paper addresses a special kind of compression, called compaction, where the 
compressed output remains as XML. Existing compression techniques do not compact 
the data because they all produce a compressed file in a non-XML format, which only 
a special-purpose de-compressor can understand. The main benefit of compaction is 
that it is orthogonal to other compression techniques, so an XML file can be com-
pacted and then compressed. 

The general idea behind compaction is that the same data can be represented in 
XML in (several) different structures. Consider two XML data documents, author.xml 
and pub.xml, shown respectively in Fig. 1 and Fig. 2. The data is simple enough that 
we can rely on readers of the data to agree on its intended semantics. In author.xml 
author n1 writes a book t1, published by p1; author n2 is a co-author on book t1 and 
also independently writes a book t2, published by p2. pub.xml contains exactly the 
same information except that the structure is different. Both documents have data 
about the same two authors, the same two publishers, and the same two books. Each 
document similarly relates each book, author, and publisher, e.g., in both documents 
book t2 is authored by author n2 and published by publisher p2. Section 3 develops a 
formal framework that allows the implicit meaning or semantics of an XML data  
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collection to be determined and compared. For compaction, what interests us is the 
fact that author.xml and pub.xml have the same data but are of different sizes. Excluding 
text data, there are 14 elements in author.xml but only 13 elements in pub.xml. This 
suggests that author.xml could be compacted to at least the size of pub.xml. Of course, 
other compression techniques could potentially reduce the physical size of author.xml 
much further; however, only compacting produces output in XML. 

Compaction is concerned with logical redundancy as much as physical redun-
dancy. Note that in compaction we can measure the size of XML data by the number 
of elements. This differs from common compression tasks in which the size of a com-
pressed file can only be measured by the disk space it occupies. While file size re-
flects the physical redundancy in a file, the number of duplicate nodes gives a better 
measure for redundancy on the logical level. By preserving the XML syntax in the 
output, compaction rearranges the original data to a new form with fewer places that 
are subject to update anomaly. Certainly, compacting an XML file may potentially 
(and usually does) compress the data at the same time. Though fewer elements does 
not guarantee a physically smaller file in general, it is usually so in practice. 

This paper is organized as follows. Section 2 introduces preliminary concepts  
and Section 3 presents a semantics for XML that translates an XML data collec- 
tion to a graph. Section 4 presents a compaction technique called restructuring, which  
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transform a forest to another without affecting the semantics. Section 5 presents re-
lated work, and Section 6 concludes the paper. 

2   Preliminaries 

This section defines preliminary concepts. We start with tree and forest. 

Definition [tree]. A tree is a five tuple (V, E, Σ, L, C), where V is the node set, E:V×V 
is the edge set, Σ is an alphabet of labels and text values, L:V→Σ is a label function 
that maps a node to its label, and C:V→Σ is a value function that maps a node to its 
value.             █ 

This tree data model is different from the DOM data model [5]. It ignores sibling 
order and it does not model other kinds of DOM nodes such as attributes and com-
ments. But the simpler model is sufficient for our purposes.  

We often need to deal with an XML data collection, which is a group of XML 
documents or parts of XML documents. This can be modeled as a forest in general. 

Labels can be used to partially identify nodes in a forest, but not to distinguish 
nodes of the same label. To further identify nodes of the same label, we need another 
characterization. One such characterization is a type identifier. Here we define nodes 
to be of the same type if they have the same label; type identifier is defined to be an 
identifier that identifies nodes of the same type. (Note that the term “type” is com-
monly used in the XML database literature but with varying meanings in different 
researches. In this paper, the type of a node is simply its label.) Such type identifiers 
observe the dependency among nodes of different types in a forest. For example, we 
may have the following dependencies in author.xml and pub.xml: 

• an author depends on its corresponding name, 
• a book depends on its corresponding title, and 
• a name, title or publisher each depends on its value. 

In each of these dependencies, one type is dependent on some other types or its own 
value. In a specific dependency, we call a node of the depending type a depending 
node; a depending node is identified by nodes or value corresponding to the deciding 
types, which we call the identifying information of the depending node. In general, we 
shall allow identifying information to be a combination of both nodes and values. 

