
M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 767 – 776, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Compacting XML Data

Shuohao Zhang, Curtis Dyreson, and Zhe Dang

P. O. Box 642752,
Washington State University,

Pullman, WA 99164-2752, USA
{szhang2, cdyreson, zdang}@eecs.wsu.edu

Abstract. Compression aims to reduce the size of data without loss of informa-
tion. Compaction is a special kind of compression in which the output is in the
same language as the input. Compaction of an XML data forest produces a
smaller XML forest, without losing any data. This paper develops a formal
framework for the compaction of XML data and presents two compaction
techniques.

1 Introduction

Compression aims to reduce the size of data without loss of information. It is useful
because smaller data can save storage space and also network bandwidth when data is
transmitted. A compressor generates a file smaller in size than the original; feeding
this file to a de-compressor can recover the original.

XML is rapidly becoming a dominant media for data exchange over the Internet.
Because XML data is usually quite verbose, compression is an important issue for
XML. Several tools are already available for XML compression. One can use either a
general purpose compressor such as gzip, or an XML-specific compressor (such as
XMill [2]) to compress XML data.

This paper addresses a special kind of compression, called compaction, where the
compressed output remains as XML. Existing compression techniques do not compact
the data because they all produce a compressed file in a non-XML format, which only
a special-purpose de-compressor can understand. The main benefit of compaction is
that it is orthogonal to other compression techniques, so an XML file can be com-
pacted and then compressed.

The general idea behind compaction is that the same data can be represented in
XML in (several) different structures. Consider two XML data documents, author.xml
and pub.xml, shown respectively in Fig. 1 and Fig. 2. The data is simple enough that
we can rely on readers of the data to agree on its intended semantics. In author.xml
author n1 writes a book t1, published by p1; author n2 is a co-author on book t1 and
also independently writes a book t2, published by p2. pub.xml contains exactly the
same information except that the structure is different. Both documents have data
about the same two authors, the same two publishers, and the same two books. Each
document similarly relates each book, author, and publisher, e.g., in both documents
book t2 is authored by author n2 and published by publisher p2. Section 3 develops a
formal framework that allows the implicit meaning or semantics of an XML data

768 S. Zhang, C. Dyreson, and Z. Dang

bib

title

author

bookname

n1

name

n2

author

book book

titletitle

p1 t1t2

pub

p1

pub

p2t1

pub

Fig. 1. author.xml

book

bib

name

book

title

t1

title

name
t2

author

name

n1 n2n2

author author

pub pub

p1 p2

Fig. 2. pub.xml

collection to be determined and compared. For compaction, what interests us is the
fact that author.xml and pub.xml have the same data but are of different sizes. Excluding
text data, there are 14 elements in author.xml but only 13 elements in pub.xml. This
suggests that author.xml could be compacted to at least the size of pub.xml. Of course,
other compression techniques could potentially reduce the physical size of author.xml
much further; however, only compacting produces output in XML.

Compaction is concerned with logical redundancy as much as physical redun-
dancy. Note that in compaction we can measure the size of XML data by the number
of elements. This differs from common compression tasks in which the size of a com-
pressed file can only be measured by the disk space it occupies. While file size re-
flects the physical redundancy in a file, the number of duplicate nodes gives a better
measure for redundancy on the logical level. By preserving the XML syntax in the
output, compaction rearranges the original data to a new form with fewer places that
are subject to update anomaly. Certainly, compacting an XML file may potentially
(and usually does) compress the data at the same time. Though fewer elements does
not guarantee a physically smaller file in general, it is usually so in practice.

This paper is organized as follows. Section 2 introduces preliminary concepts
and Section 3 presents a semantics for XML that translates an XML data collec-
tion to a graph. Section 4 presents a compaction technique called restructuring, which

 Compacting XML Data 769

transform a forest to another without affecting the semantics. Section 5 presents re-
lated work, and Section 6 concludes the paper.

2 Preliminaries

This section defines preliminary concepts. We start with tree and forest.

Definition [tree]. A tree is a five tuple (V, E, Σ, L, C), where V is the node set, E:V×V
is the edge set, Σ is an alphabet of labels and text values, L:V→Σ is a label function
that maps a node to its label, and C:V→Σ is a value function that maps a node to its
value. █

This tree data model is different from the DOM data model [5]. It ignores sibling
order and it does not model other kinds of DOM nodes such as attributes and com-
ments. But the simpler model is sufficient for our purposes.

We often need to deal with an XML data collection, which is a group of XML
documents or parts of XML documents. This can be modeled as a forest in general.