Usually, a node’s identifying information is its immediate children (nodes or val-
ues). We further observe that, regardless of the relative position of the depending 
types and the deciding types, the identifying information is always “closest” to a de-
pendent node. For example, if a book is identified by its title, then in the forest that 
title is closer to the book it identifies than it is to other books. 

More precisely, suppose v is a dependent node and u is a type t identifying node of 
v, then u is closest in distance to v among all type t nodes. This observation suggests 
that we can employ this notion of closeness to locate the identifying information. 

Definition [related nodes]. Let v be a node of type x. Then related(v, t) = {x | x is a 
node of type t and from among all the nodes of type t, x is closest in distance to v}. 
The distance between a pair of nodes is measured by the length of the path that con-
nects the nodes.            █ 
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Using the notion of closest, related nodes, we formalize a type identifier as follows. 

Definition [type identifier]. A type identifier I of a type t is a two-tuple (IType, IText), 
where IType = {x1,…, xm} and IText = {y1,…, yn} are each a set of types, m and n are 

non-negative integers and they are not both zero, and t ∉IType. Two type t nodes u and 

v are identical, denoted u ≐ v, if and only if the following holds. 

• When m > 0, for each q in related(v, xi), 1 ≤ i ≤ m, there exists a node p in 

related(u, xi) such that p ≐ q; for each p in related(u, xi), there exists a node q in 

related(v, xi) such that p ≐ q. 

• When n > 0, for each q in related(v, yi), 1 ≤ i ≤ n, there exists a node p in 
related(u, yi) such that C(p)=C(q); for each q in related(u, yi), there exists a 
node p in related(v, yi) such that C(p)=C(q). 

The following notation represents the dependency of type t on the other types:  

t ← x1,…, xm; y1,…, yn 

where the delimiter symbol “;” is required, even if m or n is zero.     █ 

The above definition recursively describes how a depending node is identified by a 
combination of nodes of other types and some values. The base case in the recursive 
definition is when the set IType of type t is empty. In this case, whether two type t 
nodes u and v are identical is decided by comparing some values. If IType is non-
empty, then whether u and v are identical is recursively determined by whether nodes 
of some other types are identical. As a special case, u and v are identical if they are 
the same node. Using the type identifier notation, the dependencies in the motivating 
example are: 1) “author ← name;”, 2) “book ← title;”, 3) “name ← ; name”,  
4) “title ← ; title”, and 5) “publisher ← ; publisher”. 

3   A Semantics for XML 

We now illustrate a semantics for XML using the example in Section 1. We show a 
series of semantics-preserving operations that derives the semantics of a tree, which is 
a graph. As both author.xml and pub.xml are mapped to the same graph, they are re-
garded semantically equivalent.  

First, we identify duplicate information, i.e., data that represents the same real-
world entity. Duplicates are identified by the type identifiers. In author.xml, since the 
first and third book have the same title, and we have identifiers “book ← title;” and 
“title ← ; title”, the fist and third book elements are duplicates. 

Similarly, in pub.xml, the second and third author elements represent the same au-
thor, because of the identifiers “author ← name; ” and “name ← ; name”. The dupli-
cate information is removed through a process called node gluing. Gluing removes a 
duplicate, leaving only a single copy of the data. Fig. 3 shows the gluing for the two 
documents. In author.xml, for example, a book element is duplicated. We remove one 
copy by gluing the two subtrees together (shown by dotted lines), and also move the 
edge from the book element to the remaining copy of the author element (shown by 
dashed lines). 
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Fig. 3. Node gluing Fig. 4. Node connecting 
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Fig. 5. The final graphs Fig. 6. A graph isomorphic to the two final 
graphs 

The next step is to add edges between “related” nodes. In author.xml, authors are re-
lated to the books they wrote, and also to the publishers that publish those books. A 
tree can only (directly) capture relationships between parent and child nodes. The 
proposed semantics represents every such relationship with an edge, hence creating a 
graph that will usually contain cycles. We call the process of relating nodes as node 
connecting. Fig. 4 illustrates node connecting (shown by dashed lines). In the figure, 



772 S. Zhang, C. Dyreson, and Z. Dang 

only author, name and publisher nodes are connected. To reduce clutter in the de-
picted graphs we have chosen not to represent some of the relationships. A connection 
between the n2 name node and the t2 title node, for example, is not shown. This con-
nection can be inferred because there is a one-to-one correspondence between book 
and title (as well as author and name). Hence, any node connected to a name node is 
also connected to the corresponding (its parent) author node. How do we decide 
which types of nodes to connect and which not to? It depends on the possible parent-
child relationships in forests to be semantically compared. For example, since author 
is always a parent of a name in any possible forest that we compare, we only connect 
author, but not name, with other types of nodes. On the other hand, since an author 
node can be either a parent or a child of a book node, we need to make connection 
between them in the graph. Not adding these edges keeps Fig. 4 less cluttered. More 
importantly, it saves a certain amount of cost (depending on the property of the data) 
not to physically materialize these edges. Logically, however, these edges are present 
in the graph. 

Note that the root node bib is, as we would infer, equally related to all nodes in 
each document. For ease and clarity of presentation, we choose to remove this bib 
node in both graphs. The final graphs resulting from node connecting are shown in 
Fig. 5. The two graphs in Fig. 5 are isomorphic. To illustrate this more clearly, a 
graph that is isomorphic to both is depicted in Fig. 6. It is semantically equivalent to 
the two initial trees because neither subtree gluing nor node connecting changes the 
“meaning” of the data. It is also a “minimal” form of the original trees in the sense 
that duplicate data has been eliminated. The graph in Fig. 6 (as well as the graphs in 
Fig. 5) is a canonical representation of the two initial trees, because it is semantically 
equivalent to the original data, yet syntactically minimal. 

Formally, deriving this semantics consists of the following two steps. 

1. Node Gluing: Two nodes are glued together if and only if they are identical. i.e., 
they are of the same type and their identifiers evaluate to the same value. The 
idea is that, if u and v are identical, then it is only necessary to keep one copy. We 
can replace every edge (v,y) with (u,y) and then remove v. Adding new edges to 
the forest may result in cycles. Thus gluing produces a graph in general. When 
nodes are glued in this process, the size of V decreases, and the size of E does not 
increase (and may decrease). As we can see, semantically comparing two forests 
is only possible when given the set of identifiers for all types of nodes. Identifiers 
carry the information about how nodes are related, and are crucial to reason about 
data semantics. 

2. Node Connecting: In the next step, related nodes are connected. The idea is that 
every pair of related nodes is now explicitly identified by an edge that connects 
them. Before node connecting, a pair of related nodes may or may not be adja-
cent, while semantically whether they are connected or not should not make any 
difference. Connecting effectively changes a tree to a graph by adding edges. The 
number of edges in E may either increase or decrease depending on the specific 
situation. There is no change to V, Σ, L, or C. 
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4   Compaction 

With a semantics for XML data defined, a formal discussion on compaction is now 
possible. Compaction aims to transform a forest to a smaller forest. The two forests 
will have the same semantics, i.e., the forest-to-graph translation maps them to the 
same graph. Compaction can be achieved by changing the structure of a forest. A 
restructuring is a transformation that changes the structure of the forest but keeps its 
semantics intact. A forest can be restructured by mapping it to its canonical graph, 
and then creating a semantically equivalent forest with a different structure. Ideally, 
the restructuring will yield a forest that is smaller in size than the original. Here we 
employ a structural specification called a signature that designates the target’s struc-
tural characteristics. For example, the signature for pub.xml is  

bib#pub#book#(author#name,title) 

in which the symbol # denotes parent-child relationship and siblings are separated by 
commas and enclosed within a pair of parentheses. 