Labels can be used to partially identify nodes in a forest, but not to distinguish
nodes of the same label. To further identify nodes of the same label, we need another
characterization. One such characterization is a type identifier. Here we define nodes
to be of the same type if they have the same label; type identifier is defined to be an
identifier that identifies nodes of the same type. (Note that the term “type” is com-
monly used in the XML database literature but with varying meanings in different
researches. In this paper, the type of a node is simply its label.) Such type identifiers
observe the dependency among nodes of different types in a forest. For example, we
may have the following dependencies in author.xml and pub.xml:

• an author depends on its corresponding name,
• a book depends on its corresponding title, and
• a name, title or publisher each depends on its value.

In each of these dependencies, one type is dependent on some other types or its own
value. In a specific dependency, we call a node of the depending type a depending
node; a depending node is identified by nodes or value corresponding to the deciding
types, which we call the identifying information of the depending node. In general, we
shall allow identifying information to be a combination of both nodes and values.

Usually, a node’s identifying information is its immediate children (nodes or val-
ues). We further observe that, regardless of the relative position of the depending
types and the deciding types, the identifying information is always “closest” to a de-
pendent node. For example, if a book is identified by its title, then in the forest that
title is closer to the book it identifies than it is to other books.

More precisely, suppose v is a dependent node and u is a type t identifying node of
v, then u is closest in distance to v among all type t nodes. This observation suggests
that we can employ this notion of closeness to locate the identifying information.

Definition [related nodes]. Let v be a node of type x. Then related(v, t) = {x | x is a
node of type t and from among all the nodes of type t, x is closest in distance to v}.
The distance between a pair of nodes is measured by the length of the path that con-
nects the nodes. █

770 S. Zhang, C. Dyreson, and Z. Dang

Using the notion of closest, related nodes, we formalize a type identifier as follows.

Definition [type identifier]. A type identifier I of a type t is a two-tuple (IType, IText),
where IType = {x1,…, xm} and IText = {y1,…, yn} are each a set of types, m and n are

non-negative integers and they are not both zero, and t ∉IType. Two type t nodes u and

v are identical, denoted u ≐ v, if and only if the following holds.

• When m > 0, for each q in related(v, xi), 1 ≤ i ≤ m, there exists a node p in

related(u, xi) such that p ≐ q; for each p in related(u, xi), there exists a node q in

related(v, xi) such that p ≐ q.

• When n > 0, for each q in related(v, yi), 1 ≤ i ≤ n, there exists a node p in
related(u, yi) such that C(p)=C(q); for each q in related(u, yi), there exists a
node p in related(v, yi) such that C(p)=C(q).

The following notation represents the dependency of type t on the other types:

t ← x1,…, xm; y1,…, yn

where the delimiter symbol “;” is required, even if m or n is zero. █

The above definition recursively describes how a depending node is identified by a
combination of nodes of other types and some values. The base case in the recursive
definition is when the set IType of type t is empty. In this case, whether two type t
nodes u and v are identical is decided by comparing some values. If IType is non-
empty, then whether u and v are identical is recursively determined by whether nodes
of some other types are identical. As a special case, u and v are identical if they are
the same node. Using the type identifier notation, the dependencies in the motivating
example are: 1) “author ← name;”, 2) “book ← title;”, 3) “name ← ; name”,
4) “title ← ; title”, and 5) “publisher ← ; publisher”.

3 A Semantics for XML

We now illustrate a semantics for XML using the example in Section 1. We show a
series of semantics-preserving operations that derives the semantics of a tree, which is
a graph. As both author.xml and pub.xml are mapped to the same graph, they are re-
garded semantically equivalent.

First, we identify duplicate information, i.e., data that represents the same real-
world entity. Duplicates are identified by the type identifiers. In author.xml, since the
first and third book have the same title, and we have identifiers “book ← title;” and
“title ← ; title”, the fist and third book elements are duplicates.

Similarly, in pub.xml, the second and third author elements represent the same au-
thor, because of the identifiers “author ← name; ” and “name ← ; name”. The dupli-
cate information is removed through a process called node gluing. Gluing removes a
duplicate, leaving only a single copy of the data. Fig. 3 shows the gluing for the two
documents. In author.xml, for example, a book element is duplicated. We remove one
copy by gluing the two subtrees together (shown by dotted lines), and also move the
edge from the book element to the remaining copy of the author element (shown by
dashed lines).