We have devised a restructuring algorithm that takes a canonical graph and a target 
signature as input, and outputs a new forest that conforms to the specification. (Due to 
space limit, the detail is omitted in this paper; it can be found at [8]). Essentially, this 
restructuring algorithm is an inverse of the combination of node gluing and node 
connecting. In changing the canonical graph to a forest, the restructuring algorithm 
disconnects and unglues nodes. It disconnects since the output has to contain no cycle, 
and it unglues (makes duplicates) since the semantics encoded in every edge in the 
canonical graph must be faithfully preserved. 

In restructuring, different target signatures will yield forests of different sizes. To 
find the most compact forest among them, we could simply enumerate all the possible 
target forests. However, this is computational intractable. The number of different 
target signatures is more than exponential.1 

While in general the problem is hard, there is a simple technique to generate a 
compact forest for some forests. The idea is to take advantage of the cardinality ratio. 
The ratio characterizes the relationship between pairs of element types as one of the 
following: one-to-one, one-to-many, or many-to-many. For example, the relationship 
between publisher and book is one-to-many: a book is published by exactly one pub-
lisher but a publisher publishes many books. On the other hand, the relationship be-
tween book and author is many-to-many. 

Cardinality ratio may come with the data as a predefined constraint; if not, it can be 
quickly determined by traversing the canonical graph. (In contrast, we do not infer 
type identifiers and assume they must be given.) Table 1 shows the cardinality ratios 
for the example graph. The relationship between author and name is one-to-one (re-
call that authors are glued by name, hence each author is associated with a single 
name, and vice-versa). Author to book is many-to-many since an author can write 
many books, and a book can have many authors. (Note that exact, average ratios 
could be computed, e.g., 4.2 to 2.7.) 

                                                           
1  Given a label set of size n, suppose the number of distinct unordered trees is t(n) and the 

number of distinct unordered forests is f(n), we have, 
t(1) = 1, t(n) = (2n-2) • t(n-1) = (2n-2) • (2n-4) ... 2 • t(1) = (2n-2) • (2n-4) ... • 2, and  
f(1) = 1, f(n) = (2n-1) • f(n-1) = (2n-1) • (2n-3) ... 3 • f(1) = (2n-1) • (2n-3) ... • 3. 
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Table 1. Cardinality ratios for the example graph 

 pub title book name 
author n-m n-m n-m 1-1 
name n-m n-m n-m  
book n-1 1-1   
title n-1    

 
The key to achieving compactness is to focus on types that are related in one-to-

many relationships. Specifically, assume types X and Y are in a one-to-many relation-
ship. Then a target signature that has X above Y leads to a forest that is more compact 
than a forest with Y above X. Consider the example of publisher and book, which 
have a one-to-many relationship. If publishers are above books in the target signature, 
then in the target forest there are no duplicate publishers (or duplicate books). Every 
book is placed under the publisher to which it belongs. If books are above publishers 
in the target signature, then the same publisher may be duplicated several times. Such 
a forest is less compact and hence need not to be considered. 

The technique for generating a target signature for a compact forest begins by con-
sidering one-to-one relationships. One side of the relationship is made a child of the 
other side. If one side is involved in gluing the other, then it should be made the child, 
otherwise either side can be made the child. Consider book and title in the example 
graph. Their relationship is one-to-one. Furthermore, book is glued using title. Hence 
book should be a parent of title in the potentially compact output. The target signature 
after this step is book#title and author#name. Next, one-to-many relationships are  
processed by making the one side the parent. In the example, after considering the 
one-to-many relationships, the target is pub#book#title and author#name. Finally, only 
many-to-many relationships remain. The remaining types are placed as high as possi-
ble in the forest. In the example graph, this means that author is made a child of book 
resulting in the signature pub#book#(title,author#name). 

Once the target signature has been generated, the original forest is restructured us-
ing the target signature. The restructured forest may or may not be smaller, i.e., the 
technique does not generate the most compact forest. Finding the signature that leads 
to the most compact restructuring is theoretically intractable. However, we expect the 
technique outlined above to lead to a “reasonable” target signature in practice. The 
technique can be further refined by utilizing the average cardinality ratio of many-to-
many relationships, e.g., if the ratio is thirty-to-two, then the two side of the relation-
ship should be made the parent. But such refinements are beyond the scope of this 
paper. 