 Compacting XML Data 771

book

bib

title

author

bookname

n1

name

n2

author

book book

titletitle

p1 t1t2

bib

name

book

title

t1

title

name
t2

author

name

n1 n2n2

author

author.xml

pub.xml

author

pub

p1

pub

p2t1

pub

pub pub

p1 p2

book

bib

title

author

bookname

n1

name

n2

author

book

title

p1 t2

bib

name

book

title

t1

title

name
t2

n1 n2

author

author.xml

pub.xml

author

pub

p2t1

pub

pub pub

p1 p2

Fig. 3. Node gluing Fig. 4. Node connecting

book

bib

title

author

bookname

n1

name

n2

author

book

title

p1 t2

bib

name

book

title

t1

title

name
t2

n1 n2

author

author.xml

pub.xml

author

pub

p2t1

pub

pub pub

p1 p2

title

author

book

name

n1

name

n2

book

title

p1

t2

pub

p2

t1

pub

author

Fig. 5. The final graphs Fig. 6. A graph isomorphic to the two final
graphs

The next step is to add edges between “related” nodes. In author.xml, authors are re-
lated to the books they wrote, and also to the publishers that publish those books. A
tree can only (directly) capture relationships between parent and child nodes. The
proposed semantics represents every such relationship with an edge, hence creating a
graph that will usually contain cycles. We call the process of relating nodes as node
connecting. Fig. 4 illustrates node connecting (shown by dashed lines). In the figure,

772 S. Zhang, C. Dyreson, and Z. Dang

only author, name and publisher nodes are connected. To reduce clutter in the de-
picted graphs we have chosen not to represent some of the relationships. A connection
between the n2 name node and the t2 title node, for example, is not shown. This con-
nection can be inferred because there is a one-to-one correspondence between book
and title (as well as author and name). Hence, any node connected to a name node is
also connected to the corresponding (its parent) author node. How do we decide
which types of nodes to connect and which not to? It depends on the possible parent-
child relationships in forests to be semantically compared. For example, since author
is always a parent of a name in any possible forest that we compare, we only connect
author, but not name, with other types of nodes. On the other hand, since an author
node can be either a parent or a child of a book node, we need to make connection
between them in the graph. Not adding these edges keeps Fig. 4 less cluttered. More
importantly, it saves a certain amount of cost (depending on the property of the data)
not to physically materialize these edges. Logically, however, these edges are present
in the graph.

Note that the root node bib is, as we would infer, equally related to all nodes in
each document. For ease and clarity of presentation, we choose to remove this bib
node in both graphs. The final graphs resulting from node connecting are shown in
Fig. 5. The two graphs in Fig. 5 are isomorphic. To illustrate this more clearly, a
graph that is isomorphic to both is depicted in Fig. 6. It is semantically equivalent to
the two initial trees because neither subtree gluing nor node connecting changes the
“meaning” of the data. It is also a “minimal” form of the original trees in the sense
that duplicate data has been eliminated. The graph in Fig. 6 (as well as the graphs in
Fig. 5) is a canonical representation of the two initial trees, because it is semantically
equivalent to the original data, yet syntactically minimal.

Formally, deriving this semantics consists of the following two steps.

1. Node Gluing: Two nodes are glued together if and only if they are identical. i.e.,
they are of the same type and their identifiers evaluate to the same value. The
idea is that, if u and v are identical, then it is only necessary to keep one copy. We
can replace every edge (v,y) with (u,y) and then remove v. Adding new edges to
the forest may result in cycles. Thus gluing produces a graph in general. When
nodes are glued in this process, the size of V decreases, and the size of E does not
increase (and may decrease). As we can see, semantically comparing two forests
is only possible when given the set of identifiers for all types of nodes. Identifiers
carry the information about how nodes are related, and are crucial to reason about
data semantics.

2. Node Connecting: In the next step, related nodes are connected. The idea is that
every pair of related nodes is now explicitly identified by an edge that connects
them. Before node connecting, a pair of related nodes may or may not be adja-
cent, while semantically whether they are connected or not should not make any
difference. Connecting effectively changes a tree to a graph by adding edges. The
number of edges in E may either increase or decrease depending on the specific
situation. There is no change to V, Σ, L, or C.

 Compacting XML Data 773

4 Compaction

With a semantics for XML data defined, a formal discussion on compaction is now
possible. Compaction aims to transform a forest to a smaller forest. The two forests
will have the same semantics, i.e., the forest-to-graph translation maps them to the
same graph. Compaction can be achieved by changing the structure of a forest. A
restructuring is a transformation that changes the structure of the forest but keeps its
semantics intact. A forest can be restructured by mapping it to its canonical graph,
and then creating a semantically equivalent forest with a different structure. Ideally,
the restructuring will yield a forest that is smaller in size than the original. Here we
employ a structural specification called a signature that designates the target’s struc-
tural characteristics. For example, the signature for pub.xml is

bib#pub#book#(author#name,title)

in which the symbol # denotes parent-child relationship and siblings are separated by
commas and enclosed within a pair of parentheses.