To gauge how well compaction performs on real-world data, we did an experiment 
to compact DBLP data. The test data has a size of 309KB and contains 7312 ele-
ments. Restructuring the data using a compact signature yields a 252KB data collec-
tion that contains 5441 elements. The compacted data has an 18% reduction in file 
size and a 25% reduction in number of elements. The detail of the experiment can be 
found at [8]. 
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5   Related Work 

Compaction for XML is similar to XML compression in the sense that they both aim 
to describe the same information with shorter representation. However, compaction 
differs from usual compression since the output has to retain XML syntax. To the best 
of our knowledge, the problem of compaction has not been previously researched. In 
this section, we briefly review general and XML-specific compression techniques, 
and relate them to compaction when pertinent. 

Most modern data compression techniques have their genesis in the Huffman algo-
rithm [767] or the LZ77 algorithm [7]. Huffman coding is statistical; it assigns shorter 
codes to more frequent characters and longer codes to less frequent ones. Popular data 
compression tools such as gzip and pkzip are based on LZ77. A later version of 
LZ77, the LZW algorithm [6], is more suitable for practical implementation. The 
essence of the LZ77 family of compression techniques is to store repetitive sequences 
just once. Any repetition of a sequence that previously occurred is replaced by a 
pointer to that sequence. Such techniques are called pattern-based. 

Specialized compressors take advantage of the specific properties of the data to be 
compressed. For XML data in particular, several compression techniques have been 
proposed. The earliest such work is XMill [2]. Incorporating existing compressors, 
XMill compresses XML structures and values separately, uses type specific compres-
sors for different types of data, and allows user-defined compressors for domain spe-
cific data-types. Data compressed by XMill cannot be directly queried; doing so 
would entail a complete decompression. XGrind [4] and XPRESS [3] are both com-
pressors that support direct query evaluations on compressed XML data. XGrind uses 
a compression scheme based on Huffman coding, while XPRESS adopts an encoding 
method called reverse arithmetic encoding. It is worthwhile to note that both com-
pression techniques are homomorphic because the structure of the original XML data 
is preserved in the compressed XML data. In contrast, an important compaction tech-
nique proposed in this paper, restructuring, changes the structure of the original data. 
Homomorphism is important for the compressed data to be efficiently queried. Com-
paction, on the other hand, is useful to ascertain the semantic redundancy in the data. 
Compacted XML data is not supposed to be queried directly by the query intended for 
the original data. Among the three compressors, XGrind is the only one that tries to 
utilize schema information such as a DTD to enhance the compression ratio. In com-
parison, finding an appropriate schema (target signature in our situation) is the goal of 
compaction. To enhance compaction ratio, knowledge of identifiers in the original 
data is required, and knowledge of cardinality ratio is helpful. 

6   Conclusion 

XML compaction aims to produce a smaller, compact XML forest, without losing 
information. This paper develops a formal framework for the compaction of XML 
data. It first formalizes XML data by introducing a forest data model and defining 
types and identifiers. A translative semantics for XML is then presented. This seman-
tics translates an XML data collection to a canonical graph, depending on a given set 
of identifiers. Data collections that translate to the same canonical graph are deemed 
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to have the same semantics. Based on this formalization, two compaction techniques, 
restructuring and grouping, are discussed. Though finding the most compact forest is 
computationally prohibitive in general, we developed simple techniques to find a 
more compact forest at low cost using restructuring or grouping. 

In future we plan to explore the relationship between compaction and compression. 
General compression techniques are not confined to produce the same file format as 
the input. Hence, it is reasonable to expect that they can achieve a better compression 
than compaction. However, a file can be first compacted and then compressed. Does 
combining the compaction with compression produce better performance than com-
pression alone? An interesting work is to examine this problem on both the theoretical 
and experimental grounds. 
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