We have devised a restructuring algorithm that takes a canonical graph and a target
signature as input, and outputs a new forest that conforms to the specification. (Due to
space limit, the detail is omitted in this paper; it can be found at [8]). Essentially, this
restructuring algorithm is an inverse of the combination of node gluing and node
connecting. In changing the canonical graph to a forest, the restructuring algorithm
disconnects and unglues nodes. It disconnects since the output has to contain no cycle,
and it unglues (makes duplicates) since the semantics encoded in every edge in the
canonical graph must be faithfully preserved.

In restructuring, different target signatures will yield forests of different sizes. To
find the most compact forest among them, we could simply enumerate all the possible
target forests. However, this is computational intractable. The number of different
target signatures is more than exponential.1

While in general the problem is hard, there is a simple technique to generate a
compact forest for some forests. The idea is to take advantage of the cardinality ratio.
The ratio characterizes the relationship between pairs of element types as one of the
following: one-to-one, one-to-many, or many-to-many. For example, the relationship
between publisher and book is one-to-many: a book is published by exactly one pub-
lisher but a publisher publishes many books. On the other hand, the relationship be-
tween book and author is many-to-many.

Cardinality ratio may come with the data as a predefined constraint; if not, it can be
quickly determined by traversing the canonical graph. (In contrast, we do not infer
type identifiers and assume they must be given.) Table 1 shows the cardinality ratios
for the example graph. The relationship between author and name is one-to-one (re-
call that authors are glued by name, hence each author is associated with a single
name, and vice-versa). Author to book is many-to-many since an author can write
many books, and a book can have many authors. (Note that exact, average ratios
could be computed, e.g., 4.2 to 2.7.)

1 Given a label set of size n, suppose the number of distinct unordered trees is t(n) and the

number of distinct unordered forests is f(n), we have,
t(1) = 1, t(n) = (2n-2) • t(n-1) = (2n-2) • (2n-4) ... 2 • t(1) = (2n-2) • (2n-4) ... • 2, and
f(1) = 1, f(n) = (2n-1) • f(n-1) = (2n-1) • (2n-3) ... 3 • f(1) = (2n-1) • (2n-3) ... • 3.

774 S. Zhang, C. Dyreson, and Z. Dang

Table 1. Cardinality ratios for the example graph

 pub title book name
author n-m n-m n-m 1-1
name n-m n-m n-m
book n-1 1-1
title n-1

The key to achieving compactness is to focus on types that are related in one-to-

many relationships. Specifically, assume types X and Y are in a one-to-many relation-
ship. Then a target signature that has X above Y leads to a forest that is more compact
than a forest with Y above X. Consider the example of publisher and book, which
have a one-to-many relationship. If publishers are above books in the target signature,
then in the target forest there are no duplicate publishers (or duplicate books). Every
book is placed under the publisher to which it belongs. If books are above publishers
in the target signature, then the same publisher may be duplicated several times. Such
a forest is less compact and hence need not to be considered.

The technique for generating a target signature for a compact forest begins by con-
sidering one-to-one relationships. One side of the relationship is made a child of the
other side. If one side is involved in gluing the other, then it should be made the child,
otherwise either side can be made the child. Consider book and title in the example
graph. Their relationship is one-to-one. Furthermore, book is glued using title. Hence
book should be a parent of title in the potentially compact output. The target signature
after this step is book#title and author#name. Next, one-to-many relationships are
processed by making the one side the parent. In the example, after considering the
one-to-many relationships, the target is pub#book#title and author#name. Finally, only
many-to-many relationships remain. The remaining types are placed as high as possi-
ble in the forest. In the example graph, this means that author is made a child of book
resulting in the signature pub#book#(title,author#name).

Once the target signature has been generated, the original forest is restructured us-
ing the target signature. The restructured forest may or may not be smaller, i.e., the
technique does not generate the most compact forest. Finding the signature that leads
to the most compact restructuring is theoretically intractable. However, we expect the
technique outlined above to lead to a “reasonable” target signature in practice. The
technique can be further refined by utilizing the average cardinality ratio of many-to-
many relationships, e.g., if the ratio is thirty-to-two, then the two side of the relation-
ship should be made the parent. But such refinements are beyond the scope of this
paper.

To gauge how well compaction performs on real-world data, we did an experiment
to compact DBLP data. The test data has a size of 309KB and contains 7312 ele-
ments. Restructuring the data using a compact signature yields a 252KB data collec-
tion that contains 5441 elements. The compacted data has an 18% reduction in file
size and a 25% reduction in number of elements. The detail of the experiment can be
found at [8].

 Compacting XML Data 775

5 Related Work

Compaction for XML is similar to XML compression in the sense that they both aim
to describe the same information with shorter representation. However, compaction
differs from usual compression since the output has to retain XML syntax. To the best
of our knowledge, the problem of compaction has not been previously researched. In
this section, we briefly review general and XML-specific compression techniques,
and relate them to compaction when pertinent.

Most modern data compression techniques have their genesis in the Huffman algo-
rithm [767] or the LZ77 algorithm [7]. Huffman coding is statistical; it assigns shorter
codes to more frequent characters and longer codes to less frequent ones. Popular data
compression tools such as gzip and pkzip are based on LZ77. A later version of
LZ77, the LZW algorithm [6], is more suitable for practical implementation. The
essence of the LZ77 family of compression techniques is to store repetitive sequences
just once. Any repetition of a sequence that previously occurred is replaced by a
pointer to that sequence. Such techniques are called pattern-based.

Specialized compressors take advantage of the specific properties of the data to be
compressed. For XML data in particular, several compression techniques have been
proposed. The earliest such work is XMill [2]. Incorporating existing compressors,
XMill compresses XML structures and values separately, uses type specific compres-
sors for different types of data, and allows user-defined compressors for domain spe-
cific data-types. Data compressed by XMill cannot be directly queried; doing so
would entail a complete decompression. XGrind [4] and XPRESS [3] are both com-
pressors that support direct query evaluations on compressed XML data. XGrind uses
a compression scheme based on Huffman coding, while XPRESS adopts an encoding
method called reverse arithmetic encoding. It is worthwhile to note that both com-
pression techniques are homomorphic because the structure of the original XML data
is preserved in the compressed XML data. In contrast, an important compaction tech-
nique proposed in this paper, restructuring, changes the structure of the original data.
Homomorphism is important for the compressed data to be efficiently queried. Com-
paction, on the other hand, is useful to ascertain the semantic redundancy in the data.
Compacted XML data is not supposed to be queried directly by the query intended for
the original data. Among the three compressors, XGrind is the only one that tries to
utilize schema information such as a DTD to enhance the compression ratio. In com-
parison, finding an appropriate schema (target signature in our situation) is the goal of
compaction. To enhance compaction ratio, knowledge of identifiers in the original
data is required, and knowledge of cardinality ratio is helpful.

6 Conclusion

XML compaction aims to produce a smaller, compact XML forest, without losing
information. This paper develops a formal framework for the compaction of XML
data. It first formalizes XML data by introducing a forest data model and defining
types and identifiers. A translative semantics for XML is then presented. This seman-
tics translates an XML data collection to a canonical graph, depending on a given set
of identifiers. Data collections that translate to the same canonical graph are deemed

776 S. Zhang, C. Dyreson, and Z. Dang

to have the same semantics. Based on this formalization, two compaction techniques,
restructuring and grouping, are discussed. Though finding the most compact forest is
computationally prohibitive in general, we developed simple techniques to find a
more compact forest at low cost using restructuring or grouping.

In future we plan to explore the relationship between compaction and compression.
General compression techniques are not confined to produce the same file format as
the input. Hence, it is reasonable to expect that they can achieve a better compression
than compaction. However, a file can be first compacted and then compressed. Does
combining the compaction with compression produce better performance than com-
pression alone? An interesting work is to examine this problem on both the theoretical
and experimental grounds.

References

1. D. Huffman. A Method for Construction of Minimum-Redundancy Codes, Proc. of IRE,
September 1952.

2. H. Liefke and D. Suciu. Xmill: An Efficient Compressor for XML Data, SIGMOD Confer-
ence, 2000.

3. J. Min, M. Park, and C. Chung. XPRESS: A Queriable Compression for XML Data,
SIGMOD Conference, 2003.

4. P. M. Tolani and J. R. Haritsa. XGRIND: A Query-friendly XML Compressor, ICDE
2002.

5. W3C. Document Object Model (DOM), www.w3.org/DOM.
6. T. Welch. A Technique for High-Performance Data Compression, Computer, pp. 8-18,

1984.
7. J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression, IEEE

Transactions on Information Theory, 23:3, pp. 337-343, 1977.
8. http://www.eecs.wsu.edu/~cdyreson/pub/compaction.

	Introduction
	Preliminaries
	A Semantics for XML
	Compaction
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

